1
|
Sun Y, Su Y, Hussain A, Xiong L, Li C, Zhang J, Meng Z, Dong Z, Yu G. Complete genome sequence of the Pogostemon cablin bacterial wilt pathogen Ralstonia solanacearum strain SY1. Genes Genomics 2023; 45:123-134. [PMID: 35670995 PMCID: PMC9171469 DOI: 10.1007/s13258-022-01270-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ralstonia solanacearum causes bacterial wilt of Pogostemon cablin which is an important aromatic herb and also the main materials of COVID-19 therapeutic traditional drugs. However, we are lacking the information on the genomic sequences of R. solanacearum isolated from P. cablin. OBJECTIVE The acquisition and analysis of this whole-genome sequence of the P. cablin bacterial wilt pathogen. METHODS An R. solanacearum strain, named SY1, was isolated from infected P. cablin plants, and the complete genome sequence was sequenced and analyzed. RESULTS The SY1 strain contains a 3.70-Mb chromosome and a 2.18-Mb megaplasmid, with GC contents of 67.57% and 67.41%, respectively. A total of 3308 predicted genes were located on the chromosome and 1657 genes were located in the megaplasmid. SY1 strain has 273 unique genes compared with five representative R. solanacearum strains, and these genes were enriched in the plant-pathogen interaction pathway. SY1 possessed a higher syntenic relationship with phylotype I strains, and the arsenal of type III effectors predicted in SY1 were also more closely related to those of phylotype I strains. SY1 contained 14 and 5 genomic islands in its chromosome and megaplasmid, respectively, and two prophage sequences in its chromosome. In addition, 215 and 130 genes were annotated as carbohydrate-active enzymes and antibiotic resistance genes, respectively. CONCLUSION This is the first genome-scale assembly and annotation for R. solanacearum which isolated from infected P. cablin plants. The arsenal of virulence and antibiotic resistance may as the determinants in SY1 for infection of P. cablin plants.
Collapse
Affiliation(s)
- Yunhao Sun
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yutong Su
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ansar Hussain
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lina Xiong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jie Zhang
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhen Meng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhangyong Dong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China.
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| |
Collapse
|
2
|
Rasoamanana H, Ravelomanantsoa S, Yahiaoui N, Dianzinga N, Rébert E, Gauche MM, Pecrix Y, Costet L, Rieux A, Prior P, Robène I, Cellier G, Guérin F, Poussier S. Contrasting genetic diversity and structure among Malagasy Ralstonia pseudosolanacearum phylotype I populations inferred from an optimized Multilocus Variable Number of Tandem Repeat Analysis scheme. PLoS One 2020; 15:e0242846. [PMID: 33290390 PMCID: PMC7723262 DOI: 10.1371/journal.pone.0242846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
The Ralstonia solanacearum species complex (RSSC), composed of three species and four phylotypes, are globally distributed soil-borne bacteria with a very broad host range. In 2009, a devastating potato bacterial wilt outbreak was declared in the central highlands of Madagascar, which reduced the production of vegetable crops including potato, eggplant, tomato and pepper. A molecular epidemiology study of Malagasy RSSC strains carried out between 2013 and 2017 identified R. pseudosolanacearum (phylotypes I and III) and R. solanacearum (phylotype II). A previously published population biology analysis of phylotypes II and III using two MultiLocus Variable Number of Tandem Repeats Analysis (MLVA) schemes revealed an emergent epidemic phylotype II (sequevar 1) group and endemic phylotype III isolates. We developed an optimized MLVA scheme (RS1-MLVA14) to characterize phylotype I strains in Madagascar to understand their genetic diversity and structure. The collection included isolates from 16 fields of different Solanaceae species sampled in Analamanga and Itasy regions (highlands) in 2013 (123 strains) and in Atsinanana region (lowlands) in 2006 (25 strains). Thirty-one haplotypes were identified, two of them being particularly prevalent: MT007 (30.14%) and MT004 (16.44%) (sequevar 18). Genetic diversity analysis revealed a significant contrasting level of diversity according to elevation and sampling region. More diverse at low altitude than at high altitude, the Malagasy phylotype I isolates were structured in two clusters, probably resulting from different historical introductions. Interestingly, the most prevalent Malagasy phylotype I isolates were genetically distant from regional and worldwide isolates. In this work, we demonstrated that the RS1-MLVA14 scheme can resolve differences from regional to field scales and is thus suited for deciphering the epidemiology of phylotype I populations.
Collapse
Affiliation(s)
- Hasina Rasoamanana
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Santatra Ravelomanantsoa
- Centre National de la Recherche Appliquée au Développement Rural FOFIFA, Antananarivo, Madagascar
| | - Noura Yahiaoui
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Niry Dianzinga
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Emeline Rébert
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Miharisoa-Mirana Gauche
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Yann Pecrix
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Laurent Costet
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Adrien Rieux
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Philippe Prior
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Isabelle Robène
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, Réunion, France
| | - Gilles Cellier
- Anses - Plant Health Laboratory - Tropical Pests and Diseases Unit, Saint-Pierre, Réunion, France
| | - Fabien Guérin
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| | - Stéphane Poussier
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de La Réunion, Saint-Pierre, Réunion, France
| |
Collapse
|
3
|
Santiago TR, Lopes CA, Caetano-Anollés G, Mizubuti ESG. Genetic Structure of Ralstonia solanacearum and Ralstonia pseudosolanacearum in Brazil. PLANT DISEASE 2020; 104:1019-1025. [PMID: 31994983 DOI: 10.1094/pdis-09-19-1929-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial wilt-causing Ralstonia threaten numerous crops throughout the world. We studied the population structure of 196 isolates of Ralstonia solanacearum and 39 isolates of Ralstonia pseudosolanacearum, which were collected from potato- and tomato-growing areas in 19 states of Brazil. Regardless of the species, three groups of isolates were identified. One group encompassed R. pseudosolanacearum isolates. The other two groups comprise isolates of R. solanacearum (phylotype II) split according to geographic regions, one made of isolates from the North and Northeast and the other made of isolates from the Central, Southeast, and South regions (CSS). Among the isolates collected in CSS, those from tomato were genetically distinct from the potato isolates. The genetic variability in the population of R. pseudosolanacearum was lower than that of R. solanacearum, suggesting that the former was introduced in Brazil. Conversely, the high genetic variability of R. solanacearum in all regions, hosts, and times supports the hypothesis that this species is autochthonous in South America, more precisely in Brazil and Peru. For R. solanacearum, higher variability and lower migration rates were observed when tomato isolates were analyzed, indicating that the variability is caused mainly by the differences of the local, native soil population. The North subpopulation was distinct from all others, possibly because of differences in environmental features of this region. The proximity of some geographic regions and the movement of potato tubers could have facilitated migration and therefore low genetic differentiation between geographic regions. Finally, geography, which also influences host distribution, affects the structure of the population of R. solanacearum in Brazil. Despite quarantine procedures in Brazil, increasing levels of trade are a threat to biosecurity, and these results emphasize the need for improving our regional efforts to prevent the dispersal of pathogens.
Collapse
Affiliation(s)
- Thaís Ribeiro Santiago
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36.570-900, Brazil
| | | | | | - Eduardo S G Mizubuti
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36.570-900, Brazil
| |
Collapse
|
4
|
Nakato GV, Fuentes Rojas JL, Verniere C, Blondin L, Coutinho T, Mahuku G, Wicker E. A new Multi Locus Variable Number of Tandem Repeat Analysis Scheme for epidemiological surveillance of Xanthomonas vasicola pv. musacearum, the plant pathogen causing bacterial wilt on banana and enset. PLoS One 2019; 14:e0215090. [PMID: 30973888 PMCID: PMC6459536 DOI: 10.1371/journal.pone.0215090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/26/2019] [Indexed: 11/25/2022] Open
Abstract
Xanthomonas vasicola pv. musacearum (Xvm) which causes Xanthomonas wilt (XW) on banana (Musa accuminata x balbisiana) and enset (Ensete ventricosum), is closely related to the species Xanthomonas vasicola that contains the pathovars vasculorum (Xvv) and holcicola (Xvh), respectively pathogenic to sugarcane and sorghum. Xvm is considered a monomorphic bacterium whose intra-pathovar diversity remains poorly understood. With the sudden emergence of Xvm within east and central Africa coupled with the unknown origin of one of the two sublineages suggested for Xvm, attention has shifted to adapting technologies that focus on identifying the origin and distribution of the genetic diversity within this pathogen. Although microbiological and conventional molecular diagnostics have been useful in pathogen identification. Recent advances have ushered in an era of genomic epidemiology that aids in characterizing monomorphic pathogens. To unravel the origin and pathways of the recent emergence of XW in Eastern and Central Africa, there was a need for a genotyping tool adapted for molecular epidemiology. Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA) is able to resolve the evolutionary patterns and invasion routes of a pathogen. In this study, we identified microsatellite loci from nine published Xvm genome sequences. Of the 36 detected microsatellite loci, 21 were selected for primer design and 19 determined to be highly typeable, specific, reproducible and polymorphic with two- to four- alleles per locus on a sub-collection. The 19 markers were multiplexed and applied to genotype 335 Xvm strains isolated from seven countries over several years. The microsatellite markers grouped the Xvm collection into three clusters; with two similar to the SNP-based sublineages 1 and 2 and a new cluster 3, revealing an unknown diversity in Ethiopia. Five of the 19 markers had alleles present in both Xvm and Xanthomonas vasicola pathovars holcicola and vasculorum, supporting the phylogenetic closeliness of these three pathovars. Thank to the public availability of the haplotypes on the MLVABank database, this highly reliable and polymorphic genotyping tool can be further used in a transnational surveillance network to monitor the spread and evolution of XW throughout Africa.. It will inform and guide management of Xvm both in banana-based and enset-based cropping systems. Due to the suitability of MLVA-19 markers for population genetic analyses, this genotyping tool will also be used in future microevolution studies.
Collapse
Affiliation(s)
- Gloria Valentine Nakato
- IITA, Kampala, Uganda
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | | | | | - Teresa Coutinho
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics/Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | - Emmanuel Wicker
- UMR IPME, Univ Montpellier, CIRAD, IRD, Montpellier, France
- CIRAD, UMR IPME, Montpellier, France
| |
Collapse
|
5
|
Mohanty PS, Bansal AK, Naaz F, Arora M, Gupta UD, Gupta P, Sharma S, Singh H. Multiple strain infection of Mycobacterium leprae in a family having 4 patients: A study employing short tandem repeats. PLoS One 2019; 14:e0214051. [PMID: 30947261 PMCID: PMC6449029 DOI: 10.1371/journal.pone.0214051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/06/2019] [Indexed: 11/19/2022] Open
Abstract
Background Leprosy is a slow, chronic disorder caused by Mycobacterium leprae. India has achieved elimination of leprosy in December 2005 but new cases are being detected and continue to occur in some endemic pockets. The possible ways of transmission of leprosy is not fully understood and is believed that leprosy is transmitted from person to person in long term contact. Studying the transmission dynamics is further complicated by inability to grow M. leprae in culture medium and lack of animal models. More than one family members were found to be affected by leprosy in some highly endemic pockets. This study reported the transmission pattern of leprosy in a family having 4 patients. Methodology/Principal findings We investigated the transmission of leprosy in a single family having 4 patients using microsatellite typing. DNA was isolated from slit skin smear samples taken from the patients and the isolated DNA were amplified using microsatellite loci TA11CA3. The amplified products were sequenced using Sanger’s sequencing methods and the copy number variation in the microsatellite loci between strains were elucidated by multiple sequence alignment. The result showed that all the 4 members of the family acquired infection from 3 different strains of M. leprae from 3 different sources. The elder and middle daughters were infected by same types of strains having the repeat unit TA13CA3 and could have acquired the infection from social contacts of leprosy cases while the father and younger daughter were infected by strains with the repeat unit TA12CA3 and TA11CA3 and could have acquired infection from social contacts. Conclusions/Significance The study suggested that three family members viz, elder daughter, father and younger daughter could be infected by M. leprae from 3 different sources and the history of the disease and genetic analysis showed that the middle daughter acquired infection from her elder sister in due course of contact. This study implies that the transmission of leprosy not only occurred amongst the house hold members but also has been transmitted from social and neighborhood contacts in long term association with the them.
Collapse
Affiliation(s)
- Partha Sarathi Mohanty
- Department of Epidemiology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
- * E-mail:
| | - Avi Kumar Bansal
- Department of Epidemiology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| | - Farah Naaz
- Department of Epidemiology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| | - Mamta Arora
- Clinical Division, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| | - Umesh Datta Gupta
- Department of Animal Experimentation, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| | - Pushpa Gupta
- Department of Animal Experimentation, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| | - Sandeep Sharma
- Department of Epidemiology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| | - Haribhan Singh
- Department of Epidemiology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| |
Collapse
|
6
|
Identification of Cyclic Dipeptides from Escherichia coli as New Antimicrobial Agents against Ralstonia Solanacearum. Molecules 2018; 23:molecules23010214. [PMID: 29351264 PMCID: PMC6017746 DOI: 10.3390/molecules23010214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022] Open
Abstract
Ralstonia solanacearum is a causative agent of bacterial wilt in many important crops throughout the world. How to control bacterial wilt caused by R. solanacearum is a major problem in agriculture. In this study, we aim to isolate the biocontrol agents that have high efficacy in the control of bacterial wilt. Three new bacterial strains with high antimicrobial activity against R. solanacearum GMI1000 were isolated and identified. Our results demonstrated that these bacteria could remarkably inhibit the disease index of host plant infected by R. solanacearum. It was indicated that strain GZ-34 (CCTCC No. M 2016353) showed an excellent protective effect to tomato under greenhouse conditions. Strain GZ-34 was characterized as Escherichia coli based on morphology, biochemistry, and 16S rRNA analysis. We identified that the main antimicrobial compounds produced by E. coli GZ-34 were cyclo(l-Pro-d-Ile) and cyclo(l-Pro-l-Phe) using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) analysis. The two active compounds also interfered with the expression levels of some pathogenicity-contributors of R. solanacearum. Furthermore, cyclo(l-Pro-l-Phe) effectively inhibited spore formation of Magnaporthe grisea, which is a vital pathogenesis process of the fungal pathogen, suggesting cyclic dipeptides from E. coli are promising potential antimicrobial agents with broad-spectrum activity to kill pathogens or interfere with their pathogenesis.
Collapse
|
7
|
Ravelomanantsoa S, Vernière C, Rieux A, Costet L, Chiroleu F, Arribat S, Cellier G, Pruvost O, Poussier S, Robène I, Guérin F, Prior P. Molecular Epidemiology of Bacterial Wilt in the Madagascar Highlands Caused by Andean (Phylotype IIB-1) and African (Phylotype III) Brown Rot Strains of the Ralstonia solanacearum Species Complex. FRONTIERS IN PLANT SCIENCE 2018; 8:2258. [PMID: 29379515 PMCID: PMC5775269 DOI: 10.3389/fpls.2017.02258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/27/2017] [Indexed: 05/21/2023]
Abstract
The Ralstonia solanacearum species complex (RSSC) is a highly diverse cluster of bacterial strains found worldwide, many of which are destructive and cause bacterial wilt (BW) in a wide range of host plants. In 2009, potato production in Madagascar was dramatically affected by several BW epidemics. Controlling this disease is critical for Malagasy potato producers. The first important step toward control is the characterization of strains and their putative origins. The genetic diversity and population structure of the RSSC were investigated in the major potato production areas of the Highlands. A large collection of strains (n = 1224) was assigned to RSSC phylotypes based on multiplex polymerase chain reaction (PCR). Phylotypes I and III have been present in Madagascar for a long time but rarely associated with major potato BW outbreaks. The marked increase of BW prevalence was found associated with phylotype IIB sequevar 1 (IIB-1) strains (n = 879). This is the first report of phylotype IIB-1 strains in Madagascar. In addition to reference strains, epidemic IIB-1 strains (n = 255) were genotyped using the existing MultiLocus Variable-Number Tandem Repeat Analysis (MLVA) scheme RS2-MLVA9, producing 31 haplotypes separated into two related clonal complexes (CCs). One major CC included most of the worldwide haplotypes distributed across wide areas. A regional-scale investigation suggested that phylotype IIB-1 strains were introduced and massively spread via latently infected potato seed tubers. Additionally, the genetic structure of phylotype IIB-1 likely resulted from a bottleneck/founder effect. The population structure of phylotype III, described here for the first time in Madagascar, exhibited a different pattern. Phylotype III strains (n = 217) were genotyped using the highly discriminatory MLVA scheme RS3-MLVA16. High genetic diversity was uncovered, with 117 haplotypes grouped into 11 CCs. Malagasy phylotype III strains were highly differentiated from continental African strains, suggesting no recent migration from the continent. Overall, population structure of phylotype III involves individual small CCs that correlate to restricted geographic areas in Madagascar. The evidence suggests, if at all, that African phylotype III strains are not efficiently transmitted through latently infected potato seed tubers.
Collapse
Affiliation(s)
- Santatra Ravelomanantsoa
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, France
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, University of Réunion, Saint-Denis, France
- Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar
| | - Christian Vernière
- Unité Mixte de Recherche, Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Adrien Rieux
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, France
| | - Laurent Costet
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, France
| | - Frédéric Chiroleu
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, France
| | - Sandrine Arribat
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, France
| | - Gilles Cellier
- Tropical Pests and Diseases Unit, Plant Health Laboratory, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, Saint-Pierre, France
| | - Olivier Pruvost
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, France
| | - Stéphane Poussier
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, University of Réunion, Saint-Denis, France
| | - Isabelle Robène
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, France
| | - Fabien Guérin
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, University of Réunion, Saint-Denis, France
| | - Philippe Prior
- Unité Mixte de Recherche, Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Institut National de la Recherche Agronomique, Saint-Pierre, France
| |
Collapse
|
8
|
Chesneau T, Maignien G, Boyer C, Chéron JJ, Roux-Cuvelier M, Vanhuffel L, Poussier S, Prior P. Sequevar Diversity and Virulence of Ralstonia solanacearum Phylotype I on Mayotte Island (Indian Ocean). FRONTIERS IN PLANT SCIENCE 2018; 8:2209. [PMID: 29354148 PMCID: PMC5760537 DOI: 10.3389/fpls.2017.02209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/15/2017] [Indexed: 05/31/2023]
Abstract
The genetic and phenotypic diversity of the Ralstonia solanacearum species complex, which causes bacterial wilt to Solanacae, was assessed in 140 strains sampled from the main vegetable production areas of the Mayotte island. Only phylotype I strains were identified in the five surveyed areas. The strains were distributed into the following 4 sequevars: I-31 (85.7%), I-18 (5.0%), I-15 (5.7%), and I-46 (3.6%). The central area of Mayotte was the most diverse region, harboring 4 sequevars representing 47.1% of the collected strains. Virulence tests were performed under field and controlled conditions on a set of 10 tomato breeding line accessions and two commercial hybrid tomato cultivars. The strains belonging to sequevar I-31 showed the highest virulence on the tomatoes (pathotypes T-2 and T-3), whereas sequevars I-18, I-15, and I-46 were grouped into the weakly T-1 pathotype. When the tomato accessions were challenged in the field and growth chambers, the highest level of resistance were observed from the genetically related accessions Hawaii 7996, R3034, TML46, and CLN1463. These accessions were considered moderately to highly resistant to representative strains of the most virulent and prevalent sequevar (I-31). Interestingly, the Platinum F1 cultivar, which was recently commercialized in Mayotte for bacterial wilt resistance, was highly or moderately resistant to all strains. This study represents the first step in the rationalization of resistance deployment strategies against bacterial wilt-causing strains in Mayotte.
Collapse
Affiliation(s)
- Thomas Chesneau
- UMR PVBMT, CIRAD, Saint-Pierre, La Réunion, France
- Etablissement Public National, Coconi, France
| | - Géraldine Maignien
- Etablissement Public National, Coconi, France
- Union Interprofessionnelle Châtaigne Périgord - Limousin - Midi-Pyrénées, Tulle, France
| | | | | | | | - Luc Vanhuffel
- Chambre d'Agriculture de la Pêche et de l'aquaculture de Mayotte, Saint Pierre, La Réunion, France
- Chambre d'Agriculture de la Pêche et de l'aquaculture de Mayotte, Mamoudzou, France
| | | | - Philippe Prior
- UMR PVBMT, Institut National de la Recherche Agronomique, Saint-Pierre, France
| |
Collapse
|
9
|
Yahiaoui N, Chéron JJ, Ravelomanantsoa S, Hamza AA, Petrousse B, Jeetah R, Jaufeerally-Fakim Y, Félicité J, Fillâtre J, Hostachy B, Guérin F, Cellier G, Prior P, Poussier S. Genetic Diversity of the Ralstonia solanacearum Species Complex in the Southwest Indian Ocean Islands. FRONTIERS IN PLANT SCIENCE 2017; 8:2139. [PMID: 29312394 PMCID: PMC5742265 DOI: 10.3389/fpls.2017.02139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/04/2017] [Indexed: 05/21/2023]
Abstract
Epidemiological surveillance of plant pathogens based on genotyping methods is mandatory to improve disease management strategies. In the Southwest Indian Ocean (SWIO) islands, bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC) is hampering the production of many sustainable and cash crops. To thoroughly analyze the genetic diversity of the RSSC in the SWIO, we performed a wide sampling survey (in Comoros, Mauritius, Reunion, Rodrigues, and Seychelles) that yielded 1,704 isolates from 129 plots, mainly from solanaceous crops. Classification of the isolates to the four major RSSC phylogenetic groups, named phylotypes, showed that 87% were phylotype I, representing the most prevalent strain in each of the SWIO islands. Additionally, 9.7% were phylotype II, and 3.3% were phylotype III; however, these isolates were found only in Reunion. Phylotype IV (2 isolates), known to be restricted to Indonesia-Australia-Japan, was reported in Mauritius, representing the first report of this group in the SWIO. Partial endoglucanase (egl) sequencing, based on the selection of 145 isolates covering the geographic and host diversity in the SWIO (also including strains from Mayotte and Madagascar), revealed 14 sequevars with Reunion and Mauritius displaying the highest sequevar diversity. Through a multilocus sequence analysis (MLSA) scheme based on the partial sequencing of 6 housekeeping genes (gdhA, gyrB, rplB, leuS, adk, and mutS) and 1 virulence-associated gene (egl), we inferred the phylogenetic relationships between these 145 SWIO isolates and 90 worldwide RSSC reference strains. Phylotype I was the most recombinogenic, although recombination events were detected among all phylotypes. A multilocus sequence typing (MLST) scheme identified 29 sequence types (STs) with variable geographic distributions in the SWIO. The outstanding epidemiologic feature was STI-13 (sequevar I-31), which was overrepresented in the SWIO and obviously reflected a lineage strongly adapted to the SWIO environment. A goeBURST analysis identified eight clonal complexes (CCs) including SWIO isolates, four CCs being geographically restricted to the SWIO, and four CCs being widespread beyond the SWIO. This work, which highlights notable genetic links between African and SWIO strains, provides a basis for the epidemiological surveillance of RSSC and will contribute to BW management in the SWIO.
Collapse
Affiliation(s)
- Noura Yahiaoui
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
- Anses, National Plant Health Laboratory, Tropical Pests and Diseases Unit, Saint-Pierre, France
- Université de la Réunion, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| | - Jean-Jacques Chéron
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| | | | - Azali A. Hamza
- Institut National de Recherche pour l'Agriculture, la Pêche et l'Environnement, Moroni, Comoros
| | | | - Rajan Jeetah
- Food and Agricultural Research and Extension Institute, Curepipe, Mauritius
| | | | | | - Jacques Fillâtre
- Association Réunionnaise pour la Modernisation de l'Economie Fruitière, Légumière et HORticole, Saint-Pierre, France
| | - Bruno Hostachy
- Anses, National Plant Health Laboratory, Tropical Pests and Diseases Unit, Saint-Pierre, France
| | - Fabien Guérin
- Université de la Réunion, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| | - Gilles Cellier
- Anses, National Plant Health Laboratory, Tropical Pests and Diseases Unit, Saint-Pierre, France
| | - Philippe Prior
- Institut National de la Recherche Agronomique, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| | - Stéphane Poussier
- Université de la Réunion, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Saint-Pierre, France
| |
Collapse
|
10
|
New Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) Scheme for Fine-Scale Monitoring and Microevolution-Related Study of Ralstonia pseudosolanacearum Phylotype I Populations. Appl Environ Microbiol 2017; 83:AEM.03095-16. [PMID: 28003195 DOI: 10.1128/aem.03095-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is considered one of the most harmful plant diseases in the world. Special attention should be paid to R. pseudosolanacearum phylotype I due to its large host range, its worldwide distribution, and its high evolutionary potential. So far, the molecular epidemiology and population genetics of this bacterium are poorly understood. Until now, the genetic structure of the RSSC has been analyzed on the worldwide and regional scales. Emerging questions regarding evolutionary forces in RSSC adaptation to hosts now require genetic markers that are able to monitor RSSC field populations. In this study, we aimed to evaluate the multilocus variable-number tandem-repeat analysis (MLVA) approach for its ability to discriminate genetically close phylotype I strains and for population genetics studies. We developed a new MLVA scheme (MLVA-7) allowing us to genotype 580 R. pseudosolanacearum phylotype I strains extracted from susceptible and resistant hosts and from different habitats (stem, soil, and rhizosphere). Based on specificity, polymorphism, and the amplification success rate, we selected seven fast-evolving variable-number tandem-repeat (VNTR) markers. The newly developed MLVA-7 scheme showed higher discriminatory power than the previously published MLVA-13 scheme when applied to collections sampled from the same location on different dates and to collections from different locations on very small scales. Our study provides a valuable tool for fine-scale monitoring and microevolution-related study of R. pseudosolanacearum phylotype I populations.IMPORTANCE Understanding the evolutionary dynamics of adaptation of plant pathogens to new hosts or ecological niches has become a key point for the development of innovative disease management strategies, including durable resistance. Whereas the molecular mechanisms underlying virulence or pathogenicity changes have been studied thoroughly, the population genetics of plant pathogen adaptation remains an open, unexplored field, especially for plant-pathogenic bacteria. MLVA has become increasingly popular for epidemiosurveillance and molecular epidemiology studies of plant pathogens. However, this method has been used mostly for genotyping and identification on a regional or global scale. In this study, we developed a new MLVA scheme, targeting phylotype I of the soilborne Ralstonia solanacearum species complex (RSSC), specifically to address the bacterial population genetics on the field scale. Such a MLVA scheme, based on fast-evolving loci, may be a tool of choice for field experimental evolution and spatial genetics studies.
Collapse
|