1
|
Haishen Y, Jiang F, Si X, Sun D, Fei H, Wang D, Li K, Du S, Hu W, Wang Z. Expression of ALG8 in hepatocellular carcinoma and its diagnostic and prognostic significance. Scand J Gastroenterol 2024:1-11. [PMID: 39648870 DOI: 10.1080/00365521.2024.2433562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Alpha-1,3-glucosyltransferase (ALG8), a key enzyme in protein glycosylation, is implicated in the oncogenesis and progression of several human malignancies. This study aimed to define the role of ALG8 in hepatocellular carcinoma (HCC) and uncover its mechanisms of action. METHODS ALG8 expression in HCC and normal tissues was analyzed using the TCGA and GEO databases, validated by RT-qPCR and western blot. Survival outcomes were evaluated via Cox analyses, and ALG8's impact on HCC behavior was examined through functional assays. GO, KEGG, and GSEA identified ALG8-related pathways, validated by biochemical assays. RESULTS In bioinformatics analyses, ALG8 was overexpressed in HCC tissues (p < 0.05 for all comparisons) and correlated with poorer survival (p = 0.006 and p = 0.025, respectively), establishing its role as an independent prognostic factor. In vitro experiments showed that knockdown of ALG8 reduced HCC cell proliferation, migration, and invasion. Using the STRING platform and TCGA-LIHC dataset, we identified ALG8-interacting genes and their associated differentially expressed genes (DEGs). GO and KEGG analyses further linked ALG8 to genes involved in glycosylation, signal release, and other processes, as well as pathways including neuroactive ligand-receptor interaction and N-Glycan biosynthesis. GSEA, corroborated by western blot and immunofluorescence, points to the Wnt/β-catenin signaling cascade as a probable mechanistic pathway through which ALG8 may modulate HCC progression. CONCLUSION Elevated ALG8 expression in HCC is linked to worse outcomes and increased tumor aggressiveness, with silencing ALG8 reducing Wnt/β-catenin signaling, highlighting ALG8 as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Haishen
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Feiyu Jiang
- Lianyungangshi Haibin High School, Lianyungang, P.R. China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, P.R. China
| | - Dan Sun
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Haoran Fei
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Dali Wang
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Kai Li
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Shengwang Du
- Department of General Surgery, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, P.R. China
| | - Wei Hu
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
| | - Zhong Wang
- Department of Hepatobiliary Surgery, Affiliated Lianyungang Hospital of Xuzhou Medical University, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, P.R. China
- Department of General Surgery, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, P.R. China
| |
Collapse
|
2
|
Goyal H, Parwani S, Kaur J. Deciphering the nexus between long non-coding RNAs and endoplasmic reticulum stress in hepatocellular carcinoma: biomarker discovery and therapeutic horizons. Cell Death Discov 2024; 10:451. [PMID: 39448589 PMCID: PMC11502918 DOI: 10.1038/s41420-024-02200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a significant global health challenge with few effective treatment options. The dysregulation of endoplasmic reticulum (ER) stress responses has emerged as a pivotal factor in HCC progression and therapy resistance. Long non-coding RNAs (lncRNAs) play a crucial role as key epigenetic modifiers in this process. Recent research has explored how lncRNAs influence ER stress which in turn affects lncRNAs activity in HCC. We systematically analyze the current literature to highlight the regulatory roles of lncRNAs in modulating ER stress and vice versa in HCC. Our scrutinization highlights how dysregulated lncRNAs contribute to various facets of HCC, including apoptosis resistance, enhanced proliferation, invasion, and metastasis, all driven by ER stress. Moreover, we delve into the emerging paradigm of the lncRNA-miRNA-mRNA axis, elucidating it as the promising avenue for developing novel biomarkers and paving the way for more personalized treatment options in HCC. Nevertheless, we acknowledge the challenges and future directions in translating these insights into clinical practice. In conclusion, our review provides insights into the complex regulatory mechanisms governing ER stress modulation by lncRNAs in HCC.
Collapse
Affiliation(s)
- Himanshi Goyal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sachin Parwani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
3
|
Luo B, Zhuang L, Huang J, Shi L, Zhang L, Zhu M, Lu Y, Zhu Q, Sun D, Wang H, Fang H. LncRNA ZFAS1 regulates ATIC transcription and promotes the proliferation and migration of hepatocellular carcinoma through the PI3K/AKT signaling pathway. J Cancer Res Clin Oncol 2024; 150:351. [PMID: 39001904 PMCID: PMC11246283 DOI: 10.1007/s00432-024-05877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) exert a significant influence on various cancer-related processes through their intricate interactions with RNAs. Among these, lncRNA ZFAS1 has been implicated in oncogenic roles in multiple cancer types. Nevertheless, the intricate biological significance and underlying mechanism of ZFAS1 in the initiation and progression of hepatocellular carcinoma (HCC) remain largely unexplored. METHODS Analysis of The Cancer Genome Atlas Program (TCGA) database revealed a notable upregulation of lncRNA ZFAS1 in HCC tissues. To explore its function, we investigated colony formation and performed CCK-8 assays to gauge cellular proliferation and wound healing, Transwell assays to assess cellular migration, and an in vivo study employing a nude mouse model to scrutinize tumor growth and metastasis. Luciferase reporter assay was used to confirm the implicated interactions. Rescue experiments were conducted to unravel the plausible mechanism underlying the activation of the PI3K/AKT pathway by lncRNAs ZFAS1 and ATIC. RESULTS ZFAS1 and ATIC were significantly upregulated in the HCC tissues and cells. ZFAS1 knockdown inhibited cell proliferation and migration. We observed a direct interaction between the lncRNA ZFAS1 and ATIC. ATIC knockdown also suppressed cell proliferation and migration. SC79, an activator of AKT, partially restores the effects of lncRNA ZFAS1/ATIC knockdown on cell proliferation and migration. Knockdown of lncRNA ZFAS1/ATIC inhibited tumor growth and lung metastasis in vivo. CONCLUSION Overall, lncRNA ZFAS1 regulates ATIC transcription and contributes to the growth and migration of HCC cells through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Baoyang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Lin Zhuang
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
- Department of General Surgery, Wujin Affiliated Hospital of Jiangsu University and The Wujin Clinical college of Xuzhou Medical University, Changzhou, Jiangsu, 213000, China
| | - Ju Huang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Longqing Shi
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Li Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Maoqun Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Yunjie Lu
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Qiang Zhu
- Department of General Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Donglin Sun
- Department of Hepatobiliary and Pancreatic Surgery, Third Affiliated Hospital of Soochow University, 185th Juqian Street, Changzhou, Jiangsu, 213003, China.
| | - Hao Wang
- Department of General Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Haisheng Fang
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Dong J, Song R, Shang X, Wang Y, Liu Q, Zhang Z, Jia H, Huang M, Zhu C, Sun Q, Du B, Xing A, Li Z, Zhang L, Pan L, Zhang Z. Identification of important modules and biomarkers in tuberculosis based on WGCNA. Front Microbiol 2024; 15:1354190. [PMID: 38389525 PMCID: PMC10882270 DOI: 10.3389/fmicb.2024.1354190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Background Tuberculosis (TB) is a significant public health concern, particularly in China. Long noncoding RNAs (lncRNAs) can provide abundant pathological information regarding etiology and could include candidate biomarkers for diagnosis of TB. However, data regarding lncRNA expression profiles and specific lncRNAs associated with TB are limited. Methods We performed ceRNA-microarray analysis to determine the expression profile of lncRNAs in peripheral blood mononuclear cells (PBMCs). Weighted gene co-expression network analysis (WGCNA) was then conducted to identify the critical module and genes associated with TB. Other bioinformatics analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and co-expression networks, were conducted to explore the function of the critical module. Finally, real-time quantitative polymerase chain reaction (qPCR) was used to validate the candidate biomarkers, and receiver operating characteristic analysis was used to assess the diagnostic performance of the candidate biomarkers. Results Based on 8 TB patients and 9 healthy controls (HCs), a total of 1,372 differentially expressed lncRNAs were identified, including 738 upregulated lncRNAs and 634 downregulated lncRNAs. Among all lncRNAs and mRNAs in the microarray, the top 25% lncRNAs (3729) and top 25% mRNAs (2824), which exhibited higher median expression values, were incorporated into the WGCNA. The analysis generated 16 co-expression modules, among which the blue module was highly correlated with TB. GO and KEGG analyses showed that the blue module was significantly enriched in infection and immunity. Subsequently, considering module membership values (>0.85), gene significance values (>0.90) and fold-change value (>2 or < 0.5) as selection criteria, the top 10 upregulated lncRNAs and top 10 downregulated lncRNAs in the blue module were considered as potential biomarkers. The candidates were then validated in an independent validation sample set (31 TB patients and 32 HCs). The expression levels of 8 candidates differed significantly between TB patients and HCs. The lncRNAs ABHD17B (area under the curve [AUC] = 1.000) and ENST00000607464.1 (AUC = 1.000) were the best lncRNAs in distinguishing TB patients from HCs. Conclusion This study characterized the lncRNA profiles of TB patients and identified a significant module associated with TB as well as novel potential biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Jing Dong
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ruixue Song
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xuetian Shang
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yingchao Wang
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qiuyue Liu
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- Department of Intensive Care Unit, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhiguo Zhang
- Changping Tuberculosis Prevent and Control Institute of Beijing, Beijing, China
| | - Hongyan Jia
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Mailing Huang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chuanzhi Zhu
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Qi Sun
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Boping Du
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Aiying Xing
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zihui Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Lanyue Zhang
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Liping Pan
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zongde Zhang
- Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing, China
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
5
|
Zhang L, Dong X, Zhan Y, Ma S, Liu C, Gao Y. Expression profile of microRNAs in patients with decompensated cirrhosis by small RNA deep sequencing. Clin Biochem 2024; 123:110705. [PMID: 38159622 DOI: 10.1016/j.clinbiochem.2023.110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION AND OBJECTIVE Decompensated cirrhosis (DCC) is a more advanced stage of liver cirrhosis (LC). It is important to identify biomarkers to predict DCC progression. The aim of this study was to analyze microRNA (miRNA) profiles of whole blood involved in the DCC process to gain a better understanding of the molecular mechanisms underlying its development. MATERIALS AND METHODS RNA-Seq analysis of blood samples from a discovery set, including four DCC patients and four LC individuals, was performed to identify differentially expressed miRNAs. The selected differentially expressed miRNAs were validated by using an independent validation set. RESULTS In this study, a total of 1,036 miRNAs were identified in whole blood samples. Forty differentially expressed miRNAs were identified, including 24 upregulated and 16 downregulated miRNAs. The expression levels of three upregulated miRNAs (hsa-miR-20b-5p, hsa-miR-421, and hsa-miR-1307-3p) and two downregulated miRNAs (hsa-miR-139-5p and hsa-miR-150-5p) were validated by quantitative reverse transcriptase polymerase chain reaction. The receiver operator characteristic curve for the logistic regression model based on hsa-miR-20b-5p, hsa-miR-421, and hsa-miR-150-5p could distinguish DCC patients with excellent diagnostic accuracy (area under the curve: 0.981, p < 0.01). CONCLUSION The miRNA expression profiles in patients with DCC and LC controls suggested that miR-20b-5p, miR-421, and miR-150-5p could be potential biomarkers and therapeutic targets for this condition.
Collapse
Affiliation(s)
- Li Zhang
- Department of Infectious Diseases, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Xiang Dong
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Yuling Zhan
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Shasha Ma
- Department of Infectious Diseases, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Chuanmiao Liu
- Department of Infectious Diseases, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Yu Gao
- Department of Biotechnology, School of Life Science, Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China; Research Center for Laboratory Animal Science, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
6
|
He Z, Zhang J, Huang W. Diagnostic role and immune correlates of programmed cell death-related genes in hepatocellular carcinoma. Sci Rep 2023; 13:20509. [PMID: 37993470 PMCID: PMC10665317 DOI: 10.1038/s41598-023-47560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Programmed cell death (PCD) is thought to have multiple roles in tumors. Here, the roles of PCD-related genes were comprehensively analyzed to evaluate their values in hepatocellular carcinoma (HCC) diagnosis and prognosis. Gene expression and single-cell data of HCC patients, and PCD-related genes were collected from public databases. The diagnostic and prognostic roles of differentially expressed PCD-related genes in HCC were explored by univariate and multivariate Cox regression analyses. Single-cell data were further analyzed for the immune cells and expression of feature genes. Finally, we evaluated the expression of genes by quantitative real-time polymerase chain reaction and Western blot, and the proportion of immune cells was detected by flow cytometry in HCC samples. We obtained 52 differentially expressed PCD-related genes in HCC, based on which the consensus clustering analysis cluster 2 was found to have a worse prognosis than cluster 1. Then 10 feature genes were identified using LASSO analysis, and programmed cell death index (PCDI) was calculated to divided HCC patients into high-PCDI and low-PCDI groups. Worse prognosis was observed in high-PCDI group. Cox regression analysis showed that PCDI is an independent prognostic risk factor for HCC patients. Additionally, SERPINE1 and G6PD of feature genes significantly affect patient survival. Macrophages and Tregs were significantly positively correlated with PCDI. G6PD mainly expressed in macrophages, SERPINE1 mainly expressed in fibroblast. The experimental results confirmed the high expression of SERPINE1 and G6PD in HCC compared with the control, and the infiltration level of macrophages and Treg in HCC was also obviously elevated. PCDI may be a new predictor for the diagnosis of patients with HCC. The association of SERPINE1 and G6PD with the immune environment will provide new clues for HCC therapy.
Collapse
Affiliation(s)
- Zhanao He
- Department of Interventional Diagnosis and Treatment, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, 830011, China
| | - Wukui Huang
- Department of Interventional Diagnosis and Treatment, The Affiliated Tumor Hospital of Xinjiang Medical University, Ürümqi, 830011, China.
| |
Collapse
|
7
|
GOU L, HE Y, QIU P, HUANG B. [Mechanism Research of lncRNA miR143HG on Regulating the Biological Behavior
of Lung Squamous Cell Carcinoma H520 Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:741-752. [PMID: 37989337 PMCID: PMC10663781 DOI: 10.3779/j.issn.1009-3419.2023.106.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND There is a high morbidity, mortality, and poor clinical prognosis of lung squamous cell carcinoma (LUSC). However, there is currently no effective targeted treatment plan for LUSC. As a long non-coding RNA (lncRNA), lncRNA miR143HG has been proven to play an important role in the occurrence and development of various tumors. However, the biological role played by lncRNA miR143HG in LUSC cells is still unclear. Therefore, this study aimed to investigate the mechanism of lncRNA miR143HG on regulating the biological behavior of LUSC H520 cells. METHODS Pan-cancer analysis and differential expression analysis of lncRNA miR143HG were performed based on The Cancer Genome Atlas (TCGA) database. The predictive effect of lncRNA miR143HG on the diagnosis and prognosis of LUSC was evaluated by adopting the receiver operating characteristic (ROC) curve and timeROC curve. The enrichment degree of each pathway to lncRNA miR143HG was determined. The expression of lncRNA miR143HG and miR-155 in BEAS-2B cells and H520 cells was detected using quantitative real-time polymerase chain reaction (qRT-PCR). H520 cells were randomly divided into blank control group (without any treatment), negative control group (transfected with lncRNA-NC), lncRNA miR143HG group (transfected with lncRNA miR143HG), and lncRNA miR143HG+miR-155 group (co-transfected with lncRNA miR143HG and miR-155). The approaches of CCK-8, wound healing test, Transwell assay, flow cytometry, qRT-PCR, and Western blot were respectively employed to detect the cell proliferation ability, cell migration ability, cell invasion ability, cell apoptosis rate, and expression level of related genes and proteins of the Wnt/β-Catenin pathway. RESULTS The results of pan-cancer analysis and differential analysis collectively showed that except for renal clear cell carcinoma, the expression of lncRNA miR143HG in other cancer tissues was higher than that in healthy tissues, and the differences were significant in LUSC. The evaluation results of the ROC curve and timeROC curve suggested that lncRNA miR143HG was of great significance in the prediction of diagnosis and prognosis of LUSC. The pathways enriched in high expression of lncRNA miR143HG mainly included focal adhesion, vascular smooth muscle contraction, calcium signaling pathways, and so on; the pathways enriched in the low expression of lncRNA miR143HG embraced oxidative phosphorylation, cell cycle, basic transcription factors, etc. The qRT-PCR results showed that lncRNA miR143HG was low expressed but miR-155 was highly expressed in H520 cells when compared to BEAS-2B cells (P<0.05). Compared with the negative control group, the expression levels of the gene of lncRNA miR143HG, the gene and protein of Wnt, as well as the gene and protein of β-Catenin were significantly increased, while the gene expression of miR-155, the ability of cell proliferation, cell migration, and cell invasion were significantly reduced, but the cell apoptosis rate was dominantly elevated in cells of lncRNA miR143HG group (P<0.05). In addition, compared with the lncRNA miR143HG group, overexpression of miR-155 could reverse the biological behavior mediated by lncRNA miR143HG, and the difference was statistically significant (P<0.05). CONCLUSIONS LncRNA miR143HG was of great significance for the biological behavior of H520 cells. LncRNA miR143HG inhibited the ability of proliferation, migration, and invasion, as well as enhanced the apoptosis of H520 cells by downregulating miR-155 expression, which may be related to the Wnt/β-Catenin pathway.
.
Collapse
|
8
|
Chen D, Aierken A, Li H, Chen R, Ren L, Wang K. Identification of subclusters and prognostic genes based on glycolysis/gluconeogenesis in hepatocellular carcinoma. Front Immunol 2023; 14:1232390. [PMID: 37881434 PMCID: PMC10597634 DOI: 10.3389/fimmu.2023.1232390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Background This study aimed to examine glycolysis/gluconeogenesis-related genes in hepatocellular carcinoma (HCC) and evaluate their potential roles in HCC progression and immunotherapy response. Methods Data analyzed in this study were collected from GSE14520, GSE76427, GSE174570, The Cancer Genome Atlas (TCGA), PXD006512, and GSE149614 datasets, metabolic pathways were collected from MSigDB database. Differentially expressed genes (DEGs) were identified between HCC and controls. Differentially expressed glycolysis/gluconeogenesis-related genes (candidate genes) were obtained and consensus clustering was performed based on the expression of candidate genes. Bioinformatics analysis was used to evaluate candidate genes and screen prognostic genes. Finally, the key results were tested in HCC patients. Results Thirteen differentially expressed glycolysis/gluconeogenesis-related genes were validated in additional datasets. Consensus clustering analysis identified two distinct patient clusters (C1 and C2) with different prognoses and immune microenvironments. Immune score and tumor purity were significantly higher in C1 than in C2, and CD4+ memory activated T cell, Tfh, Tregs, and macrophage M0 were higher infiltrated in HCC and C1 group. The study also identified five intersecting DEGs from candidate genes in TCGA, GSE14520, and GSE141198 as prognostic genes, which had a protective role in HCC patient prognosis. Compared with the control group, the prognostic genes all showed decreased expression in HCC patients in RT-qPCR and Western blot analyses. Flow cytometry verified the abnormal infiltration level of immune cells in HCC patients. Conclusion Results showed that glycolysis/gluconeogenesis-related genes were associated with patient prognosis, immune microenvironment, and response to immunotherapy in HCC. It suggests that the model based on five prognostic genes may valuable for predicting the prognosis and immunotherapy response of HCC patients.
Collapse
Affiliation(s)
- Dan Chen
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ayinuer Aierken
- Department of Hepatobiliary Hydatid Disease, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Li
- Central Laboratory, Xinjiang Medical University, Urumqi, China
| | - Ruihua Chen
- Center of Animal Experiments, Xinjiang Medical University, Urumqi, China
| | - Lei Ren
- Department of Burns, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| |
Collapse
|