1
|
Herlemann DPR, Delgado LF, Riedinger DJ, Fernández-Juárez V, Andersson AF, Pansch C, Riemann L, Bengtsson MM, Gyraitė G, Kataržytė M, Kisand V, Kube S, Martin G, Piwosz K, Rakowski M, Labrenz M. Low impact of Zostera marina meadows on sediment and water microbiota under brackish conditions. ENVIRONMENTAL MICROBIOME 2025; 20:2. [PMID: 39799374 PMCID: PMC11724437 DOI: 10.1186/s40793-024-00662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Zostera marina is an important ecosystem engineer influencing shallow water environments and possibly shaping the microbiota in surrounding sediments and water. Z. marina is typically found in marine systems, but it can also proliferate under brackish conditions. Changes in salinity generally have a strong impact on the biota, especially at the salty divide between salinity 6 and 9. To better understand the impact of the salty divide on the interaction between Z. marina and the surrounding sediment and water microbiota, we investigated the effects of Z. marina meadows on the surrounding microbiota across a salinity range of 6-15 in the Baltic Sea during the summer using 16S and 18S rRNA gene amplicon sequencing. RESULTS Salinity was the most important factor for structuring the microbiota within both water and sediment. The presence of Z. marina affected the composition of the bacterial and eukaryotic community and bacterial alpha diversity in the sediment. However, this effect was confined to alpha-mesohaline conditions (salinity 9-15). The impact of Z. marina below salinity 9 on water and sediment microbiota was insignificant. CONCLUSIONS Increasing salinity was associated with a longer leaf length of Z. marina, causing an increased canopy height, which affects the sediment microbiota through reduced water velocity. Hence, we propose that the canopy effect may be the major predictor explaining Z. marina's interactions with the surrounding microbiota at salinity 9-15. These findings emphasize the importance of the physical effects of Z. marina meadow ecosystem services and have important implications for Z. marina management under brackish conditions in a changing climate.
Collapse
Affiliation(s)
- Daniel P R Herlemann
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), 18119, Rostock, Germany.
- Center for Limnology, Estonian University of Life Sciences, Tartu, 51006, Estonia.
| | - Luis F Delgado
- Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Solna, 171 21, Sweden
| | - David J Riedinger
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), 18119, Rostock, Germany
| | | | - Anders F Andersson
- Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Solna, 171 21, Sweden
| | - Christian Pansch
- Faculty of Science and Engineering, Environmental and Marine Biology, Åbo Akademi University, Turku/Åbo, 20500, Finland
| | - Lasse Riemann
- Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Greta Gyraitė
- Marine Research Institute, Klaipėda University, Klaipėda, 92294, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Klaipėda, 92294, Lithuania
| | - Veljo Kisand
- Center for Limnology, Estonian University of Life Sciences, Tartu, 51006, Estonia
| | - Sandra Kube
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), 18119, Rostock, Germany
| | - Georg Martin
- Estonian Marine Institute, University of Tartu, Tallinn, 12618, Estonia
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Gdynia, 81-332, Poland
| | - Marcin Rakowski
- National Marine Fisheries Research Institute, Gdynia, 81-332, Poland
| | - Matthias Labrenz
- Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), 18119, Rostock, Germany
| |
Collapse
|
2
|
Alvarado-Marchena L, Furman BT, Breitbart M. Construction and characterization of an infectious cDNA clone of turtle grass virus X from a naturally infected Thalassia testudinum plant. mBio 2025; 16:e0282824. [PMID: 39660922 PMCID: PMC11708015 DOI: 10.1128/mbio.02828-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Seagrasses are a polyphyletic group of marine flowering plants that play crucial roles in nearshore ecology, yet their interactions with viruses remain largely unexplored. This study presents the construction and characterization of an infectious cDNA clone of the potexvirus turtle grass virus X (TGVX). The complete genome of this positive-sense single-stranded RNA virus was amplified from field samples of Thalassia testudinum and assembled into a pLX-based mini binary vector using a multi-fragment directional cloning strategy, resulting in the infectious clone pLX-TGVX. Agroinfection assays of potexvirus-free T. testudinum plants resulted in systemic infections by TGVX, as confirmed by multiplex RT-PCR experiments and phenotypic changes reflecting virus-induced symptoms. Ultrastructural studies also demonstrated significant cytopathological changes resulting from TGVX infection, including chloroplast swelling, reduced thylakoid grana, and the presence of viral replication organelles and filamentous virus-like particles. The development of the TGVX infectious clone offers a novel tool for investigating the impact of this virus on seagrass health and productivity. This study demonstrates the first successful agroinfection of a marine plant with an infectious clone, creating a new avenue for studying viruses identified through sequence-based surveys and paving the way for exploring the ecological significance of viral infection in these critical marine ecosystems.IMPORTANCEThis study pioneers the construction of an infectious clone of turtle grass virus X and describes its application in the natural marine plant host, Thalassia testudinum. The creation of this infectious clone not only provides a valuable tool for marine plant virology research but also opens new avenues for exploring the influence of viral infections on the health and productivity of seagrass meadows. Given that seagrasses play a crucial role in sediment stabilization, nutrient cycling, and habitat provisioning, understanding the impact of viruses on these ecosystems is essential for their effective conservation and management. This methodological advance enables detailed studies of viral replication, virus-host interactions, and the broader ecological implications of viral infections in marine plants.
Collapse
Affiliation(s)
| | - Bradley T. Furman
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, Florida, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, St. Petersburg, Florida, USA
| |
Collapse
|
3
|
Papazachariou V, Fernández-Juárez V, Parfrey LW, Riemann L. Nitrogen Fixation and Microbial Communities Associated with Decomposing Seagrass Leaves in Temperate Coastal Waters. MICROBIAL ECOLOGY 2024; 87:106. [PMID: 39141097 PMCID: PMC11324715 DOI: 10.1007/s00248-024-02424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Seagrass meadows play pivotal roles in coastal biochemical cycles, with nitrogen fixation being a well-established process associated with living seagrass. Here, we tested the hypothesis that nitrogen fixation is also associated with seagrass debris in Danish coastal waters. We conducted a 52-day in situ experiment to investigate nitrogen fixation (proxied by acetylene reduction) and dynamics of the microbial community (16S rRNA gene amplicon sequencing) and the nitrogen fixing community (nifH DNA/RNA amplicon sequencing) associated with decomposing Zostera marina leaves. The leaves harboured distinct microbial communities, including distinct nitrogen fixers, relative to the surrounding seawater and sediment throughout the experiment. Nitrogen fixation rates were measurable on most days, but highest on days 3 (dark, 334.8 nmol N g-1 dw h-1) and 15 (light, 194.6 nmol N g-1 dw h-1). Nitrogen fixation rates were not correlated with the concentration of inorganic nutrients in the surrounding seawater or with carbon:nitrogen ratios in the leaves. The composition of nitrogen fixers shifted from cyanobacterial Sphaerospermopsis to heterotrophic genera like Desulfopila over the decomposition period. On the days with highest fixation, nifH RNA gene transcripts were mainly accounted for by cyanobacteria, in particular by Sphaerospermopsis and an unknown taxon (order Nostocales), alongside Proteobacteria. Our study shows that seagrass debris in temperate coastal waters harbours substantial nitrogen fixation carried out by cyanobacteria and heterotrophic bacteria that are distinct relative to the surrounding seawater and sediments. This suggests that seagrass debris constitutes a selective environment where degradation is affected by the import of nitrogen via nitrogen fixation.
Collapse
Affiliation(s)
- Vasiliki Papazachariou
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Center for Volatile Interactions, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Victor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Laura Wegener Parfrey
- Biodiversity Research Centre, Department of Botany, and Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
- Center for Volatile Interactions, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Iqbal MM, Nishimura M, Tsukamoto Y, Yoshizawa S. Changes in microbial community structure related to biodegradation of eelgrass (Zostera marina). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172798. [PMID: 38688366 DOI: 10.1016/j.scitotenv.2024.172798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Seagrass meadows produce organic carbon and deposit it on the seabed through the decaying process. Microbial activity is closely related to the process of eelgrass death and collapse. We investigated the microbial community structure of eelgrass during the eelgrass decomposition process by using a microcosm containing raw seawater and excised eelgrass leaves collected from a Zostera marina bed in Futtsu, Chiba Prefecture, Japan. The fast-growing microbes (i.e., Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia) rapidly adhered to the eelgrass leaf surface and proliferated in the first two weeks but gradually decreased the relative abundance as the months moved on. On the other hand, the slow-growing microbes (i.e., Cytophagia, Anaerolineae, Thaumarchaeota, and Actinobacteria) became predominant over the eelgrass surface late in the culture experiment (120, 180 days). The fast-growing groups of Gammaproteobacteria and Flavobacteriia appear to be closely related to the initial decomposition of eelgrass, especially the rapid decomposition of leaf-derived biopolymers. Changes in nitrogen content due to the bacterial rapid consumption of readily degradable organic carbon induced changes in the community structure at the early stage of eelgrass decomposition. In addition, shifts in the C/N ratio were driven by microbial community changes during later decomposition phases.
Collapse
Affiliation(s)
- Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | - Masahiko Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Yuya Tsukamoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| |
Collapse
|
5
|
Aires T, Cúcio C, Brakel J, Weinberger F, Wahl M, Teles A, Muyzer G, Engelen AH. Impact of persistently high sea surface temperatures on the rhizobiomes of Zostera marina in a Baltic Sea benthocosms. GLOBAL CHANGE BIOLOGY 2024; 30:e17337. [PMID: 38771026 DOI: 10.1111/gcb.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
Persistently high marine temperatures are escalating and threating marine biodiversity. The Baltic Sea, warming faster than other seas, is a good model to study the impact of increasing sea surface temperatures. Zostera marina, a key player in the Baltic ecosystem, faces susceptibility to disturbances, especially under chronic high temperatures. Despite the increasing number of studies on the impact of global warming on seagrasses, little attention has been paid to the role of the holobiont. Using an outdoor benthocosm to replicate near-natural conditions, this study explores the repercussions of persistent warming on the microbiome of Z. marina and its implications for holobiont function. Results show that both seasonal warming and chronic warming, impact Z. marina roots and sediment microbiome. Compared with roots, sediments demonstrate higher diversity and stability throughout the study, but temperature effects manifest earlier in both compartments, possibly linked to premature Z. marina die-offs under chronic warming. Shifts in microbial composition, such as an increase in organic matter-degrading and sulfur-related bacteria, accompany chronic warming. A higher ratio of sulfate-reducing bacteria compared to sulfide oxidizers was found in the warming treatment which may result in the collapse of the seagrasses, due to toxic levels of sulfide. Differentiating predicted pathways for warmest temperatures were related to sulfur and nitrogen cycles, suggest an increase of the microbial metabolism, and possible seagrass protection strategies through the production of isoprene. These structural and compositional variations in the associated microbiome offer early insights into the ecological status of seagrasses. Certain taxa/genes/pathways may serve as markers for specific stresses. Monitoring programs should integrate this aspect to identify early indicators of seagrass health. Understanding microbiome changes under stress is crucial for the use of potential probiotic taxa to mitigate climate change effects. Broader-scale examination of seagrass-microorganism interactions is needed to leverage knowledge on host-microbe interactions in seagrasses.
Collapse
Affiliation(s)
- Tânia Aires
- Centro de Ciências Do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade Do Algarve, Faro, Portugal
| | - Catarina Cúcio
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Janina Brakel
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - Martin Wahl
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Ana Teles
- Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Aschwin H Engelen
- Centro de Ciências Do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade Do Algarve, Faro, Portugal
| |
Collapse
|
6
|
Niu X, Ren W, Xu C, Wang R, Zhang J, Wang H. Taxonomic and functional β-diversity patterns reveal stochastic assembly rules in microbial communities of seagrass beds. FRONTIERS IN PLANT SCIENCE 2024; 15:1367773. [PMID: 38481397 PMCID: PMC10932972 DOI: 10.3389/fpls.2024.1367773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 08/22/2024]
Abstract
Microorganisms are important members of seagrass bed ecosystems and play a crucial role in maintaining the health of seagrasses and the ecological functions of the ecosystem. In this study, we systematically quantified the assembly processes of microbial communities in fragmented seagrass beds and examined their correlation with environmental factors. Concurrently, we explored the relative contributions of species replacement and richness differences to the taxonomic and functional β-diversity of microbial communities, investigated the potential interrelation between these components, and assessed the explanatory power of environmental factors. The results suggest that stochastic processes dominate community assembly. Taxonomic β-diversity differences are governed by species replacement, while for functional β-diversity, the contribution of richness differences slightly outweighs that of replacement processes. A weak but significant correlation (p < 0.05) exists between the two components of β-diversity in taxonomy and functionality, with almost no observed significant correlation with environmental factors. This implies significant differences in taxonomy, but functional convergence and redundancy within microbial communities. Environmental factors are insufficient to explain the β-diversity differences. In conclusion, the assembly of microbial communities in fragmented seagrass beds is governed by stochastic processes. The patterns of taxonomic and functional β-diversity provide new insights and evidence for a better understanding of these stochastic assembly rules. This has important implications for the conservation and management of fragmented seagrass beds.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wenjing Ren
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
| | - Congjun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ruilong Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jingwei Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Huan Wang
- School of Marine Biology and Fisheries, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
7
|
Ugarelli K, Campbell JE, Rhoades OK, Munson CJ, Altieri AH, Douglass JG, Heck KL, Paul VJ, Barry SC, Christ L, Fourqurean JW, Frazer TK, Linhardt ST, Martin CW, McDonald AM, Main VA, Manuel SA, Marco-Méndez C, Reynolds LK, Rodriguez A, Rodriguez Bravo LM, Sawall Y, Smith K, Wied WL, Choi CJ, Stingl U. Microbiomes of Thalassia testudinum throughout the Atlantic Ocean, Caribbean Sea, and Gulf of Mexico are influenced by site and region while maintaining a core microbiome. Front Microbiol 2024; 15:1357797. [PMID: 38463486 PMCID: PMC10920284 DOI: 10.3389/fmicb.2024.1357797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Plant microbiomes are known to serve several important functions for their host, and it is therefore important to understand their composition as well as the factors that may influence these microbial communities. The microbiome of Thalassia testudinum has only recently been explored, and studies to-date have primarily focused on characterizing the microbiome of plants in a single region. Here, we present the first characterization of the composition of the microbial communities of T. testudinum across a wide geographical range spanning three distinct regions with varying physicochemical conditions. We collected samples of leaves, roots, sediment, and water from six sites throughout the Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico. We then analyzed these samples using 16S rRNA amplicon sequencing. We found that site and region can influence the microbial communities of T. testudinum, while maintaining a plant-associated core microbiome. A comprehensive comparison of available microbial community data from T. testudinum studies determined a core microbiome composed of 14 ASVs that consisted mostly of the family Rhodobacteraceae. The most abundant genera in the microbial communities included organisms with possible plant-beneficial functions, like plant-growth promoting taxa, disease suppressing taxa, and nitrogen fixers.
Collapse
Affiliation(s)
- Kelly Ugarelli
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| | - Justin E Campbell
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - O Kennedy Rhoades
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - Calvin J Munson
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, United States
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - James G Douglass
- The Water School, Florida Gulf Coast University, Fort Myers, FL, United States
| | - Kenneth L Heck
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | - Valerie J Paul
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Savanna C Barry
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
| | | | - James W Fourqurean
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
| | - Thomas K Frazer
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States
| | - Samantha T Linhardt
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | - Charles W Martin
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
| | - Ashley M McDonald
- Smithsonian Marine Station, Fort Pierce, FL, United States
- University of Florida, Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL, United States
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, United States
| | - Vivienne A Main
- Smithsonian Marine Station, Fort Pierce, FL, United States
- International Field Studies, Inc., Andros, Bahamas
| | - Sarah A Manuel
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton Parish, Bermuda
| | - Candela Marco-Méndez
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
- Center for Advanced Studies of Blanes (Spanish National Research Council), Girona, Spain
| | - Laura K Reynolds
- Soil, Water and Ecosystem Sciences Department, University of Florida, Gainesville, FL, United States
| | - Alex Rodriguez
- Dauphin Island Sea Lab, University of South Alabama, Dauphin Island, AL, United States
| | | | - Yvonne Sawall
- Bermuda Institute of Ocean Sciences (BIOS), St. George's, Bermuda
| | - Khalil Smith
- Smithsonian Marine Station, Fort Pierce, FL, United States
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton Parish, Bermuda
| | - William L Wied
- Department of Biological Sciences, Institute of Environment, Coastlines and Oceans Division, Florida International University, Miami, FL, United States
- Smithsonian Marine Station, Fort Pierce, FL, United States
| | - Chang Jae Choi
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| | - Ulrich Stingl
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| |
Collapse
|
8
|
Sun H, Wang T, Liu S, Tang X, Sun J, Liu X, Zhao Y, Shen P, Zhang Y. Novel insights into the rhizosphere and seawater microbiome of Zostera marina in diverse mariculture zones. MICROBIOME 2024; 12:27. [PMID: 38350953 PMCID: PMC10865565 DOI: 10.1186/s40168-024-01759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/07/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Seagrasses offer various ecosystem services and possess high levels of primary productivity. However, the development of mariculture has affected the homeostasis of seagrass meadow ecosystems. Plant-microbiome associations are essential for seagrasses health, but little is known about the role of environmental microbiomes and how they affect seagrass in a mariculture environment. In this study, we investigated the influence of mariculture on the rhizosphere and seawater microbiome surrounding Zostera marina and focused on the bacterial, eukaryotic, and fungal components in the composition, diversity, metabolism, and responses to mariculture-related environmental factors. RESULTS Significant differences in the composition, richness, diversity, and internal relations of the bacterial community between the seawater and rhizosphere sediment surrounding Z. marina were observed, while differences in the eukaryotic and fungal communities were less significant. More complex bacterial and fungal co-occurrence networks were found in the seawater and rhizosphere sediment of the Saccharina japonica (SJ) and sea cucumber (SC) culture zones. The seawater in the SJ zone had higher levels of dissimilatory and assimilatory nitrate reduction, denitrification, and nitrogen fixation processes than the other three zones. The assimilatory sulfate reduction enzymes were higher in the rhizosphere sediments of the SJ zone than in the other three zones. Tetracycline, sulfonamide, and diaminopyrimidine resistance genes were enriched in the mariculture SJ and SC zones. CONCLUSIONS Our findings might contribute to a better understanding of the effects of mariculture on the seagrass and the meadow ecosystems and thus revealing their potential operating mechanisms. These insights may serve to raise awareness of the effects of human activities on natural ecosystems, regulation of antibiotic usage, and environmental restoration. Video Abstract.
Collapse
Affiliation(s)
- Hao Sun
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Tianyu Wang
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Shuai Liu
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Guangzhou, 510301, China
| | - Jie Sun
- Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xuerui Liu
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Ye Zhao
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Pingping Shen
- School of Ocean, Yantai University, Yantai, 264005, China
| | - Yanying Zhang
- School of Ocean, Yantai University, Yantai, 264005, China.
| |
Collapse
|
9
|
Graham OJ, Adamczyk EM, Schenk S, Dawkins P, Burke S, Chei E, Cisz K, Dayal S, Elstner J, Hausner ALP, Hughes T, Manglani O, McDonald M, Mikles C, Poslednik A, Vinton A, Wegener Parfrey L, Harvell CD. Manipulation of the seagrass-associated microbiome reduces disease severity. Environ Microbiol 2024; 26:e16582. [PMID: 38195072 DOI: 10.1111/1462-2920.16582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Host-associated microbes influence host health and function and can be a first line of defence against infections. While research increasingly shows that terrestrial plant microbiomes contribute to bacterial, fungal, and oomycete disease resistance, no comparable experimental work has investigated marine plant microbiomes or more diverse disease agents. We test the hypothesis that the eelgrass (Zostera marina) leaf microbiome increases resistance to seagrass wasting disease. From field eelgrass with paired diseased and asymptomatic tissue, 16S rRNA gene amplicon sequencing revealed that bacterial composition and richness varied markedly between diseased and asymptomatic tissue in one of the two years. This suggests that the influence of disease on eelgrass microbial communities may vary with environmental conditions. We next experimentally reduced the eelgrass microbiome with antibiotics and bleach, then inoculated plants with Labyrinthula zosterae, the causative agent of wasting disease. We detected significantly higher disease severity in eelgrass with a native microbiome than an experimentally reduced microbiome. Our results over multiple experiments do not support a protective role of the eelgrass microbiome against L. zosterae. Further studies of these marine host-microbe-pathogen relationships may continue to show new relationships between plant microbiomes and diseases.
Collapse
Affiliation(s)
- Olivia J Graham
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Emily M Adamczyk
- Department of Zoology and Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siobhan Schenk
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Phoebe Dawkins
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Samantha Burke
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Emily Chei
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Kaitlyn Cisz
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Sukanya Dayal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Jack Elstner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Taylor Hughes
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Omisha Manglani
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Miles McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Chloe Mikles
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Anna Poslednik
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Audrey Vinton
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Laura Wegener Parfrey
- Department of Zoology and Biodiversity Research Centre, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Zhang J, Yang Q, Yue W, Yang B, Zhou W, Chen L, Huang X, Zhang W, Dong J, Ling J. Seagrass Thalassia hemprichii and associated bacteria co-response to the synergistic stress of ocean warming and ocean acidification. ENVIRONMENTAL RESEARCH 2023; 236:116658. [PMID: 37454799 DOI: 10.1016/j.envres.2023.116658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Seagrass meadows play vital ecological roles in the marine ecosystem. Global climate change poses considerable threats to seagrass survival. However, it is unclear how seagrass and its associated bacteria will respond under future complex climate change scenarios. This study explored the effects of ocean warming (+2 °C) and ocean acidification (-0.4 units) on seagrass physiological indexes and bacterial communities (sediment and rhizosphere bacteria) of the seagrass Thalassia hemprichii during an experimental exposure of 30 days. Results demonstrated that the synergistic effect of ocean warming and ocean acidification differed from that of one single factor on seagrass and the associated bacterial community. The seagrass showed a weak resistance to ocean warming and ocean acidification, which manifested through the increase in the activity of typical oxidoreductase enzymes. Moreover, the synergistic effect of ocean warming and ocean acidification caused a significant decrease in seagrass's chlorophyll content. Although the bacterial community diversity exhibited higher resistance to ocean warming and ocean acidification, further bacterial functional analysis revealed the synergistic effect of ocean warming and ocean acidification led to significant increases in SOX-related genes abundance which potentially supported the seagrass in resisting climate stress by producing sulfates and oxidizing hydrogen sulfide. More stable bacterial communities were detected in the seagrass rhizosphere under combined ocean warming and ocean acidification. While for one single environmental stress, simpler networks were detected in the rhizosphere. In addition, the observed significant correlations between several modules of the bacterial community and the physiological indexes of the seagrass indicate the possible intimate interaction between seagrass and bacteria under ocean warming and ocean acidification. This study extends our understanding regarding the role of seagrass associated bacterial communities and sheds light on both the prediction and preservation of the seagrass meadow ecosystems in response to global climate change.
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Weizhong Yue
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Bing Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Luxiang Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Xiaofang Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China.
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, 572000, PR China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China; Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, PR China.
| |
Collapse
|
11
|
Barcelona A, Colomer J, Serra T. Spatial sedimentation and plant captured sediment within seagrass patches. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105997. [PMID: 37099992 DOI: 10.1016/j.marenvres.2023.105997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 06/11/2023]
Abstract
Habitat degradation in coastal ecosystems has resulted in the fragmentation of coastal aquatic vegetation and compromised their role in supplying essential ecological services such as trapping sediment or sequestering carbon. Fragmentation has changed seagrass architecture by decreasing the density of the canopy or engendering small patches of vegetated areas. This study aims to quantify the role different patch sizes of vegetation with different canopy densities have in the spatial distribution of sediment within a patch. To this aim, two canopy densities, four different patch lengths, and two wave frequencies were considered. The amounts of sediment deposited onto the bed, captured by plant leaves, remaining in suspension within the canopy, and remaining in suspension above the canopy were used to understand the impact hydrodynamics has on sediment distribution patterns within seagrass patches. In all the cases studied, patches reduced the suspended sediment concentrations, increased the capture of particles in the leaves, and increased the sedimentation rates to the bed. For the lowest wave frequency studied (0.5 Hz), the sediment deposited to the bottom was enhanced at canopy edges, resulting in spatial heterogeneous sedimentation patterns. Therefore, restoration and preservation of coastal aquatic vegetation landscapes can help face future climate change scenarios where an increase in sedimentation can help mitigate predicted sea level rise in coastal areas.
Collapse
Affiliation(s)
- Aina Barcelona
- Department of Physics, University of Girona, 17071, Girona, Spain.
| | - Jordi Colomer
- Department of Physics, University of Girona, 17071, Girona, Spain
| | - Teresa Serra
- Department of Physics, University of Girona, 17071, Girona, Spain
| |
Collapse
|
12
|
Shang S, Li L, Xiao H, Chen J, Zang Y, Wang J, Tang X. Studies on the Composition and Diversity of Seagrass Ruppia sinensis Rhizosphere Mmicroorganisms in the Yellow River Delta. PLANTS (BASEL, SWITZERLAND) 2023; 12:1435. [PMID: 37050062 PMCID: PMC10097283 DOI: 10.3390/plants12071435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Seagrass is a significant primary producer of coastal ecosystems; however, the continued degradation of seagrass beds is a serious problem that has attracted widespread attention from researchers. Rhizosphere microorganisms affect seagrass and participate in many life activities of seagrass. This study explored the relationship between the composition of microbes in the rhizosphere and the surrounding environment of Ruppia sinensis by using High-throughput sequencing methods. The dominant bacterial groups in the rhizosphere surface sediments of R. sinensis and the surrounding environment are Proteobacteria, Bacteroidota, and Firmicutes. Moreover, the dominant fungal groups are Ascomycota, Basidiomycota, and Chytridiomycota. Significant differences (p < 0.05) were identified in microbial communities among different groups (rhizosphere, bulk sediment, and surrounding seawater). Seventy-four ASVs (For bacteria) and 48 ASVs (For fungal) were shared among seagrass rhizosphere, surrounding sediment, and seawater. The rhizosphere was enriched in sulfate-reducing bacteria and nitrogen-fixing bacteria. In general, we obtained the rhizosphere microbial community of R. sinensis, which provided extensive evidence of the relative contribution of the seagrass rhizosphere and the surrounding environment.
Collapse
Affiliation(s)
- Shuai Shang
- School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Liangyu Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| | - Yu Zang
- First Institute of Oceanography, Department of Natural Resources, Qingdao 266061, China
| | - Jun Wang
- School of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266005, China
| |
Collapse
|
13
|
de la Garza Varela A, Aguirre-Macedo ML, García-Maldonado JQ. Changes in the Rhizosphere Prokaryotic Community Structure of Halodule wrightii Monospecific Stands Associated to Submarine Groundwater Discharges in a Karstic Costal Area. Microorganisms 2023; 11:494. [PMID: 36838457 PMCID: PMC9963909 DOI: 10.3390/microorganisms11020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Belowground seagrass associated microbial communities regulate biogeochemical dynamics in the surrounding sediments and influence seagrass physiology and health. However, little is known about the impact of environmental stressors upon interactions between seagrasses and their prokaryotic community in coastal ecosystems. Submerged groundwater discharges (SGD) at Dzilam de Bravo, Yucatán, Mexico, causes lower temperatures and salinities with higher nutrient loads in seawater, resulting in Halodule wrightii monospecific stands. In this study, the rhizospheric archaeal and bacterial communities were characterized by 16S rRNA Illumina sequencing along with physicochemical determinations of water, porewater and sediment in a 400 m northwise transect from SGD occurring at 300 m away from coastline. Core bacterial community included Deltaproteobacteria, Bacteroidia and Planctomycetia, possibly involved in sulfur metabolism and organic matter degradation while highly versatile Bathyarchaeia was the most abundantly represented class within the archaeal core community. Beta diversity analyses revealed two significantly different clusters as result of the environmental conditions caused by SGD. Sites near to SGD presented sediments with higher redox potentials and sand contents as well as lower organic matter contents and porewater ammonium concentrations compared with the furthest sites. Functional profiling suggested that denitrification, aerobic chemoheterotrophy and environmental adaptation processes could be better represented in these sites, while sulfur metabolism and genetic information processing related profiles could be related to SGD uninfluenced sites. This study showed that the rhizospheric prokaryotic community structure of H. wrightii and their predicted functions are shaped by environmental stressors associated with the SGD. Moreover, insights into the archaeal community composition in seagrasses rhizosphere are presented.
Collapse
Affiliation(s)
| | - M. Leopoldina Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida 97310, Yucatán, Mexico
| | - José Q. García-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida 97310, Yucatán, Mexico
| |
Collapse
|
14
|
Conte C, Apostolaki ET, Vizzini S, Migliore L. A Tight Interaction between the Native Seagrass Cymodocea nodosa and the Exotic Halophila stipulacea in the Aegean Sea Highlights Seagrass Holobiont Variations. PLANTS (BASEL, SWITZERLAND) 2023; 12:350. [PMID: 36679063 PMCID: PMC9863530 DOI: 10.3390/plants12020350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Seagrasses harbour bacterial communities with which they constitute a functional unit called holobiont that responds as a whole to environmental changes. Epiphytic bacterial communities rapidly respond to both biotic and abiotic factors, potentially contributing to the host fitness. The Lessepsian migrant Halophila stipulacea has a high phenotypical plasticity and harbours a highly diverse epiphytic bacterial community, which could support its invasiveness in the Mediterranean Sea. The current study aimed to evaluate the Halophila/Cymodocea competition in the Aegean Sea by analysing each of the two seagrasses in a meadow zone where these intermingled, as well as in their monospecific zones, at two depths. Differences in holobionts were evaluated using seagrass descriptors (morphometric, biochemical, elemental, and isotopic composition) to assess host changes, and 16S rRNA gene to identify bacterial community structure and composition. An Indicator Species Index was used to identify bacteria significantly associated with each host. In mixed meadows, native C. nodosa was shown to be affected by the presence of exotic H. stipulacea, in terms of both plant descriptors and bacterial communities, while H. stipulacea responded only to environmental factors rather than C. nodosa proximity. This study provided evidence of the competitive advantage of H. stipulacea on C. nodosa in the Aegean Sea and suggests the possible use of associated bacterial communities as an ecological seagrass descriptor.
Collapse
Affiliation(s)
- Chiara Conte
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
- Laboratory of Ecology and Ecotoxicology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Eugenia T. Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 2214, 71003 Heraklion, Crete, Greece
| | - Salvatrice Vizzini
- Department of Earth and Marine Sciences, University of Palermo, Via Archirafi 18, 90123 Palermo, Italy
- CoNISMa, National Interuniversity Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Luciana Migliore
- Laboratory of Ecology and Ecotoxicology, Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
- eCampus University, Via Isimbardi 10, 22060 Novedrate (CO), Italy
| |
Collapse
|
15
|
Iqbal MM, Nishimura M, Haider MN, Yoshizawa S. Microbial communities on eelgrass ( Zostera marina) thriving in Tokyo Bay and the possible source of leaf-attached microbes. Front Microbiol 2023; 13:1102013. [PMID: 36687565 PMCID: PMC9853538 DOI: 10.3389/fmicb.2022.1102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Zostera marina (eelgrass) is classified as one of the marine angiosperms and is widely distributed throughout much of the Northern Hemisphere. The present study investigated the microbial community structure and diversity of Z. marina growing in Futtsu bathing water, Chiba prefecture, Japan. The purpose of this study was to provide new insight into the colonization of eelgrass leaves by microbial communities based on leaf age and to compare these communities to the root-rhizome of Z. marina, and the surrounding microenvironments (suspended particles, seawater, and sediment). The microbial composition of each sample was analyzed using 16S ribosomal gene amplicon sequencing. Each sample type was found to have a unique microbial community structure. Leaf-attached microbes changed in their composition depending on the relative age of the eelgrass leaf. Special attention was given to a potential microbial source of leaf-attached microbes. Microbial communities of marine particles looked more like those of eelgrass leaves than those of water samples. This finding suggests that leaf-attached microbes were derived from suspended particles, which could allow them to go back and forth between eelgrass leaves and the water column.
Collapse
Affiliation(s)
- Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan,*Correspondence: Md Mehedi Iqbal,
| | - Masahiko Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Md. Nurul Haider
- Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan,Susumu Yoshizawa,
| |
Collapse
|
16
|
Iqbal MM, Nishimura M, Sano M, Yoshizawa S. Particle-attached Microbes in Eelgrass Vegetation Areas Differ in Community Structure Depending on the Distance from the Eelgrass Bed. Microbes Environ 2023; 38:ME23013. [PMID: 37661422 PMCID: PMC10522840 DOI: 10.1264/jsme2.me23013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/01/2023] [Indexed: 09/05/2023] Open
Abstract
Zostera marina (eelgrass) is a submerged flowering plant often found in the coastal areas of Japan. Large amounts of suspended particles form in highly productive environments, such as eelgrass beds, and the behavior of these particles is expected to affect the surrounding microbial community. We investigated the microbial community structure of suspended particles in three eelgrass fields (Ikuno-Shima Is., Mutsu Bay, and Nanao Bay) and inferred the formation and dynamics of suspended particles from a microbial community structure ana-lysis. Seawater samples were collected directly above each eelgrass bed (eelgrass-covering) and from locations dozens of meters away from the eelgrass bed (bare-ground). In consideration of the two different lifestyles of marine microbes, microbial communities were obtained from particle-attached (PA) and free-living (FL) states. Differences in microbial diversity and community structures were observed between PA and FL in all eelgrass beds. The FL microbial community was similar between the two sampling points (eelgrass-covering and bare-ground), whereas a significant difference was noted in the microbial community structure of suspended particles between the two sampling points. This difference appeared to be due to the supply of organic matter from the eelgrass sea ground and leaf-attached detritus produced by microbial activity. In addition, the classes Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria were abundant in the PA and FL fractions. Furthermore, many sequences of the key groups (e.g., Planctomycetes and Verrucomicrobia) were exclusively detected in the PA fraction, in which they may circulate nutrients. The present results provide insights into the microbial communities of suspended particles and provide the first step towards understanding their biogeochemical impact on the eelgrass bed.
Collapse
Affiliation(s)
- Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8564, Japan
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8563, Japan
| | - Masahiko Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8564, Japan
| | - Masayoshi Sano
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8564, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8564, Japan
- Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa, Chiba 277–8563, Japan
| |
Collapse
|
17
|
Fulford RS, Houghton K, James J, Russell M. In situ differences in nitrogen cycling related to presence of submerged aquatic vegetation in a Gulf of Mexico estuary. Ecosphere 2022; 13:1-21. [PMID: 38988721 PMCID: PMC11235193 DOI: 10.1002/ecs2.4290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/07/2022] [Indexed: 07/12/2024] Open
Abstract
Estuaries provide a suite of ecosystem services to people but are also under heavy stress from human development including excess nutrient loading and alterations in benthic habitat that affect nutrient cycling. Here we examine the interaction of two important and common ecosystem management priorities in estuaries: limiting eutrophication and restoration of submerged aquatic vegetation (SAV). Rates of benthic nitrogen processing can vary by habitat type and there is need for more complete data on the contribution of SAV to overall nitrogen cycling in estuaries, as well as a need to examine nitrogen cycling in situ to better characterize the role of SAV areal coverage in mediating estuarine eutrophication. We compare nitrogen cycling between two common and adjacent habitat types (SAV and adjacent bare sediment [BS]) in an index coastal estuary using an in situ chamber-based approach to better capture realized habitat differences. We also examined genomic community structure of sediment bacteria and archaea to identify biological indicators of nitrogen exchange. Both mean sediment-water exchange of dissolved N2 and microbial functional community structure differed between SAV and BS. Habitat differences were more consistent with lower variability at locations with low salinity and when sediment organic content was highest, which aligns with findings in other studies. Habitat types differed significantly in microbial composition, including functional groups and genes, like nifH, that may contribute to observed differences in nitrogen cycling. Overall, habitat type appeared most important to nitrogen cycling near the river mouth where sediment nitrogen was higher, and this information has implications for integrated management of habitat restoration/conservation and nutrient loading.
Collapse
Affiliation(s)
- R S Fulford
- Office of Research and Development, US, Environmental Protection Agency, Gulf, Breeze, Florida, USA
| | - K Houghton
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J James
- Office of Research and Development, US, Environmental Protection Agency, Gulf, Breeze, Florida, USA
| | - M Russell
- Office of Research and Development, US, Environmental Protection Agency, Gulf, Breeze, Florida, USA
| |
Collapse
|
18
|
Banister RB, Schwarz MT, Fine M, Ritchie KB, Muller EM. Instability and Stasis Among the Microbiome of Seagrass Leaves, Roots and Rhizomes, and Nearby Sediments Within a Natural pH Gradient. MICROBIAL ECOLOGY 2022; 84:703-716. [PMID: 34596709 PMCID: PMC9622545 DOI: 10.1007/s00248-021-01867-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/10/2021] [Indexed: 05/10/2023]
Abstract
Seagrass meadows are hotspots of biodiversity with considerable economic and ecological value. The health of seagrass ecosystems is influenced in part by the makeup and stability of their microbiome, but microbiome composition can be sensitive to environmental change such as nutrient availability, elevated temperatures, and reduced pH. The objective of the present study was to characterize the bacterial community of the leaves, bulk samples of roots and rhizomes, and proximal sediment of the seagrass species Cymodocea nodosa along the natural pH gradient of Levante Bay, Vulcano Island, Italy. The bacterial community was determined by characterizing the 16S rRNA amplicon sequencing and analyzing the operational taxonomic unit classification of bacterial DNA within samples. Statistical analyses were used to explore how life-long exposure to different pH/pCO2 conditions may be associated with significant differences in microbial communities, dominant bacterial classes, and microbial diversity within each plant section and sediment. The microbiome of C. nodosa significantly differed among all sample types and site-specific differences were detected within sediment and root/rhizome microbial communities, but not the leaves. These results show that C. nodosa leaves have a consistent microbial community even across a pH range of 8.15 to 6.05. The ability for C. nodosa to regulate and maintain microbial structure may indicate a semblance of resilience within these vital ecosystems under projected changes in environmental conditions such as ocean acidification.
Collapse
Affiliation(s)
- Raymond B Banister
- Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA.
- Institute for Global Ecology, Florida Institute of Technology, 150, W University Blvd, Melbourne, FL, 32901, USA.
| | - Melbert T Schwarz
- Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, 52900, Ramat Gan, Israel
- The Interuniversity Institute for Marine Science, P.O.B. 469, 88103, Eilat, Israel
| | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina Beaufort, 801, Carteret St., Beaufort, SC, 29906, USA
| | - Erinn M Muller
- Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA
| |
Collapse
|
19
|
Aldeguer-Riquelme B, Rubio-Portillo E, Álvarez-Rogel J, Giménez-Casalduero F, Otero XL, Belando MD, Bernardeau-Esteller J, García-Muñoz R, Forcada A, Ruiz JM, Santos F, Antón J. Factors structuring microbial communities in highly impacted coastal marine sediments (Mar Menor lagoon, SE Spain). Front Microbiol 2022; 13:937683. [PMID: 36160249 PMCID: PMC9491240 DOI: 10.3389/fmicb.2022.937683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Coastal marine lagoons are environments highly vulnerable to anthropogenic pressures such as agriculture nutrient loading or runoff from metalliferous mining. Sediment microorganisms, which are key components in the biogeochemical cycles, can help attenuate these impacts by accumulating nutrients and pollutants. The Mar Menor, located in the southeast of Spain, is an example of a coastal lagoon strongly altered by anthropic pressures, but the microbial community inhabiting its sediments remains unknown. Here, we describe the sediment prokaryotic communities along a wide range of environmental conditions in the lagoon, revealing that microbial communities were highly heterogeneous among stations, although a core microbiome was detected. The microbiota was dominated by Delta- and Gammaproteobacteria and members of the Bacteroidia class. Additionally, several uncultured groups such as Asgardarchaeota were detected in relatively high proportions. Sediment texture, the presence of Caulerpa or Cymodocea, depth, and geographic location were among the most important factors structuring microbial assemblages. Furthermore, microbial communities in the stations with the highest concentrations of potentially toxic elements (Fe, Pb, As, Zn, and Cd) were less stable than those in the non-contaminated stations. This finding suggests that bacteria colonizing heavily contaminated stations are specialists sensitive to change.
Collapse
Affiliation(s)
- Borja Aldeguer-Riquelme
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Esther Rubio-Portillo
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - José Álvarez-Rogel
- Department of Agricultural Engineering of the Escuela Técnica Superior Ingeniería Agronómica (ETSIA) & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, Cartagena, Spain
| | | | - Xose Luis Otero
- Cross-Research in Environmental Technologies (CRETUS), Departamento de Edafoloxía e Química Agrícola, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María-Dolores Belando
- Seagrass Ecology Group, Spanish Oceanography Institute of the Spanish National Research Council, Oceanography Center of Murcia, Murcia, Spain
| | - Jaime Bernardeau-Esteller
- Seagrass Ecology Group, Spanish Oceanography Institute of the Spanish National Research Council, Oceanography Center of Murcia, Murcia, Spain
| | - Rocío García-Muñoz
- Seagrass Ecology Group, Spanish Oceanography Institute of the Spanish National Research Council, Oceanography Center of Murcia, Murcia, Spain
| | - Aitor Forcada
- Department of Marine Science and Applied Biology, University of Alicante, Alicante, Spain
| | - Juan M. Ruiz
- Seagrass Ecology Group, Spanish Oceanography Institute of the Spanish National Research Council, Oceanography Center of Murcia, Murcia, Spain
| | - Fernando Santos
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
- Multidisciplinary Institute of Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| |
Collapse
|
20
|
Adamczyk EM, O’Connor MI, Wegener Parfrey L. Seagrass (
Zostera marina
) transplant experiment reveals core microbiome and resistance to environmental change. Mol Ecol 2022; 31:5107-5123. [DOI: 10.1111/mec.16641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Emily M. Adamczyk
- Department of Zoology and Biodiversity Research Centre University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, 4200 ‐ 600 University Blvd Vancouver British Columbia Canada
| | - Mary I. O’Connor
- Department of Zoology and Biodiversity Research Centre University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, 4200 ‐ 600 University Blvd Vancouver British Columbia Canada
| | - Laura Wegener Parfrey
- Department of Zoology and Biodiversity Research Centre University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, 4200 ‐ 600 University Blvd Vancouver British Columbia Canada
- Department of Botany and Biodiversity Research Centre University of British Columbia, Unceded xʷməθkʷəy̓əm (Musqueam) Territory, 3156 ‐ 6270 University Blvd Vancouver British Columbia Canada
- Hakai Institute, PO Box 25039 Campbell River British Columbia
| |
Collapse
|
21
|
Mohapatra M, Manu S, Dash SP, Rastogi G. Seagrasses and local environment control the bacterial community structure and carbon substrate utilization in brackish sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115013. [PMID: 35447445 DOI: 10.1016/j.jenvman.2022.115013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Seagrasses are complex benthic coastal ecosystems that play a crucial role in organic matter cycling and carbon sequestration. However, little is known about how seagrasses influence the structure and carbon utilization potential of benthic bacterial communities. This study examined the bacterial communities in monospecific and mixed meadows of seagrasses and compared with bulk (unvegetated) sediments from Chilika, a brackish water coastal lagoon of India. High-throughput sequencing of 16S rRNA genes revealed a vegetation effect in terms of differences in benthic bacterial community diversity, composition, and abundances in comparison with bulk sediments. Desulfobacterales, Chromatiales, Enterobacteriales, Clostridiales, Vibrionales, and Acidimicrobiales were major taxa that contributed to differences between seagrass and bulk sediments. Seagrasses supported ∼5.94 fold higher bacterial abundances than the bulk due to rich organic carbon stock in their sediments. Co-occurrence network demonstrated much stronger potential interactions and connectedness in seagrass bacterial communities compared to bulk. Chromatiales and Acidimicrobiales were identified as the top two keystone taxa in seagrass bacterial communities, whereas, Dehalococcoidales and Rhizobiales were in bulk communities. Seagrasses and local environmental factors, namely, water depth, water pH, sediment salinity, redox potential, total organic carbon, available nitrogen, sediment texture, sediment pH, and sediment core depth were the major drivers of benthic bacterial community composition. Carbon metabolic profiling revealed that heterotrophic bacteria in seagrass sediments were much more metabolically diverse and active than bulk. The utilization of carbon substrate guilds, namely, amino acids, amines, carboxylic acids, carbohydrates, polymers, and phenolic compounds was enhanced in seagrass sediments. Metabolic mapping predicted higher prevalence of sulfate-reducer and N2 fixation metabolic functions in seagrass sediments. Overall, this study showed that seagrasses control benthic bacterial community composition and diversity, enhance heterotrophic carbon substrate utilization, and play crucial roles in organic matter cycling including degradation of hydrocarbon and xenobiotics in coastal sediments.
Collapse
Affiliation(s)
- Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Shivakumara Manu
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500048, India
| | - Stiti Prangya Dash
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India.
| |
Collapse
|
22
|
Zhang X, Liu S, Jiang Z, Wu Y, Huang X. Gradient of microbial communities around seagrass roots was mediated by sediment grain size. Ecosphere 2022. [DOI: 10.1002/ecs2.3942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Xia Zhang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province Sanya Institute of Oceanology, SCSIO Sanya China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou China
- Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China
| |
Collapse
|
23
|
Banker RMW, Lipovac J, Stachowicz JJ, Gold DA. Sodium molybdate does not inhibit sulfate-reducing bacteria but increases shell growth in the Pacific oyster Magallana gigas. PLoS One 2022; 17:e0262939. [PMID: 35139090 PMCID: PMC8827440 DOI: 10.1371/journal.pone.0262939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Recent work on microbe-host interactions has revealed an important nexus between the environment, microbiome, and host fitness. Marine invertebrates that build carbonate skeletons are of particular interest in this regard because of predicted effects of ocean acidification on calcified organisms, and the potential of microbes to buffer these impacts. Here we investigate the role of sulfate-reducing bacteria, a group well known to affect carbonate chemistry, in Pacific oyster (Magallana gigas) shell formation. We reared oyster larvae to 51 days post fertilization and exposed organisms to control and sodium molybdate conditions, the latter of which is thought to inhibit bacterial sulfate reduction. Contrary to expectations, we found that sodium molybdate did not uniformly inhibit sulfate-reducing bacteria in oysters, and oysters exposed to molybdate grew larger shells over the experimental period. Additionally, we show that microbiome composition, host gene expression, and shell size were distinct between treatments earlier in ontogeny, but became more similar by the end of the experiment. Although additional testing is required to fully elucidate the mechanisms, our work provides preliminary evidence that M. gigas is capable of regulating microbiome dysbiosis caused by environmental perturbations, which is reflected in shell development.
Collapse
Affiliation(s)
- Roxanne M. W. Banker
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| | - Jacob Lipovac
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| | - John J. Stachowicz
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - David A. Gold
- Department of Earth and Planetary Sciences, University of California, Davis, California, United States of America
| |
Collapse
|
24
|
Cai Z, Zhou L, Liu L, Wang D, Ren W, Long H, Zhang X, Xie Z. Bacterial epiphyte and endophyte communities of seagrass Thalassia hemprichii: the impact of feed extract solution. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:757-772. [PMID: 34713580 DOI: 10.1111/1758-2229.13019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The global seagrass bed ecosystem acts as a natural ecological barrier in the littoral coastal zone. In recent years, this ecosystem has suffered from serious eutrophication and destruction caused by the continuous expansion of aquaculture. However, our understanding of the influence of aquaculture on the bacterial community remains limited. In this study, we used 16S amplicon sequencing to evaluate the impact of aquaculture feed extract solution on the composition and function of bacterial epiphytes and endophyte communities of the core seagrass from the seagrass bed ecosystem in Hainan, Thalassia hemprichii. The feed extract solution was the main factor that significantly affected the bacterial epiphyte and endophyte community structure of seagrass leaves but had no marked effect on alpha diversity was observed. Additionally, the bacterial epiphyte and endophyte community of the T. hemprichii leaves alleviated the effects of organic matter, sulfide, and nutrients caused by aquaculture wastewater. The feed extract solution promoted the proliferation of Bacteroidales, Vibrio, Desulfobulbaceae, Desulfobacteraceae, Pseudoalteromonas, Paludibacter, Marinomonas, and Pseudomonas in the leaves and root of T. hemprichii, which can effectively improve the digestibility of eutrophication. In fact, Desulfobacteraceae and Desulfobulbaceae can reduce sulfate to sulfide and oxidize sulfide to sulfur within seagrass, indicating that the increase in Desulfobulbaceae and Desulfobacteraceae facilitated the accumulation of sulfide with the treatment of feed extract solution, which may be the reason for the degradation of seagrass caused by aquaculture wastewater containing high concentrations of organic pollutants. These results suggest that although seagrass beds can withstand low concentrations of aquaculture pollutants, sulfide emissions should be minimized.
Collapse
Affiliation(s)
- Zefu Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, 571126, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Lei Zhou
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Lihua Liu
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Daoru Wang
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan Province, 571126, China
| | - Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan Province, 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan Province, 570228, China
- College of Marine Sciences, Hainan University, Haikou, Hainan Province, 570228, China
| |
Collapse
|
25
|
Scholz VV, Martin BC, Meyer R, Schramm A, Fraser MW, Nielsen LP, Kendrick GA, Risgaard‐Petersen N, Burdorf LDW, Marshall IPG. Cable bacteria at oxygen-releasing roots of aquatic plants: a widespread and diverse plant-microbe association. THE NEW PHYTOLOGIST 2021; 232:2138-2151. [PMID: 33891715 PMCID: PMC8596878 DOI: 10.1111/nph.17415] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 05/09/2023]
Abstract
Cable bacteria are sulfide-oxidising, filamentous bacteria that reduce toxic sulfide levels, suppress methane emissions and drive nutrient and carbon cycling in sediments. Recently, cable bacteria have been found associated with roots of aquatic plants and rice (Oryza sativa). However, the extent to which cable bacteria are associated with aquatic plants in nature remains unexplored. Using newly generated and public 16S rRNA gene sequence datasets combined with fluorescence in situ hybridisation, we investigated the distribution of cable bacteria around the roots of aquatic plants, encompassing seagrass (including seagrass seedlings), rice, freshwater and saltmarsh plants. Diverse cable bacteria were found associated with roots of 16 out of 28 plant species and at 36 out of 55 investigated sites, across four continents. Plant-associated cable bacteria were confirmed across a variety of ecosystems, including marine coastal environments, estuaries, freshwater streams, isolated pristine lakes and intensive agricultural systems. This pattern indicates that this plant-microbe relationship is globally widespread and neither obligate nor species specific. The occurrence of cable bacteria in plant rhizospheres may be of general importance to vegetation vitality, primary productivity, coastal restoration practices and greenhouse gas balance of rice fields and wetlands.
Collapse
Affiliation(s)
- Vincent V. Scholz
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Belinda C. Martin
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
- The UWA Oceans InstituteThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
- Ooid ScientificWhite Gum ValleyWA6162Australia
| | - Raïssa Meyer
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
- Max Planck Institute for Marine MicrobiologyCelsiusstraße 1BremenD‐28359Germany
| | - Andreas Schramm
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Matthew W. Fraser
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
- The UWA Oceans InstituteThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
| | - Lars Peter Nielsen
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Gary A. Kendrick
- School of Biological SciencesThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
- The UWA Oceans InstituteThe University of Western Australia35 Stirling HighwayCrawleyWA6009Australia
| | - Nils Risgaard‐Petersen
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Laurine D. W. Burdorf
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| | - Ian P. G. Marshall
- Section for MicrobiologyDepartment of BiologyCenter for ElectromicrobiologyAarhus UniversityNy Munkegade 116Aarhus CDK‐8000Denmark
| |
Collapse
|
26
|
Seasonal Dynamics of Bathyarchaeota-Dominated Benthic Archaeal Communities Associated with Seagrass (Zostera japonica) Meadows. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9111304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Little is known about the seasonal dynamic of archaeal communities and their potential ecological functions in temperate seagrass ecosystems. In this study, seasonal changes in diversity, community structure, and potential metabolic functions of benthic archaea in surface sediments of two seagrass meadows along the northern Bohai Sea in China were investigated using Miseq sequencing of the 16S rRNA gene and Tax4Fun2 functional prediction. Overall, Crenarchaeota (mainly Bathy-15, Bathy-8, and Bathy-6) dominated, followed by Thermoplasmatota, Asgardarchaeota, and Halobacterota, in terms of alpha diversities and relative abundance. Significant seasonal changes in the entire archaeal community structure were observed. The major phyla Methanobacteria, Nitrosopumilales, and genus Methanolobus had higher proportions in spring, while MBG-D and Bathyarchaeota were more abundant in summer and autumn, respectively. Alpha diversities (Shannon and Simpson) were the highest in summer and the lowest in autumn (ANOVA test, p < 0.05). Salinity, total organic carbon, and total organic nitrogen were the most significant factors influencing the entire archaeal community. Higher cellulose and hemicellulose degradation potentials occurred in summer, while methane metabolism potentials were higher in winter. This study indicated that season had strong effects in modulating benthic archaeal diversity and functional potentials in the temperate seagrass ecosystems.
Collapse
|
27
|
Iqbal MM, Nishimura M, Haider MN, Sano M, Ijichi M, Kogure K, Yoshizawa S. Diversity and Composition of Microbial Communities in an Eelgrass (Zostera marina) Bed in Tokyo Bay, Japan. Microbes Environ 2021; 36. [PMID: 34645731 PMCID: PMC8674447 DOI: 10.1264/jsme2.me21037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Zostera marina (eelgrass) is a widespread seagrass species that forms diverse and productive habitats along coast lines throughout much of the northern hemisphere. The present study investigated the microbial consortia of Z. marina growing at Futtsu clam-digging beach, Chiba prefecture, Japan. The following environmental samples were collected: sediment, seawater, plant leaves, and the root-rhizome. Sediment and seawater samples were obtained from three sampling points: inside, outside, and at the marginal point of the eelgrass bed. The microbial composition of each sample was analyzed using 16S ribosomal gene amplicon sequencing. Microbial communities on the dead (withered) leaf surface markedly differed from those in sediment, but were similar to those in seawater. Eelgrass leaves and surrounding seawater were dominated by the bacterial taxa Rhodobacterales (Alphaproteobacteria), whereas Rhodobacterales were a minor group in eelgrass sediment. Additionally, we speculated that the order Sphingomonadales (Alphaproteobacteria) acts as a major degrader during the decomposition process and constantly degrades eelgrass leaves, which then spread into the surrounding seawater. Withered eelgrass leaves did not accumulate on the surface sediment because they were transported out of the eelgrass bed by wind and residual currents unique to the central part of Tokyo Bay.
Collapse
Affiliation(s)
- Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo.,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo
| | | | - Md Nurul Haider
- Atmosphere and Ocean Research Institute, The University of Tokyo.,Department of Fisheries Technology, Faculty of Fisheries, Bangladesh Agricultural University
| | - Masayoshi Sano
- Atmosphere and Ocean Research Institute, The University of Tokyo.,National Institute of Polar Research
| | - Minoru Ijichi
- Atmosphere and Ocean Research Institute, The University of Tokyo
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research Institute, The University of Tokyo
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo.,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
28
|
Tarquinio F, Attlan O, Vanderklift MA, Berry O, Bissett A. Distinct Endophytic Bacterial Communities Inhabiting Seagrass Seeds. Front Microbiol 2021; 12:703014. [PMID: 34621247 PMCID: PMC8491609 DOI: 10.3389/fmicb.2021.703014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Seagrasses are marine angiosperms that can live completely or partially submerged in water and perform a variety of significant ecosystem services. Like terrestrial angiosperms, seagrasses can reproduce sexually and, the pollinated female flower develop into fruits and seeds, which represent a critical stage in the life of plants. Seed microbiomes include endophytic microorganisms that in terrestrial plants can affect seed germination and seedling health through phytohormone production, enhanced nutrient availability and defence against pathogens. However, the characteristics and origins of the seagrass seed microbiomes is unknown. Here, we examined the endophytic bacterial community of six microenvironments (flowers, fruits, and seeds, together with leaves, roots, and rhizospheric sediment) of the seagrass Halophila ovalis collected from the Swan Estuary, in southwestern Australia. An amplicon sequencing approach (16S rRNA) was used to characterize the diversity and composition of H. ovalis bacterial microbiomes and identify core microbiome bacteria that were conserved across microenvironments. Distinct communities of bacteria were observed within specific seagrass microenvironments, including the reproductive tissues (flowers, fruits, and seeds). In particular, bacteria previously associated with plant growth promoting characteristics were mainly found within reproductive tissues. Seagrass seed-borne bacteria that exhibit growth promoting traits, the ability to fix nitrogen and anti-pathogenic potential activity, may play a pivotal role in seed survival, as is common for terrestrial plants. We present the endophytic community of the seagrass seeds as foundation for the identification of potential beneficial bacteria and their selection in order to improve seagrass restoration.
Collapse
Affiliation(s)
- Flavia Tarquinio
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Océane Attlan
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Sciences et Technologies, Université de la Réunion, Saint-Denis, France
| | - Mathew A Vanderklift
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Oliver Berry
- Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
| |
Collapse
|
29
|
Ma X, Olsen JL, Reusch TBH, Procaccini G, Kudrna D, Williams M, Grimwood J, Rajasekar S, Jenkins J, Schmutz J, Van de Peer Y. Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass). F1000Res 2021; 10:289. [PMID: 34621505 PMCID: PMC8482049 DOI: 10.12688/f1000research.38156.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Seagrasses (Alismatales) are the only fully marine angiosperms.
Zostera marina (eelgrass) plays a crucial role in the functioning of coastal marine ecosystems and global carbon sequestration. It is the most widely studied seagrass and has become a marine model system for exploring adaptation under rapid climate change. The original draft genome (v.1.0) of the seagrass
Z.
marina (L.) was based on a combination of Illumina mate-pair libraries and fosmid-ends. A total of 25.55 Gb of Illumina and 0.14 Gb of Sanger sequence was obtained representing 47.7× genomic coverage. The assembly resulted in ~2000 unordered scaffolds (L50 of 486 Kb), a final genome assembly size of 203MB, 20,450 protein coding genes and 63% TE content. Here, we present an upgraded chromosome-scale genome assembly and compare v.1.0 and the new v.3.1, reconfirming previous results from Olsen et al. (2016), as well as pointing out new findings. Methods: The same high molecular weight DNA used in the original sequencing of the Finnish clone was used. A high-quality reference genome was assembled with the MECAT assembly pipeline combining PacBio long-read sequencing and Hi-C scaffolding. Results: In total, 75.97 Gb PacBio data was produced. The final assembly comprises six pseudo-chromosomes and 304 unanchored scaffolds with a total length of 260.5Mb and an N50 of 34.6 MB, showing high contiguity and few gaps (~0.5%). 21,483 protein-encoding genes are annotated in this assembly, of which 20,665 (96.2%) obtained at least one functional assignment based on similarity to known proteins. Conclusions: As an important marine angiosperm, the improved
Z. marina genome assembly will further assist evolutionary, ecological, and comparative genomics at the chromosome level. The new genome assembly will further our understanding into the structural and physiological adaptations from land to marine life.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University - Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Jeanine L Olsen
- Groningen Institute of Evolutionary Life Sciences, Groningen, 9747 AG, The Netherlands
| | - Thorsten B H Reusch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Kiel, 24105, Germany
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, 80123, Italy
| | - Dave Kudrna
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona Tucson, Tucson, AZ, 85721, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University - Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210014, China
| |
Collapse
|
30
|
Zeng S, Wei D, Hou D, Wang H, Liu J, Weng S, He J, Huang Z. Sediment microbiota in polyculture of shrimp and fish pattern is distinctive from those in monoculture intensive shrimp or fish ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147594. [PMID: 33989866 DOI: 10.1016/j.scitotenv.2021.147594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Sediment microbial community plays a crucial role in aquaculture ecosystem. In aquaculture practice, rather than monoculture intensive shrimp (IS) or intensive fish (IF) patterns, polyculture of shrimp and fish (PolySF) pattern leads to a more reliable production. However, knowledge is still limited about the characteristics of sediment microbiota and its potential functions in the PolySF ponds compared to monoculture patterns (IS and IF). Herein, we collected sediment samples from these three patterns in seven cities to evaluate microbial variations among patterns. The highest oxidation reduction potential (ORP), total phosphate (TP) and total organic carbon (TOC) were detected in the PolySF pattern, representing a relatively less anoxic environment, while the highest iron (Fe) was detected in IS pattern. Proteobacteria was the most abundant phylum among three patterns, followed by Bacteroidetes and Chloroflexi. The microbial alpha diversity in the PolySF was higher than those in the IF, but lower than those in the IS. Microbial communities of these three patterns were significantly distinct from each other, and 23 distinguished taxa for each pattern were further characterized. In additional, the relative abundances of genes involved in nitrogen metabolism, fatty acid biosynthesis and carbon fixation pathways were markedly shifted. Moreover, ORP, TOC and Fe were the shaping factors for sediment microbiota, which significantly varied among three patterns. Collectively, these findings demonstrated that sediment microbial communities in the PolySF were distinctive from those in the IS and IF, which enlarged our understanding for the underlying mechanism of advances in the PolySF pattern from ecological perspective.
Collapse
Affiliation(s)
- Shenzheng Zeng
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongdong Wei
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Jian Liu
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
31
|
Diversity and abundance of diazotrophic communities of seagrass Halophila ovalis based on genomic and transcript level in Daya Bay, South China Sea. Arch Microbiol 2021; 203:5577-5589. [PMID: 34436633 DOI: 10.1007/s00203-021-02544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Seagrass ecosystems are among the most productive marine ecosystems, and diazotrophic communities play a crucial role in sustaining the productivity and stability of such ecosystems by introducing fixed nitrogen. However, information concerning both total and active diazotrophic groups existing in different compartments of seagrass is lacking. This study comprehensively investigated the diversity, structure, and abundance of diazotrophic communities in different parts of the seagrass Halophila ovalis at the DNA and RNA level from clone libraries and real-time quantitative PCR. Our results indicated that nearly one-third of existing nitrogen-fixing bacteria were active, and their abundance might be controlled by nitrogen to phosphorus ratio (N:P). Deltaproteobacteria and Gammaproteobacteria were dominant groups among the total and active diazotrophic communities in all samples. These two groups accounted for 82.21% and 70.96% at the DNA and RNA levels, respectively. The genus Pseudomonas and sulfate-reducing bacteria (genera: Desulfosarcina, Desulfobulbus, Desulfocapsa, and Desulfopila) constituted the significant fraction of nitrogen-fixing bacteria in the seagrass ecosystem, playing an additional role in denitrification and sulfate reduction, respectively. Moreover, the abundance of the nitrogenase gene, nifH, was highest in seawater and lowest in rhizosphere sediments from all samples. This study highlighted the role of diazotropic communities in the subtropical seagrass ecosystem.
Collapse
|
32
|
Aires T, Stuij TM, Muyzer G, Serrão EA, Engelen AH. Characterization and Comparison of Bacterial Communities of an Invasive and Two Native Caribbean Seagrass Species Sheds Light on the Possible Influence of the Microbiome on Invasive Mechanisms. Front Microbiol 2021; 12:653998. [PMID: 34434172 PMCID: PMC8381869 DOI: 10.3389/fmicb.2021.653998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
Invasive plants, including marine macrophytes, are one of the most important threats to biodiversity by displacing native species and organisms depending on them. Invasion success is dependent on interactions among living organisms, but their study has been mostly limited to negative interactions while positive interactions are mostly underlooked. Recent studies suggested that microorganisms associated with eukaryotic hosts may play a determinant role in the invasion process. Along with the knowledge of their structure, taxonomic composition, and potential functional profile, understanding how bacterial communities are associated with the invasive species and the threatened natives (species-specific/environmentally shaped/tissue-specific) can give us a holistic insight into the invasion mechanisms. Here, we aimed to compare the bacterial communities associated with leaves and roots of two native Caribbean seagrasses (Halodule wrightii and Thalassia testudinum) with those of the successful invader Halophila stipulacea, in the Caribbean island Curaçao, using 16S rRNA gene amplicon sequencing and functional prediction. Invasive seagrass microbiomes were more diverse and included three times more species-specific core OTUs than the natives. Associated bacterial communities were seagrass-specific, with higher similarities between natives than between invasive and native seagrasses for both communities associated with leaves and roots, despite their strong tissue differentiation. However, with a higher number of OTUs in common, the core community (i.e., OTUs occurring in at least 80% of the samples) of the native H. wrightii was more similar to that of the invader H. stipulacea than T. testudinum, which could reflect more similar essential needs (e.g., nutritional, adaptive, and physiological) between native and invasive, in contrast to the two natives that might share more environment-related OTUs. Relative to native seagrass species, the invasive H. stipulacea was enriched in halotolerant bacterial genera with plant growth-promoting properties (like Halomonas sp. and Lysinibacillus sp.) and other potential beneficial effects for hosts (e.g., heavy metal detoxifiers and quorum sensing inhibitors). Predicted functional profiles also revealed some advantageous traits on the invasive species such as detoxification pathways, protection against pathogens, and stress tolerance. Despite the predictive nature of our findings concerning the functional potential of the bacteria, this investigation provides novel and important insights into native vs. invasive seagrasses microbiome. We demonstrated that the bacterial community associated with the invasive seagrass H. stipulacea is different from native seagrasses, including some potentially beneficial bacteria, suggesting the importance of considering the microbiome dynamics as a possible and important influencing factor in the colonization of non-indigenous species. We suggest further comparison of H. stipulacea microbiome from its native range with that from both the Mediterranean and Caribbean habitats where this species has a contrasting invasion success. Also, our new findings open doors to a more in-depth investigation combining meta-omics with bacterial manipulation experiments in order to confirm any functional advantage in the microbiome of this invasive seagrass.
Collapse
Affiliation(s)
- Tania Aires
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal
| | - Tamara M Stuij
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal.,CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ester A Serrão
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal
| | - Aschwin H Engelen
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal.,CARMABI Foundation, Willemstad, Curaçao
| |
Collapse
|
33
|
Abstract
Seagrasses are marine flowering plants that provide critical ecosystem services in coastal environments worldwide. Marine fungi are often overlooked in microbiome and seagrass studies, despite terrestrial fungi having critical functional roles as decomposers, pathogens, or endophytes in global ecosystems. Here, we characterize the distribution of fungi associated with the seagrass Zostera marina, using leaves, roots, and rhizosphere sediment from 16 locations across its full biogeographic range. Using high-throughput sequencing of the ribosomal internal transcribed spacer (ITS) region and 18S rRNA gene, we first measured fungal community composition and diversity. We then tested hypotheses of neutral community assembly theory and the degree to which deviations suggested that amplicon sequence variants (ASVs) were plant selected or dispersal limited. Finally, we identified a core mycobiome and investigated the global distribution of differentially abundant ASVs. We found that the fungal community is significantly different between sites and that the leaf mycobiome follows a weak but significant pattern of distance decay in the Pacific Ocean. Generally, there was evidence for both deterministic and stochastic factors contributing to community assembly of the mycobiome, with most taxa assembling through stochastic processes. The Z. marina core leaf and root mycobiomes were dominated by unclassified Sordariomycetes spp., unclassified Chytridiomycota lineages (including Lobulomycetaceae spp.), unclassified Capnodiales spp., and Saccharomyces sp. It is clear from the many unclassified fungal ASVs and fungal functional guilds that knowledge of marine fungi is still rudimentary. Further studies characterizing seagrass-associated fungi are needed to understand the roles of these microorganisms generally and when associated with seagrasses. IMPORTANCE Fungi have important functional roles when associated with land plants, yet very little is known about the roles of fungi associated with marine plants, like seagrasses. In this study, we report the results of a global effort to characterize the fungi associated with the seagrass Zostera marina across its full biogeographic range. Although we defined a putative global core fungal community, it is apparent from the many fungal sequences and predicted functional guilds that had no matches to existing databases that general knowledge of seagrass-associated fungi and marine fungi is lacking. This work serves as an important foundational step toward future work investigating the functional ramifications of fungi in the marine ecosystem.
Collapse
|
34
|
Vogel MA, Mason OU, Miller TE. Composition of seagrass phyllosphere microbial communities suggests rapid environmental regulation of community structure. FEMS Microbiol Ecol 2021; 97:6119907. [PMID: 33493257 DOI: 10.1093/femsec/fiab013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Recent studies have revealed that seagrass blade surfaces, also known as the phyllosphere, are rich habitats for microbes; however, the primary drivers of composition and structure in these microbial communities are largely unknown. This study utilized a reciprocal transplant approach between two sites with different environmental conditions combined with 16S rRNA gene sequencing (iTag) to examine the relative influence of environmental conditions and host plant on phyllosphere community composition of the seagrass Thalassia testudinum. After 30 days, identity of phyllosphere microbial community members was more similar within the transplant sites than between despite differences in the source of host plant. Additionally, the diversity and evenness of these communities was significantly different between the two sites. These results indicated that local environmental conditions can be a primary driver in structuring seagrass phyllosphere microbial communities over relatively short time scales. Composition of microbial community members in this study also deviated from those in previous seagrass phyllosphere studies with a higher representation of candidate bacterial phyla and archaea than previously observed. The capacity for seagrass phyllosphere microbial communities to shift dramatically with environmental conditions, including ecosystem perturbations, could significantly affect seagrass-microbe interactions in ways that may influence the health of the seagrass host.
Collapse
Affiliation(s)
- Margaret A Vogel
- Florida State University, Department of Biological Science, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Olivia U Mason
- Florida State University, Department of Earth, Ocean, and Atmospheric Science, 1011 Academic Way, Tallahassee, FL 32306, USA
| | - Thomas E Miller
- Florida State University, Department of Biological Science, 319 Stadium Drive, Tallahassee, FL 32306, USA
| |
Collapse
|
35
|
Wang L, Tomas F, Mueller RS. Nutrient enrichment increases size of Zostera marina shoots and enriches for sulfur and nitrogen cycling bacteria in root-associated microbiomes. FEMS Microbiol Ecol 2021; 96:5861935. [PMID: 32578844 DOI: 10.1093/femsec/fiaa129] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Seagrasses are vital coastal ecosystem engineers, which are mutualistically associated with microbial communities that contribute to the ecosystem services provided by meadows. The seagrass microbiome and sediment microbiota play vital roles in belowground biogeochemical and carbon cycling. These activities are influenced by nutrient, carbon and oxygen availability, all of which are modulated by environmental factors and plant physiology. Seagrass meadows are increasingly threatened by nutrient pollution, and it is unknown how the seagrass microbiome will respond to this stressor. We investigated the effects of fertilization on the physiology, morphology and microbiome of eelgrass (Zostera marina) cultivated over 4 weeks in mesocosms. We analyzed the community structure associated with eelgrass leaf, root and rhizosphere microbiomes, and of communities from water column and bulk sediment using 16S rRNA amplicon sequencing. Fertilization led to a higher number of leaves compared with that of eelgrass kept under ambient conditions. Additionally, fertilization led to enrichment of sulfur and nitrogen bacteria in belowground communities. These results suggest nutrient enrichment can stimulate belowground biogeochemical cycling, potentially exacerbating sulfide toxicity in sediments and decreasing future carbon sequestration stocks.
Collapse
Affiliation(s)
- Lu Wang
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Fiona Tomas
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA.,Instituto Mediterráneo de Estudios Avanzados (CSIC-UIB), C/ Miquel Marquès, 21 07190 Esporles Illes Balears, Spain
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
36
|
Brunet M, de Bettignies F, Le Duff N, Tanguy G, Davoult D, Leblanc C, Gobet A, Thomas F. Accumulation of detached kelp biomass in a subtidal temperate coastal ecosystem induces succession of epiphytic and sediment bacterial communities. Environ Microbiol 2021; 23:1638-1655. [PMID: 33400326 PMCID: PMC8248336 DOI: 10.1111/1462-2920.15389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 12/30/2022]
Abstract
Kelps are dominant primary producers in temperate coastal ecosystems. Large amounts of kelp biomass can be exported to the seafloor during the algal growth cycle or following storms, creating new ecological niches for the associated microbiota. Here, we investigated the bacterial community associated with the kelp Laminaria hyperborea during its accumulation and degradation on the seafloor. Kelp tissue, seawater and sediment were sampled during a 6-month in situ experiment simulating kelp detritus accumulation. Evaluation of the epiphytic bacterial community abundance, structure, taxonomic composition and predicted functional profiles evidenced a biphasic succession. Initially, dominant genera (Hellea, Litorimonas, Granulosicoccus) showed a rapid and drastic decrease in sequence abundance, probably outcompeted by algal polysaccharide-degraders such as Bacteroidia members which responded within 4 weeks. Acidimicrobiia, especially members of the Sva0996 marine group, colonized the degrading kelp biomass after 11 weeks. These secondary colonizers could act as opportunistic scavenger bacteria assimilating substrates exposed by early degraders. In parallel, kelp accumulation modified bacterial communities in the underlying sediment, notably favouring anaerobic taxa potentially involved in the sulfur and nitrogen cycles. Overall, this study provides insights into the bacterial degradation of algal biomass in situ, an important link in coastal trophic chains.
Collapse
Affiliation(s)
- Maéva Brunet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Florian de Bettignies
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Gwenn Tanguy
- Sorbonne Université, CNRS, FR2424, Genomer, Station Biologique de RoscoffRoscoff29680France
| | - Dominique Davoult
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| | - Angélique Gobet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRDSèteFrance
| | - François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)Roscoff29680France
| |
Collapse
|
37
|
The Seagrass Holobiont: What We Know and What We Still Need to Disclose for Its Possible Use as an Ecological Indicator. WATER 2021. [DOI: 10.3390/w13040406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microbes and seagrass establish symbiotic relationships constituting a functional unit called the holobiont that reacts as a whole to environmental changes. Recent studies have shown that the seagrass microbial associated community varies according to host species, environmental conditions and the host’s health status, suggesting that the microbial communities respond rapidly to environmental disturbances and changes. These changes, dynamics of which are still far from being clear, could represent a sensitive monitoring tool and ecological indicator to detect early stages of seagrass stress. In this review, the state of art on seagrass holobiont is discussed in this perspective, with the aim of disentangling the influence of different factors in shaping it. As an example, we expand on the widely studied Halophila stipulacea’s associated microbial community, highlighting the changing and the constant components of the associated microbes, in different environmental conditions. These studies represent a pivotal contribution to understanding the holobiont’s dynamics and variability pattern, and to the potential development of ecological/ecotoxicological indices. The influences of the host’s physiological and environmental status in changing the seagrass holobiont, alongside the bioinformatic tools for data analysis, are key topics that need to be deepened, in order to use the seagrass-microbial interactions as a source of ecological information.
Collapse
|
38
|
Recovery and Community Succession of the Zostera marina Rhizobiome after Transplantation. Appl Environ Microbiol 2021; 87:AEM.02326-20. [PMID: 33187993 DOI: 10.1128/aem.02326-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022] Open
Abstract
Seagrasses can form mutualisms with their microbiomes that facilitate the exchange of energy sources, nutrients, and hormones and ultimately impact plant stress resistance. Little is known about community succession within the belowground seagrass microbiome after disturbance and its potential role in the plant's recovery after transplantation. We transplanted Zostera marina shoots with and without an intact rhizosphere and cultivated plants for 4 weeks while characterizing microbiome recovery and effects on plant traits. Rhizosphere and root microbiomes were compositionally distinct, likely representing discrete microbial niches. Furthermore, microbiomes of washed transplants were initially different from those of sod transplants and recovered to resemble an undisturbed state within 14 days. Conspicuously, changes in the microbial communities of washed transplants corresponded with changes in the rhizosphere sediment mass and root biomass, highlighting the strength and responsive nature of the relationship between plants, their microbiome, and the environment. Potential mutualistic microbes that were enriched over time include those that function in the cycling and turnover of sulfur, nitrogen, and plant-derived carbon in the rhizosphere environment. These findings highlight the importance and resilience of the seagrass microbiome after disturbance. Consideration of the microbiome will have meaningful implications for habitat restoration practices.IMPORTANCE Seagrasses are important coastal species that are declining globally, and transplantation can be used to combat these declines. However, the bacterial communities associated with seagrass rhizospheres and roots (the microbiome) are often disturbed or removed completely prior to transplantation. The seagrass microbiome benefits seagrasses through metabolite, nutrient, and phytohormone exchange and contributes to the ecosystem services of seagrass meadows by cycling sulfur, nitrogen, and carbon. This experiment aimed to characterize the importance and resilience of the seagrass belowground microbiome by transplanting Zostera marina with and without intact rhizospheres and tracking microbiome and plant morphological recovery over 4 weeks. We found the seagrass microbiome to be resilient to transplantation disturbance, recovering after 14 days. Additionally, microbiome recovery was linked with seagrass morphology, coinciding with increases in the rhizosphere sediment mass and root biomass. The results of this study can be used to include microbiome responses in informing future restoration work.
Collapse
|
39
|
Sanders-Smith R, Segovia BT, Forbes C, Hessing-Lewis M, Morien E, Lemay MA, O'Connor MI, Parfrey LW. Host-Specificity and Core Taxa of Seagrass Leaf Microbiome Identified Across Tissue Age and Geographical Regions. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.605304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The seagrass Zostera marina is a widespread foundational species in temperate coastal ecosystems that supports diverse communities of epiphytes and grazers. Bacteria link the production of seagrass to higher trophic levels and are thought to influence seagrass biology and health. Yet, we lack a clear understanding of the factors that structure the seagrass microbiome, or whether there is a consistent microbial community associated with seagrass that underpins functional roles. We sampled surface microbiome (epibiota) from new and old growth seagrass leaves and the surrounding seawater in eight meadows among four regions along the Central Coast of British Columbia, Canada to assess microbiome variability across space and as leaves age. We found that the seagrass leaf microbiome differs strongly from seawater. Microbial communities in new and old growth leaves are different from each other and from artificial seagrass leaves we deployed in one meadow. The microbiome on new leaves is less diverse and there is a small suite of core OTUs (operational taxonomic units) consistently present across regions. The overall microbial community for new leaves is more dispersed but with little regional differentiation, while the epiphytes on old leaves are regionally distinct. Many core OTUs on old leaves are commonly associated with marine biofilms. Together these observations suggest a stronger role for host filtering in new compared to old leaves, and a stronger influence of the environment and environmental colonization in old leaves. We found 11 core microbial taxa consistently present on old and new leaves and at very low relative abundance on artificial leaves and in the water column. These 11 taxa appear to be strongly associated with Z. marina. These core taxa may perform key functions important for the host such as detoxifying seagrass waste products, enhancing plant growth, and controlling epiphyte cover.
Collapse
|
40
|
Garcias-Bonet N, Eguíluz VM, Díaz-Rúa R, Duarte CM. Host-association as major driver of microbiome structure and composition in Red Sea seagrass ecosystems. Environ Microbiol 2020; 23:2021-2034. [PMID: 33225561 DOI: 10.1111/1462-2920.15334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
The role of the microbiome in sustaining seagrasses has recently been highlighted. However, our understanding of the seagrass microbiome lacks behind that of other organisms. Here, we analyse the endophytic and total bacterial communities of leaves, rhizomes, and roots of six Red Sea seagrass species and their sediments. The structure of seagrass bacterial communities revealed that the 1% most abundant OTUs accounted for 87.9% and 74.8% of the total numbers of reads in sediment and plant tissue samples, respectively. We found taxonomically distinct bacterial communities in vegetated and bare sediments. Yet, our results suggest that lifestyle (i.e. free-living or host-association) is the main driver of bacterial community composition. Seagrass bacterial communities were tissue- and species-specific and differed from those of surrounding sediments. We identified OTUs belonging to genera related to N and S cycles in roots, and members of Actinobacteria, Bacteroidetes, and Firmicutes phyla as particularly enriched in root endosphere. The finding of highly similar OTUs in well-defined sub-clusters by network analysis suggests the co-occurrence of highly connected key members within Red Sea seagrass bacterial communities. These results provide key information towards the understanding of the role of microorganisms in seagrass ecosystem functioning framed under the seagrass holobiont concept.
Collapse
Affiliation(s)
- Neus Garcias-Bonet
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Víctor M Eguíluz
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.,Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Palma de Mallorca, E-07122, Spain
| | - Rubén Díaz-Rúa
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
41
|
Martin BC, Alarcon MS, Gleeson D, Middleton JA, Fraser MW, Ryan MH, Holmer M, Kendrick GA, Kilminster K. Root microbiomes as indicators of seagrass health. FEMS Microbiol Ecol 2020; 96:5679015. [PMID: 31841144 DOI: 10.1093/femsec/fiz201] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/13/2019] [Indexed: 11/12/2022] Open
Abstract
The development of early warning indicators that identify ecosystem stress is a priority for improving ecosystem management. As microbial communities respond rapidly to environmental disturbance, monitoring their composition could prove one such early indicator of environmental stress. We combined 16S rRNA gene sequencing of the seagrass root microbiome of Halophila ovalis with seagrass health metrics (biomass, productivity and Fsulphide) to develop microbial indicators for seagrass condition across the Swan-Canning Estuary and the Leschenault Estuary (south-west Western Australia); the former had experienced an unseasonal rainfall event leading to declines in seagrass health. Microbial indicators detected sites of potential stress that other seagrass health metrics failed to detect. Genera that were more abundant in 'healthy' seagrasses included putative methylotrophic bacteria (e.g. Methylotenera and Methylophaga), iron cycling bacteria (e.g. Deferrisoma and Geothermobacter) and N2 fixing bacteria (e.g. Rhizobium). Conversely, genera that were more abundant in 'stressed' seagrasses were dominated by putative sulphur-cycling bacteria, both sulphide-oxidising (e.g. Candidatus Thiodiazotropha and Candidatus Electrothrix) and sulphate-reducing (e.g. SEEP-SRB1, Desulfomonile and Desulfonema). The sensitivity of the microbial indicators developed here highlights their potential to be further developed for use in adaptive seagrass management, and emphasises their capacity to be effective early warning indicators of stress.
Collapse
Affiliation(s)
- Belinda C Martin
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,Ooid Scientific Graphics & Editing, White Gum Valley, WA 6162, Australia
| | - Marta Sanchez Alarcon
- Department of Water and Environmental Regulation, Government of Western Australia, Locked Bag 10, Joondalup DC 6919, Australia
| | - Deirdre Gleeson
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jen A Middleton
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,Ooid Scientific Graphics & Editing, White Gum Valley, WA 6162, Australia
| | - Matthew W Fraser
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Megan H Ryan
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Marianne Holmer
- Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Gary A Kendrick
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,The UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Kieryn Kilminster
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.,Department of Water and Environmental Regulation, Government of Western Australia, Locked Bag 10, Joondalup DC 6919, Australia
| |
Collapse
|
42
|
Ettinger CL, Eisen JA. Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina. PLoS One 2020; 15:e0236135. [PMID: 32697800 PMCID: PMC7375540 DOI: 10.1371/journal.pone.0236135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/29/2020] [Indexed: 01/18/2023] Open
Abstract
Fungi in the marine environment are often neglected as a research topic, despite that fungi having critical roles on land as decomposers, pathogens or endophytes. Here we used culture-dependent methods to survey the fungi associated with the seagrass, Zostera marina, also obtaining bacteria and oomycete isolates in the process. A total of 108 fungi, 40 bacteria and 2 oomycetes were isolated. These isolates were then taxonomically identified using a combination of molecular and phylogenetic methods. The majority of the fungal isolates were classified as belonging to the classes Eurotiomycetes, Dothideomycetes, and Sordariomycetes. Most fungal isolates were habitat generalists like Penicillium sp. and Cladosporium sp., but we also cultured a diverse set of rare taxa including possible habitat specialists like Colletotrichum sp. which may preferentially associate with Z. marina leaf tissue. Although the bulk of bacterial isolates were identified as being from known ubiquitous marine lineages, we also obtained several Actinomycetes isolates and a Phyllobacterium sp. We identified two oomycetes, another understudied group of marine microbial eukaryotes, as Halophytophthora sp. which may be opportunistic pathogens or saprophytes of Z. marina. Overall, this study generates a culture collection of fungi which adds to knowledge of Z. marina associated fungi and highlights a need for more investigation into the functional and evolutionary roles of microbial eukaryotes associated with seagrasses.
Collapse
Affiliation(s)
- Cassandra L. Ettinger
- Genome Center, University of California, Davis, CA, United States of America
- Department of Evolution and Ecology, University of California, Davis, CA, United States of America
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, CA, United States of America
- Department of Evolution and Ecology, University of California, Davis, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, United States of America
| |
Collapse
|
43
|
Kohn T, Rast P, Kallscheuer N, Wiegand S, Boedeker C, Jetten MSM, Jeske O, Vollmers J, Kaster AK, Rohde M, Jogler M, Jogler C. The Microbiome of Posidonia oceanica Seagrass Leaves Can Be Dominated by Planctomycetes. Front Microbiol 2020; 11:1458. [PMID: 32754127 PMCID: PMC7366357 DOI: 10.3389/fmicb.2020.01458] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
Seagrass meadows are ubiquitous, fragile and endangered marine habitats, which serve as fish breeding grounds, stabilize ocean floor substrates, retain nutrients and serve as important carbon sinks, counteracting climate change. In the Mediterranean Sea, seagrass meadows are mostly formed by the slow-growing endemic plant Posidonia oceanica (Neptune grass), which is endangered by global warming and recreational motorboating. Despite its importance, surprisingly little is known about the leaf surface microbiome of P. oceanica. Using amplicon sequencing, we here show that species belonging to the phylum Planctomycetes can dominate the biofilms of young and aged P. oceanica leaves. Application of selective cultivation techniques allowed for the isolation of two novel planctomycetal strains belonging to two yet uncharacterized genera.
Collapse
Affiliation(s)
- Timo Kohn
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Patrick Rast
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | | | - Sandra Wiegand
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Christian Boedeker
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Mike S. M. Jetten
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Olga Jeske
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - John Vollmers
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
44
|
Zhang X, Zhao C, Yu S, Jiang Z, Liu S, Wu Y, Huang X. Rhizosphere Microbial Community Structure Is Selected by Habitat but Not Plant Species in Two Tropical Seagrass Beds. Front Microbiol 2020; 11:161. [PMID: 32194512 PMCID: PMC7065525 DOI: 10.3389/fmicb.2020.00161] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 11/19/2022] Open
Abstract
Rhizosphere bacterial community structures and their determining drivers have been studied in a variety of marine and freshwater ecosystems for a range of plant species. However, there is still limited information about the influence of habitat on microbial communities in seagrass beds. This study aimed to determine which factors (habitat and plant species) have crucial roles on the rhizospheric bacteria associated with two tropical seagrass species (Thalassia hemprichii and Enhalus acoroides) that are dominant at Xincun Bay and Tanmen Harbor in Hainan Island, South China. Using Illumina HiSeq sequencing, we observed substantial differences in the bacterial richness, diversity, and relative abundances of taxa between the two habitats, which were characterized differently in sediment type and nutrient status. Rhizospheric bacteria from sandy sediment at the eutrophic Xincun Bay were dominated by Desulfobacteraceae and Helicobacteraceae, which are primarily involved in sulfate cycling, whereas rhizosphere microbes from the reef flat at oligotrophic Tanmen Harbor were dominated by Vibrionaceae and Woeseiaceae, which may play important roles in nitrogen and carbon fixing. Additionally, we speculated that host-specific effects of these two seagrass species may be covered under nutrient-rich conditions and in mixed community patches, emphasizing the importance of the nutrient status of the sediment and vegetation composition of the patches. In addition, our study confirmed that Proteobacteria was more adapted to the rhizosphere environment than to low-carbon conditions that occurred in bulk sediment, which was primarily dominated by well-known fermentative bacteria in the phylum Firmicutes.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Chunyu Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Shuo Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol Lett 2020; 366:5382495. [PMID: 30883643 DOI: 10.1093/femsle/fnz057] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/16/2019] [Indexed: 12/27/2022] Open
Abstract
This review shows that the presence of seagrass microbial community is critical for the development of seagrasses; from seed germination, through to phytohormone production and enhanced nutrient availability, and defence against pathogens and saprophytes. The tight seagrass-bacterial relationship highlighted in this review supports the existence of a seagrass holobiont and adds to the growing evidence for the importance of marine eukaryotic microorganisms in sustaining vital ecosystems. Incorporating a micro-scale view on seagrass ecosystems substantially expands our understanding of ecosystem functioning and may have significant implications for future seagrass management and mitigation against human disturbance.
Collapse
Affiliation(s)
- Flavia Tarquinio
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia.,Commonwealth Scientific and Industrial Research Organization, Crawley, 6009, Western Australia, Australia
| | - Glenn A Hyndes
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Bonnie Laverock
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, 2007, Australia.,School of Science, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Annette Koenders
- Centre for Ecosystem Management, Edith Cowan University, Joondalup, 6027, Western Australia, Australia
| | - Christin Säwström
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
46
|
Ettinger CL, Eisen JA. Characterization of the Mycobiome of the Seagrass, Zostera marina, Reveals Putative Associations With Marine Chytrids. Front Microbiol 2019; 10:2476. [PMID: 31749781 PMCID: PMC6842960 DOI: 10.3389/fmicb.2019.02476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Seagrasses are globally distributed marine flowering plants that are foundation species in coastal ecosystems. Seagrass beds play essential roles as habitats and hatcheries, in nutrient cycling, and in protecting the coastline from erosion. Although many studies have focused on seagrass ecology, only a limited number have investigated their associated fungi. In terrestrial systems, fungi can have beneficial and detrimental effects on plant fitness. However, not much is known about marine fungi and even less is known about seagrass associated fungi. Here we used culture-independent sequencing of the ribosomal internal transcribed spacer (ITS) region to characterize the taxonomic diversity of fungi associated with the seagrass, Zostera marina. We sampled from two Z. marina beds in Bodega Bay over three time points to investigate fungal diversity within and between plants. Our results indicate that there are many fungal taxa for which a taxonomic assignment cannot be made living on and inside Z. marina leaves, roots and rhizomes and that these plant tissues harbor distinct fungal communities. We also identified differences in the abundances of the orders, Glomerellales, Agaricales and Malasseziales, between seagrass tissues. The most prevalent ITS amplicon sequence variants (ASVs) associated with Z. marina tissues could not initially be confidently assigned to a fungal phylum, but shared significant sequence similarity with Chytridiomycota and Aphelidomycota. To obtain a more definitive taxonomic classification of the most abundant ASV associated with Z. marina leaves, we used PCR with one primer targeting a unique region of this ASV's ITS2 and a second primer targeting fungal 28S rRNA genes to amplify part of the 28S rRNA gene region corresponding to this ASV. Sequencing and phylogenetic analysis of the resulting partial 28S rRNA gene revealed that the organism that this ASV comes from is a member of Novel Clade SW-I in the order Lobulomycetales in the phylum Chytridiomycota. This clade includes known parasites of freshwater diatoms and algae and it is possible this chytrid is directly infecting Z. marina leaf tissues. This work highlights a need for further studies focusing on marine fungi and the potential importance of these understudied communities to the larger seagrass ecosystem.
Collapse
Affiliation(s)
- Cassandra L. Ettinger
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
| | - Jonathan A. Eisen
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
47
|
Unsworth RKF, Bertelli CM, Cullen-Unsworth LC, Esteban N, Jones BL, Lilley R, Lowe C, Nuuttila HK, Rees SC. Sowing the Seeds of Seagrass Recovery Using Hessian Bags. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
48
|
Rapid Metabolome and Bioactivity Profiling of Fungi Associated with the Leaf and Rhizosphere of the Baltic Seagrass Zostera marina. Mar Drugs 2019; 17:md17070419. [PMID: 31330983 PMCID: PMC6669648 DOI: 10.3390/md17070419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/30/2023] Open
Abstract
Zostera marina (eelgrass) is a marine foundation species with key ecological roles in coastal habitats. Its bacterial microbiota has been well studied, but very little is known about its mycobiome. In this study, we have isolated and identified 13 fungal strains, dominated by Penicillium species (10 strains), from the leaf and the root rhizosphere of Baltic Z. marina. The organic extracts of the fungi that were cultured by an OSMAC (One-Strain–Many-Compounds) regime using five liquid culture media under both static and shaking conditions were investigated for their chemical and bioactivity profiles. All extracts showed strong anti-quorum sensing activity, and the majority of the Penicillium extracts displayed antimicrobial or anti-biofilm activity against Gram-negative environmental marine and human pathogens. HPLC-DAD-MS-based rapid metabolome analyses of the extracts indicated the high influence of culture conditions on the secondary metabolite (SM) profiles. Among 69 compounds detected in all Penicillium sp. extracts, 46 were successfully dereplicated. Analysis of SM relatedness in culture conditions by Hierarchical Cluster Analysis (HCA) revealed generally low similarity and showed a strong effect of medium selection on chemical profiles of Penicillium sp. This is the first study assessing both the metabolite and bioactivity profile of the fungi associated with Baltic eelgrass Z. marina.
Collapse
|
49
|
Hurtado-McCormick V, Kahlke T, Petrou K, Jeffries T, Ralph PJ, Seymour JR. Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome. Front Microbiol 2019; 10:1011. [PMID: 31139163 PMCID: PMC6527750 DOI: 10.3389/fmicb.2019.01011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022] Open
Abstract
Seagrasses are globally distributed marine plants that represent an extremely valuable component of coastal ecosystems. Like terrestrial plants, seagrass productivity and health are likely to be strongly governed by the structure and function of the seagrass microbiome, which will be distributed across a number of discrete microenvironments within the plant, including the phyllosphere, the endosphere and the rhizosphere, all different in physical and chemical conditions. Here we examined patterns in the composition of the microbiome of the seagrass Zostera muelleri, within six plant-associated microenvironments sampled across four different coastal locations in New South Wales, Australia. Amplicon sequencing approaches were used to characterize the diversity and composition of bacterial, microalgal, and fungal microbiomes and ultimately identify "core microbiome" members that were conserved across sampling microenvironments. Discrete populations of bacteria, microalgae and fungi were observed within specific seagrass microenvironments, including the leaves and roots and rhizomes, with "core" taxa found to persist within these microenvironments across geographically disparate sampling sites. Bacterial, microalgal and fungal community profiles were most strongly governed by intrinsic features of the different seagrass microenvironments, whereby microscale differences in community composition were greater than the differences observed between sampling regions. However, our results showed differing strengths of microbial preferences at the plant scale, since this microenvironmental variability was more pronounced for bacteria than it was for microalgae and fungi, suggesting more specific interactions between the bacterial consortia and the seagrass host, and potentially implying a highly specialized coupling between seagrass and bacterial metabolism and ecology. Due to their persistence within a given seagrass microenvironment, across geographically discrete sampling locations, we propose that the identified "core" microbiome members likely play key roles in seagrass physiology as well as the ecology and biogeochemistry of seagrass habitats.
Collapse
Affiliation(s)
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Katherina Petrou
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Thomas Jeffries
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin Robert Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
50
|
Li B, Cao Y, Guan X, Li Y, Hao Z, Hu W, Chen L. Microbial assessments of soil with a 40-year history of reclaimed wastewater irrigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:696-705. [PMID: 30245425 DOI: 10.1016/j.scitotenv.2018.09.193] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/09/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
The long-term effects on soil microorganisms from 40 years of irrigating soil with reclaimed wastewater was investigated by determining the quantity, composition, and inter-species connection of microorganisms. No significant difference in microbial quantity and composition were identified in the reclaimed wastewater- and groundwater-irrigated soils. The dominant bacterial phylum in both irrigation water sources and soils was Proteobacteria, which commonly exists in soil. From the analysis of four (4) alpha diversity metrics, including the observed number of operational taxonomic units (OTUs), Chao1, and the Shannon and Simpson diversity, there was no significant difference between the reclaimed wastewater- and groundwater-irrigated soils. Three zones (shallow, medium and deep) were identified in the reclaimed wastewater- and groundwater-irrigated soils based on the taxonomic networks and clusters generated by graphical lasso and random walk algorithm. The cluster profiles (shallow, medium and deep zones) appear to be different in the reclaimed wastewater- and groundwater-irrigated soils. Soil irrigated with reclaimed wastewater showed less depth of clustered profile in medium zone than that in soil irrigated with groundwater (20-60 cm of reclaimed wastewater-irrigated soil compared to 20-100 cm of groundwater-irrigated soil), although the significance of such a variance (the depth of medium zone of reclaimed wastewater-irrigated soil decreased 40 cm than that of groundwater-irrigated soil) is not clear at this time. Positive influence has been identified in the growth and yield of eggplant, tomato and cucumber between the reclaimed wastewater- and groundwater-irrigated soils, suggesting that reclaimed wastewater irrigation can potentially substitute groundwater irrigation, despite the variance in inter-species clustering profiles in soil microbes in certain soil zones. Nevertheless, the possible negative influence of pathogens, organic compounds and pharmaceuticals should be seriously considered during the reclaimed wastewater irrigation.
Collapse
Affiliation(s)
- Binghua Li
- Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing Water Science and Technology Institute, Beijing 100048, PR China; State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, PR China
| | - Yongtao Cao
- Department of Mathematics, Indiana University of Pennsylvania, Indiana, PA 15705, USA
| | - Xiangyu Guan
- School of Ocean Sciences, China University of Geosciences, Beijing 100083, PR China
| | - Yuehua Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zhongyong Hao
- Engineering Technique Research Center for Exploration and Utilization of Non-Conventional Water Resources and Water Use Efficiency, Beijing Water Science and Technology Institute, Beijing 100048, PR China
| | - Wei Hu
- Technology Division, Supervision Center of South to North Water Diversion Project, Beijing 100038, PR China
| | - Liang Chen
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|