1
|
Esteve NA, Rogers DJ, Stagray JA, Mayeux H, Nora G, Huval L, Smith KM. Tanycyte radial morphology and proliferation are influenced by fibroblast growth factor receptor 1 and high-fat diet. Eur J Neurosci 2024; 60:5000-5018. [PMID: 39087621 DOI: 10.1111/ejn.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/19/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a widely expressed, membrane-bound receptor that transduces extracellular signals from FGF ligands and cadherins, resulting in intracellular signals influencing cellular growth, proliferation, calcium, and transcription. FGF21 and FGF2 stimulate the proliferation of tanycytes, specialized radial astrocytes along the ventricle of the hypothalamus, and influence metabolism. Tanycytes are in a privileged position between the cerebrospinal fluid, the blood supply in the median eminence, and neurons within nuclei in the hypothalamus. The effect of FGFR1 signaling upon tanycyte morphology and metabolism was examined in adult mice with conditional deletion of the Fgfr1 gene using the Fgfr1flox/flox; Nestin-Cre+ line. Loss of Fgfr1 resulted in shorter β tanycytes along the medial eminence. Control Fgfr1flox/flox littermates and Fgfr1flox/flox, Nestin-Cre+ (Fgfr1 cKO) knockout mice were placed on a 1-month long high-fat diet (HFD) or a normal-fat diet (NFD), to investigate differences in body homeostasis and tanycyte morphology under an obesity inducing diet. We found that FGFR1 is a vital contributor to tanycyte morphology and quantity and that it promotes stem cell maintenance in the hypothalamus and hippocampal dentate gyrus. The Fgfr1 cKO mice developed impaired tolerance to a glucose challenge test on a HFD without gaining more weight than control mice. The combination of HFD and loss of Fgfr1 gene resulted in altered β and α tanycyte morphology, and reduced stem cell numbers along the third ventricle of the hypothalamus and hippocampus.
Collapse
Affiliation(s)
- N Alex Esteve
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Deborah J Rogers
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Jacob A Stagray
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Holly Mayeux
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Glenae Nora
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Luke Huval
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Karen Müller Smith
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| |
Collapse
|
2
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
3
|
Xu T, Zhu Q, Huang Q, Gu Q, Zhu Y, Tang M, Tian S, Wang L, Yan F, Ge J, Sha W, Lin X. FGF21 prevents neuronal cell ferroptosis after spinal cord injury by activating the FGFR1/β-Klotho pathway. Brain Res Bull 2023; 202:110753. [PMID: 37660729 DOI: 10.1016/j.brainresbull.2023.110753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Spinal cord injury (SCI) is a kind of traumatic nervous system disease caused by neuronal death, causing symptoms like sensory, motor, and autonomic nerve dysfunction. The recovery of neurological function has always been a intractable problem that has greatly distressed individuals and society. Although the involvement of iron-dependent lipid peroxidation leading to nerve cell ferroptosis in SCI progression has been reported, the underlying mechanisms remain unaddressed. Thus, this study aimed to investigate the potential of recombinant human FGF21 (rhFGF21) in inhibiting ferroptosis of nerve cells and improving limb function after SCI, along with its underlying mechanisms. In vivo animal model showed that FGFR1, p-FGFR1, and β-Klotho protein gradually increased over time after injury, reaching a peak on the third day. Moreover, rhFGF21 treatment significantly reduced ACSL4, increased GPX4 expression, reduced iron deposition, and inhibited ferroptosis. Meanwhile, rhFGF21 decreased cell apoptosis following acute spinal cord damage. In contrast, FGFR1 inhibitor PD173074 partially reversed the rhFGF21-induced therapeutic effects. Overall, this work revealed that rhFGF21 activates the FGFR1/β-Klotho pathway to decrease ferroptosis of nerve cells, suggesting that FGF21 could be a new therapeutic target for SCI neurological rehabilitation.
Collapse
Affiliation(s)
- Tianli Xu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qiancheng Zhu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qun Huang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qi Gu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Yi Zhu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Mengjie Tang
- Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China; Department of Endocrinology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Shoujin Tian
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Liming Wang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Fei Yan
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Jianfei Ge
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Weiping Sha
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| | - Xiaolong Lin
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| |
Collapse
|
4
|
Zhang X, Yan Q, Liu X, Gao J, Xu Y, Jin Z, Qin W. LncRNA00638 promotes the osteogenic differentiation of periodontal mesenchymal stem cells from periodontitis patients under static mechanical strain. Stem Cell Res Ther 2023; 14:177. [PMID: 37434256 DOI: 10.1186/s13287-023-03404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/14/2022] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The osteogenic differentiation capacity of periodontal mesenchymal stem cells (PDLSCs) can be influenced by different levels of static mechanical strain (SMS) in an inflammatory microenvironment. Long non-coding RNAs (lncRNAs) are involved in various physiological processes. However, the mechanisms by which lncRNAs regulate the osteogenic differentiation of PDLSCs remain unclear. METHODS We investigated the responses of PDLSCs obtained from periodontitis patients and healthy people to 8% and 12%SMS. Gene microarray and bioinformatics analyses were implemented and identified lncRNA00638 as a target gene for the osteogenesis of PDLSCs from periodontitis patients under SMS. Competing endogenous RNA (ceRNA) network analysis was applied and predicted interactions among lncRNA00638, miRNA-424-5p, and fibroblast growth factor receptor 1 (FGFR1). Gene expression levels were regulated by lentiviral vectors. Cell Counting Kit-8 assays, alkaline phosphatase assays, and Alizarin Red S staining were used to examine the osteogenic potential. RT-qPCR and Western blot were performed to detect the expression levels of related genes and proteins. RESULTS We found that 8% and 12% SMS exerted distinct effects on HPDLSCs and PPDLSCs, with 12% SMS having the most significant effect. By microarray analysis, we detected differentially expressed lncRNAs/mRNAs between 12% SMS strained and static PPDLSCs, among which lncRNA00638 was detected as a positive target gene to promote the osteogenic differentiation of PPDLSCs under SMS loading. Mechanistically, lncRNA00638 may act as a ceRNA for miR-424-5p to compete with FGFR1. In this process, lncRNA00638 and miR-424-5p suppress each other and form a network to regulate FGFR1. CONCLUSIONS Our findings demonstrate that the lncRNA00638/miRNA-424-5p/FGFR1 regulatory network is actively involved in the regulation of PDLSC osteogenic differentiation from periodontitis patients under SMS loading, which may provide evidence for optimizing orthodontic treatments in patients with periodontitis.
Collapse
Affiliation(s)
- Xiaochen Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Qing Yan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xulin Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jie Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuerong Xu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Wen Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Stevens HE, Scuderi S, Collica SC, Tomasi S, Horvath TL, Vaccarino FM. Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice. Transl Psychiatry 2023; 13:89. [PMID: 36906620 PMCID: PMC10008554 DOI: 10.1038/s41398-023-02372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is almost exclusively expressed in glial cells in postnatal mouse brain, but its impact in glia for brain behavioral functioning is poorly understood. We compared behavioral effects from FGFR2 loss in both neurons and astroglial cells and from FGFR2 loss in astroglial cells by using either the pluripotent progenitor-driven hGFAP-cre or the tamoxifen-inducible astrocyte-driven GFAP-creERT2 in Fgfr2 floxed mice. When FGFR2 was eliminated in embryonic pluripotent precursors or in early postnatal astroglia, mice were hyperactive, and had small changes in working memory, sociability, and anxiety-like behavior. In contrast, FGFR2 loss in astrocytes starting at 8 weeks of age resulted only in reduced anxiety-like behavior. Therefore, early postnatal loss of FGFR2 in astroglia is critical for broad behavioral dysregulation. Neurobiological assessments demonstrated that astrocyte-neuron membrane contact was reduced and glial glutamine synthetase expression increased only by early postnatal FGFR2 loss. We conclude that altered astroglial cell function dependent on FGFR2 in the early postnatal period may result in impaired synaptic development and behavioral regulation, modeling childhood behavioral deficits like attention deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Hanna E Stevens
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Psychiatry, Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, 52246, USA.
| | - Soraya Scuderi
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Sarah C Collica
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Simone Tomasi
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Tamas L Horvath
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Flora M Vaccarino
- Child Study Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
6
|
Dela Cruz C, Horton CA, Sanders KN, Andersen ND, Tsai PS. Conditional Fgfr1 Deletion in GnRH Neurons Leads to Minor Disruptions in the Reproductive Axis of Male and Female Mice. Front Endocrinol (Lausanne) 2021; 11:588459. [PMID: 33679600 PMCID: PMC7933197 DOI: 10.3389/fendo.2020.588459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
In humans and mice, inactivating mutations in fibroblast growth factor receptor 1 (Fgfr1) lead to gonadotropin-releasing hormone (GnRH) deficiency and a host of downstream reproductive disorders. It was unclear if Fgfr1 signaling directly upon GnRH neurons critically drove the establishment of a functional GnRH system. To answer this question, we generated a mouse model with a conditional deletion of Fgfr1 in GnRH neurons using the Cre/loxP approach. These mice, called Fgfr1cKO mice, were examined along with control mice for their pubertal onset and a host of reproductive axis functions. Our results showed that Fgfr1cKO mice harbored no detectable defects in the GnRH system and pubertal onset, suffered only subtle changes in the pituitary function, but exhibited significantly disrupted testicular and ovarian morphology at 25 days of age, indicating impaired gametogenesis at a young age. However, these disruptions were transient and became undetectable in older mice. Our results suggest that Fgfr1 signaling directly on GnRH neurons supports, to some extent, the reproductive axis function in the period leading to the early phase of puberty, but is not critically required for pubertal onset or reproductive maintenance in sexually mature animals.
Collapse
Affiliation(s)
| | | | | | | | - Pei-San Tsai
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
7
|
Tilak M, Holborn J, New LA, Lalonde J, Jones N. Receptor Tyrosine Kinase Signaling and Targeting in Glioblastoma Multiforme. Int J Mol Sci 2021; 22:1831. [PMID: 33673213 PMCID: PMC7918566 DOI: 10.3390/ijms22041831] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research.
Collapse
Affiliation(s)
| | | | | | | | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.T.); (J.H.); (L.A.N.); (J.L.)
| |
Collapse
|
8
|
Georgiou V, Gkretsi V. The role of fibroblast growth factors and their receptors in gliomas: the mutations involved. Rev Neurosci 2020; 30:543-554. [PMID: 30379640 DOI: 10.1515/revneuro-2018-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/10/2018] [Indexed: 11/15/2022]
Abstract
The central nervous system (CNS) comprises of neurons, which are responsible for impulse transmission, and glial cells, which surround neurons providing protection and nutrition. Glial cells are categorized into astrocytes, oligodendrocytes, microglial cells, and ependymal cells. Tumors forming from glial cells are called gliomas, and they are classified accordingly into astrocytomas, oligodendrogliomas, and ependymomas. Gliomas are characterized by high mortality rates and degree of malignancy, heterogeneity, and resistance to treatment. Among the molecular players implicated in glioma pathogenesis are members of the fibroblast growth factor (FGF) superfamily as well as their receptors (FGFRs). In the present study, we provide a review of the literature on the role of FGFs and FGFRs in glioma pathogenesis. We also demonstrate that FGFs, and particularly FGF1 and FGF2, bear a variety of mutations in gliomas, while FGFRs are also crucially involved. In fact, several studies show that in gliomas, FGFRs bear mutations, mainly in the tyrosine kinase domains. Specifically, it appears that FGFR1-TACC1 and FGFR3-TACC3 fusions are common in these receptors. A better understanding of the mutations and the molecular players involved in glioma formation will benefit the scientific community, leading to the development of more effective and innovative therapeutic approaches.
Collapse
Affiliation(s)
- Vasiliki Georgiou
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University of Cyprus, 6, Diogenis Str, Engomi 2404, Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University of Cyprus, 6, Diogenis Str, Engomi 2404, Nicosia, Cyprus
| |
Collapse
|
9
|
Porter DDL, Morton PD. Clearing techniques for visualizing the nervous system in development, injury, and disease. J Neurosci Methods 2020; 334:108594. [PMID: 31945400 PMCID: PMC10674098 DOI: 10.1016/j.jneumeth.2020.108594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/05/2023]
Abstract
Modern clearing techniques enable high resolution visualization and 3D reconstruction of cell populations and their structural details throughout large biological samples, including intact organs and even entire organisms. In the past decade, these methods have become more tractable and are now being utilized to provide unforeseen insights into the complexities of the nervous system. While several iterations of optical clearing techniques have been developed, some are more suitable for specific applications than others depending on the type of specimen under study. Here we review findings from select studies utilizing clearing methods to visualize the developing, injured, and diseased nervous system within numerous model systems and species. We note trends and imbalances in the types of research questions being addressed with clearing methods across these fields in neuroscience. In addition, we discuss restrictions in applying optical clearing methods for postmortem tissue from humans and large animals and emphasize the lack in continuity between studies of these species. We aim for this review to serve as a key outline of available tissue clearing methods used successfully to address issues across neuronal development, injury/repair, and aging/disease.
Collapse
Affiliation(s)
- Demisha D L Porter
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
10
|
Gradinaru V, Treweek J, Overton K, Deisseroth K. Hydrogel-Tissue Chemistry: Principles and Applications. Annu Rev Biophys 2019; 47:355-376. [PMID: 29792820 PMCID: PMC6359929 DOI: 10.1146/annurev-biophys-070317-032905] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.
Collapse
Affiliation(s)
- Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Jennifer Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Kristin Overton
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA.,H oward Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
11
|
Denley MCS, Gatford NJF, Sellers KJ, Srivastava DP. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front Neurosci 2018; 12:245. [PMID: 29887794 PMCID: PMC5981095 DOI: 10.3389/fnins.2018.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
The cerebral cortex undergoes rapid folding in an "inside-outside" manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.
Collapse
Affiliation(s)
- Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|