1
|
Yao Y, Jiang Y, Song J, Wang R, Li Z, Yang L, Wu W, Zhang L, Peng Q. Exosomes as Potential Functional Nanomaterials for Tissue Engineering. Adv Healthc Mater 2022:e2201989. [PMID: 36253093 DOI: 10.1002/adhm.202201989] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Indexed: 11/10/2022]
Abstract
Exosomes are cell-derived extracellular vesicles of 40-160 nm diameter, which carry numerous biomolecules and transmit information between cells. They are used as functional nanomaterials with great potential in biomedical areas, such as active agents and delivery systems for advanced drug delivery and disease therapy. In recent years, potential applications of exosomes in tissue engineering have attracted significant attention, and some critical progress has been made. This review gives a complete picture of exosomes and their applications in the regeneration of various tissues, such as the central nervous systems, kidney, bone, cartilage, heart, and endodontium. Approaches employed for modifying exosomes to equip them with excellent targeting capacity are summarized. Furthermore, current concerns and future outlook of exosomes in tissue engineering are discussed.
Collapse
Affiliation(s)
- Yang Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Yuhuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Jialu Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Ruojing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Zhaoping Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Weimin Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Luyue Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Block 3, Renmin Road South, Chengdu, 610041, P. R. China
| |
Collapse
|
2
|
Low-metastatic melanoma cells acquire enhanced metastatic capability via exosomal transfer of miR-199a-1-5p from highly metastatic melanoma cells. Cell Death Dis 2022; 8:188. [PMID: 35397647 PMCID: PMC8994777 DOI: 10.1038/s41420-022-00993-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
The mean survival of metastatic melanoma is less than 1 year. While the high mortality rate is associated with the efficient metastatic colonization of the involved organs, the underlying mechanisms remain elusive. The role of exosomes in facilitating the interactions between cancer cells and the metastatic microenvironment has received increasing attention. Previous studies on the role of exosomes in metastasis have been heavily focused on cancer cell-derived exosomes in modulating the functions of stromal cells. Whether the extravasated neighboring cancer cells at the distant organ can alter the metastatic properties of one another, a new mechanism of metastatic colonization, has not been demonstrated prior to this report. In this study, a paired M4 melanoma derivative cell lines, i.e., M14-OL and POL, that we established and characterized were employed. They exhibit high (POL cells) and low (OL cells) metastatic colonization efficiency in vivo, respectively. We show that exosomal crosstalk between metastatic cancer cells is a new mechanism that underlies cancer metastasis and heterogeneity. Low metastatic melanoma cells (OL) can acquire the “metastatic power” from highly metastatic melanoma cells (POL). POL achieves this goal by utilizing its exosomes to deliver functional miRNAs, such as miR-199a-1-5p, to the targeted OL cell which in turn inactivates cell cycle inhibitor CDKN1B and augments metastatic colonization.
Collapse
|
3
|
Urciuoli E, Peruzzi B. Mutual Modulation Between Extracellular Vesicles and Mechanoenvironment in Bone Tumors. Front Cell Dev Biol 2021; 9:789674. [PMID: 34950663 PMCID: PMC8688845 DOI: 10.3389/fcell.2021.789674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
The bone microenvironment homeostasis is guaranteed by the balanced and fine regulated bone matrix remodeling process. This equilibrium can be disrupted by cancer cells developed in the bone (primary bone cancers) or deriving from other tissues (bone metastatic lesions), through a mechanism by which they interfere with bone cells activities and alter the microenvironment both biochemically and mechanically. Among the factors secreted by cancer cells and by cancer-conditioned bone cells, extracellular vesicles (EVs) are described to exert pivotal roles in the establishment and the progression of bone cancers, by conveying tumorigenic signals targeting and transforming normal cells. Doing this, EVs are also responsible in modulating the production of proteins involved in regulating matrix stiffness and/or mechanotransduction process, thereby altering the bone mechanoenvironment. In turn, bone and cancer cells respond to deregulated matrix stiffness by modifying EV production and content, fueling the vicious cycle established in tumors. Here, we summarized the relationship between EVs and the mechanoenvironment during tumoral progression, with the final aim to provide some innovative perspectives in counteracting bone cancers.
Collapse
Affiliation(s)
| | - Barbara Peruzzi
- Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
4
|
Gao Z, Pang B, Li J, Gao N, Fan T, Li Y. Emerging Role of Exosomes in Liquid Biopsy for Monitoring Prostate Cancer Invasion and Metastasis. Front Cell Dev Biol 2021; 9:679527. [PMID: 34017837 PMCID: PMC8129505 DOI: 10.3389/fcell.2021.679527] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the most common solid tumor in men. While patients with local PCa have better prognostic survival, patients with metastatic PCa have relatively high mortality rates. Existing diagnostic methods for PCa rely on tissue biopsy and blood prostate-specific antigen (PSA) detection; however, the PSA test does not detect aggressive PCa. Liquid biopsy is a promising technique to overcome tumor heterogeneity in diagnosis, provide more comprehensive information, and track tumor progression over time, allowing for the development of treatment options at all stages of PCa. Exosomes containing proteins and nucleic acids are potential sources of tumor biomarkers. Accumulating evidence indicates that exosomes play important roles in cell communication and tumor progression and are suitable for monitoring PCa progression and metastasis. In this review, we summarize recent advances in the use of exosomal proteins and miRNAs as biomarkers for monitoring PCa invasion and metastasis and discuss their feasibility in clinical diagnosis.
Collapse
Affiliation(s)
- Zhengfan Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Bairen Pang
- Faculty of Medicine, St George and Sutherland Clinical School, St George Hospital, UNSW Sydney, Kensington, NSW, Australia
| | - Jing Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Faculty of Medicine, St George and Sutherland Clinical School, St George Hospital, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
5
|
Ma Y, Schröder DC, Nenkov M, Rizwan MN, Abubrig M, Sonnemann J, Murrieta-Coxca JM, Morales-Prieto DM, Westermann M, Gaßler N, Chen Y. Epithelial Membrane Protein 2 Suppresses Non-Small Cell Lung Cancer Cell Growth by Inhibition of MAPK Pathway. Int J Mol Sci 2021; 22:2944. [PMID: 33799364 PMCID: PMC7999101 DOI: 10.3390/ijms22062944] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Epithelial membrane proteins (EMP1-3) are involved in epithelial differentiation and carcinogenesis. Dysregulated expression of EMP2 was observed in various cancers, but its role in human lung cancer is not yet clarified. In this study, we analyzed the expression of EMP1-3 and investigated the biological function of EMP2 in non-small cell lung cancer (NSCLC). The results showed that lower expression of EMP1 was significantly correlated with tumor size in primary lung tumors (p = 0.004). Overexpression of EMP2 suppressed tumor cell growth, migration, and invasion, resulting in a G1 cell cycle arrest, with knockdown of EMP2 leading to enhanced cell migration, related to MAPK pathway alterations and disruption of cell cycle regulatory genes. Exosomes isolated from transfected cells were taken up by tumor cells, carrying EMP2-downregulated microRNAs (miRNAs) which participated in regulation of the tumor microenvironment. Our data suggest that decreased EMP1 expression is significantly related to increased tumor size in NSCLC. EMP2 suppresses NSCLC cell growth mainly by inhibiting the MAPK pathway. EMP2 might further affect the tumor microenvironment by regulating tumor microenvironment-associated miRNAs.
Collapse
Affiliation(s)
- Yunxia Ma
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (Y.M.); (D.C.S.); (M.N.); (M.N.R.); (M.A.); (N.G.)
| | - Desiree Charlotte Schröder
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (Y.M.); (D.C.S.); (M.N.); (M.N.R.); (M.A.); (N.G.)
| | - Miljana Nenkov
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (Y.M.); (D.C.S.); (M.N.); (M.N.R.); (M.A.); (N.G.)
| | - Maryam Noor Rizwan
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (Y.M.); (D.C.S.); (M.N.); (M.N.R.); (M.A.); (N.G.)
| | - Mohamed Abubrig
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (Y.M.); (D.C.S.); (M.N.); (M.N.R.); (M.A.); (N.G.)
| | - Jürgen Sonnemann
- Department of Pediatric Hematology and Oncology, Children’s Clinic, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| | - José M. Murrieta-Coxca
- Placenta-Labor, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (J.M.M.-C.); (D.M.M.-P.)
| | - Diana M. Morales-Prieto
- Placenta-Labor, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; (J.M.M.-C.); (D.M.M.-P.)
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany;
| | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (Y.M.); (D.C.S.); (M.N.); (M.N.R.); (M.A.); (N.G.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (Y.M.); (D.C.S.); (M.N.); (M.N.R.); (M.A.); (N.G.)
| |
Collapse
|
6
|
Liu YR, Cheng YQ, Wang SB, Su YR, Liu Y, Li CY, Jin L, Wan Q, Sang X, Wang ZC. Therapeutic effects and perspective of stem cell extracellular vesicles in aging and cancer. J Cell Physiol 2020; 236:4783-4796. [PMID: 33368322 DOI: 10.1002/jcp.30212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/02/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
Senescent cells can secrete a plethora of cytokines which induce senescent phenotype of neighboring cells and was called senescence-associated secretory phenotype. Previously, it was believed that cancer was caused by the infinite division and uncontrolled proliferation of cells. Based on this, anticancer treatments were all aimed at killing cancer cells. Cancer is now considered an age-related disease. Cancer cells are not exogenous, but one of the worst results of injuries which initially induce cell senescence. Therefore, reversing cell senescence can fundamentally prevent and treat cancer. Though current anticancer treatments induce the cancer cells apoptosis, they induce senescence of normal cells at the same time, thus promoting the occurrence and development of cancer and forming a vicious circle. Extracellular vesicles (EVs) are nano-sized vesicles which partially mirror their parent cells. In the tumor microenvironment, EVs of senescent cells can change the expression profile of cancer cells, contributing to their resistance to chemotherapy. There is growing evidence indicates that stem cell EVs exert effective antiaging and anticancer actions by transferring functional microRNAs and proteins. This review will summarize the therapeutic role of stem cell EVs in reversing aging and cancer, which suggests the broad clinical application perspective.
Collapse
Affiliation(s)
- Yu-Run Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya-Qi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shou-Bi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya-Ru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chao-Yang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Chong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Zhu LY, Wu XY, Liu XD, Zheng DF, Li HS, Yang B, Zhang J, Chang Q. Aggressive Medulloblastoma-Derived Exosomal miRNAs Promote In Vitro Invasion and Migration of Tumor Cells Via Ras/MAPK Pathway. J Neuropathol Exp Neurol 2020; 79:734-745. [PMID: 32417918 DOI: 10.1093/jnen/nlaa041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/06/2020] [Accepted: 04/23/2020] [Indexed: 11/12/2022] Open
Abstract
Medulloblastomas (MBs) are currently divided into 4 molecular subgroups: WNT, SHH, Group 3, and Group 4. Among them, Group 3 MB has the worst prognosis, and 40%-50% of Group 3 cases are already metastatic at the time of diagnosis. Emerging evidence indicates that exosomes drive tumor invasion, but very little is known about exosomes in MBs. In this study, we initially discovered that exosomes isolated from Group 3 MB cell lines altered in vitro behaviors of a less invasive SHH MB cell line and yielded a much more aggressive phenotype. RNA-sequencing analysis revealed 7 exosomal miRNAs with markedly different expression levels between the SHH and Group 3 MB cell lines. They were all predicted to be related to the Ras/MAPK pathway according to the Kyoto Encyclopedia of Genes and Genomes data analysis. Increased expression of miR-181a-5p, miR-125b-5p, and let-7b-5p was further confirmed in Group 3 MB cells with real-time PCR and was shown to increase in vitro invasion and migratory abilities of tumor cells through the activation of ERK in Ras/MAPK pathway. Collectively, our findings suggest that exosomal miRNAs have a critical role in MB progression in vitro and might serve as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Liang-Yi Zhu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center
| | - Xiao-Yu Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center
| | - Xiao-Dan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center
| | - Dan-Feng Zheng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center
| | - Hai-Shuang Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center
| | - Bao Yang
- Department of Neuro-surgery, Tiantan Hospital, Capital University of Medical Science (BY), Beijing, China
| | - Jing Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center.,Department of Pathology, University of Washington, Seattle, Washington
| | - Qing Chang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center
| |
Collapse
|
8
|
Choi SA, Koh EJ, Kim RN, Byun JW, Phi JH, Yang J, Wang KC, Park AK, Hwang DW, Lee JY, Kim SK. Extracellular vesicle-associated miR-135b and -135a regulate stemness in Group 4 medulloblastoma cells by targeting angiomotin-like 2. Cancer Cell Int 2020; 20:558. [PMID: 33292274 PMCID: PMC7678136 DOI: 10.1186/s12935-020-01645-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Extracellular vesicles (EVs) secreted by tumours, including exosomes, are important factors that regulate cell–cell interactions in oncogenesis. Although EV studies are ongoing, the biological understanding of EV-miRNAs derived from brain tumour spheroid-forming cells (BTSCs) of medulloblastoma is poor. Purposes We explored the specific cellular miRNAs and EV-miRNAs in medulloblastoma BTSCs to determine their potential biological function. Methods Bulk tumor cells (BTCs) and BTSCs were cultured under different conditions from medulloblastoma tissues (N = 10). Results Twenty-four miRNAs were simultaneously increased in both cells and EVs derived from BTSCs in comparison to BTCs. After inhibition of miR-135b or miR135a which were the most significantly increased in BTSCs, cell viability, self-renewal and stem cell marker expression decreased remarkably. Through integrated analysis of mRNAs and miRNAs data, we found that angiomotin-like 2 (AMOTL2), which was significantly decreased, was targeted by both miR-135b and miR-135a. STAT6 and GPX8 were targeted only by miR-135a. Importantly, low expression of AMOTL2 was significantly associated with overall poor survival in paediatric Group 3 and Group 4 medulloblastoma patients. Conclusion Our results indicated that inhibition of miR-135b or miR-135a leads to suppress stemness of BTSC through modulation of AMOTL2.
Collapse
Affiliation(s)
- Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Koh
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Regional Emergency Medical Center, Seoul National University Hospital, Seoul, Korea
| | - Ryong Nam Kim
- Department of Biomedical Engineering, Seoul National University, Seoul, Korea
| | - Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeyul Yang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Kyung Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department of Anatomy, Neural Development and Anomaly Lab, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Noh GT, Kwon J, Kim J, Park M, Choi DW, Cho KA, Woo SY, Oh BY, Lee KY, Lee RA. Verification of the role of exosomal microRNA in colorectal tumorigenesis using human colorectal cancer cell lines. PLoS One 2020; 15:e0242057. [PMID: 33175885 PMCID: PMC7657557 DOI: 10.1371/journal.pone.0242057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are a group of small membranous vesicles that are shed into the extracellular environment by tumoral or non-tumoral cells and contribute to cellular communication by delivering micro RNAs (miRNAs). In this study, we aimed to evaluate the role of exosomal miRNAs from colorectal cancer cell lines in tumorigenesis, by affecting cancer-associated fibroblasts (CAFs), which are vital constituents of the tumor microenvironment. To analyze the effect of exosomal miRNA on the tumor microenvironment, migration of the monocytic cell line THP-1 was evaluated via Transwell migration assay using CAFs isolated from colon cancer patients. The migration assay was performed with CAFs ± CCL7-blocking antibody and CAFs that were treated with exosomes isolated from colon cancer cell lines. To identify the associated exosomal miRNAs, miRNA sequencing and quantitative reverse transcription polymerase chain reaction were performed. The migration assay revealed that THP-1 migration was decreased in CCL7-blocking antibody-expressing and exosome-treated CAFs. Colon cancer cell lines contained miRNA let-7d in secreted exosomes targeting the chemokine CCL7. Exosomes from colorectal cancer cell lines affected CCL7 secretion from CAFs, possibly via the miRNA let-7d, and interfered with the migration of CCR2+ monocytic THP-1 cells in vitro.
Collapse
Affiliation(s)
- Gyoung Tae Noh
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyun Kwon
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Jungwoo Kim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Minhwa Park
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Da-Won Choi
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Kyung-Ah Cho
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - So-Youn Woo
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Bo-Young Oh
- Department of Surgery, Hallym University College of Medicine, Seoul, South Korea
| | - Kang Young Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Ryung-Ah Lee
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
10
|
Raimondi L, De Luca A, Gallo A, Costa V, Russelli G, Cuscino N, Manno M, Raccosta S, Carina V, Bellavia D, Conigliaro A, Alessandro R, Fini M, Conaldi PG, Giavaresi G. Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs. Carcinogenesis 2020; 41:666-677. [PMID: 31294446 DOI: 10.1093/carcin/bgz130] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023] Open
Abstract
Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodeling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigated the micro RNA (miRNA) cargo from exosomes and their parental cells by performing small RNA sequencing through NGS Illumina platform. Hierarchical clustering highlighted a unique molecular profile of exosomal miRNA; bioinformatic analysis by DIANA-mirPath revealed that miRNAs identified take part in various biological processes and carcinogenesis. Among these miRNAs, some were already known for their involvement in the tumor microenvironment establishment, as miR-148a and miR-21-5p. Enforced expression of miR-148a and miR-21-5p in Raw264.7 and hTert immortalized umbilical vein endothelial cells recapitulated the effects induced by exosomes. Overall, our study highlighted the importance of OS exosomes in tumor microenvironment also by a specific packaging of miRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mauro Manno
- National Research Council of Italy, Institute of Byophysics, Palermo, Italy
| | - Samuele Raccosta
- National Research Council of Italy, Institute of Byophysics, Palermo, Italy
| | | | | | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| | | | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, Bologna, Italy
| |
Collapse
|
11
|
Extracellular vesicle-mediated nucleic acid transfer and reprogramming in the tumor microenvironment. Cancer Lett 2020; 482:33-43. [DOI: 10.1016/j.canlet.2020.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/19/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
|
12
|
Jeske R, Bejoy J, Marzano M, Li Y. Human Pluripotent Stem Cell-Derived Extracellular Vesicles: Characteristics and Applications. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:129-144. [PMID: 31847715 PMCID: PMC7187972 DOI: 10.1089/ten.teb.2019.0252] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are found to play an important role in various biological processes and maintaining tissue homeostasis. Because of the protective effects, stem cell-derived EVs can be used to reduce oxidative stress and apoptosis in the recipient cells. In addition, EVs/exosomes have been used as directional communication tools between stem cells and parenchymal cells, giving them the ability to serve as biomarkers. Likewise, altered EVs/exosomes can be utilized for drug delivery by loading with proteins, small interfering RNAs, and viral vectors, in particular, because EVs/exosomes are able to cross the blood-brain barrier. In this review article, the properties of human induced pluripotent stem cell (iPSC)-derived EVs are discussed. The biogenesis, that is, how EVs originate in the endosomal compartment or from the cell layer of microvesicles, EV composition, the available methods of purification, and characterizations of EVs/exosomes are summarized. In particular, EVs/exosomes derived from iPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. Impact statement In this review, we summarized the work related to extracellular vesicles (EVs) derived from human pluripotent stem cells (hPSCs). In particular, EVs/exosomes derived from hPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. The results highlight the important role of cell-cell interactions in neural cellular phenotype and neurodegeneration. The findings reported in this article are significant for pluripotent stem cell-derived cell-free products toward applications in stem cell-based therapies.
Collapse
Affiliation(s)
- Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida
| |
Collapse
|
13
|
Saber SH, Ali HEA, Gaballa R, Gaballah M, Ali HI, Zerfaoui M, Abd Elmageed ZY. Exosomes are the Driving Force in Preparing the Soil for the Metastatic Seeds: Lessons from the Prostate Cancer. Cells 2020; 9:E564. [PMID: 32121073 PMCID: PMC7140426 DOI: 10.3390/cells9030564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.
Collapse
Affiliation(s)
- Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Hamdy E. A. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Rofaida Gaballa
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mohamed Gaballah
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Hamed I. Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| | - Mourad Zerfaoui
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, TX 77843, USA; (H.E.A.A.); (R.G.); (M.G.); (H.I.A.)
| |
Collapse
|
14
|
Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 2020; 38:93-101. [PMID: 30715644 DOI: 10.1007/s10555-019-09783-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor milieu is characteristically acidic as a consequence of the fermentative metabolism of glucose that results in massive accumulation of lactic acid within the cytoplasm. Tumor cells get rid of excessive protons through exchangers that are responsible for the extracellular acidification that selects cellular clones that are more apt at surviving in this challenging and culling environment. Extracellular vesicles (EVs) are vesicles with diameters ranging from nm to μm that are released from the cells to deliver nucleic acids, proteins, and lipids to adjacent or distant cells. EVs are involved in a plethora of biological events that promote tumor progression including unrestricted proliferation, angiogenesis, migration, local invasion, preparation of the metastatic niche, metastasis, downregulation or hijacking of the immune system, and drug resistance. There is evidence that the release of specific exosomes is increased many folds in cancer patients, as shown by many techniques aimed at evaluating "liquid biopsies". The quality of the exosomal contents has been shown to vary at the different moments of tumor life such as local invasion or metastasis. In vitro studies have recently pointed out that cancer acidity is a major determinant in inducing increased exosome release by human cancer cells, by showing that exosomal release was increased as the pH moved from 7.4 pH to the typical pH of cancer that is 6.5. In this review, we emphasize the recent evidence that tumor acidity and exosomes levels are strictly related and strongly contribute to the malignant tumor phenotypes.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Enrico Spugnini
- SAFU Department, Regina Elena Cancer Institute, Via Elio Chianesi 51, 00144, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
15
|
Ullah M, Ng NN, Concepcion W, Thakor AS. Emerging role of stem cell-derived extracellular microRNAs in age-associated human diseases and in different therapies of longevity. Ageing Res Rev 2020; 57:100979. [PMID: 31704472 DOI: 10.1016/j.arr.2019.100979] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. This has been associated with the aging of stem cell populations within the body that decreases the capacity of stem cells to self-renew, differentiate, and regenerate damaged tissues and organs. This review aims to explore how aging is associated with the dysregulation of stem cell-derived extracellular vesicles (SCEVs) and their corresponding miRNA cargo (SCEV-miRNAs), which are short non-coding RNAs involved in post-transcriptional regulation of target genes. Recent evidence has suggested that in aging stem cells, SCEV-miRNAs may play a vital role regulating various processes that contribute to aging: cellular senescence, stem cell exhaustion, telomere length, and circadian rhythm. Hence, further clarifying the age-dependent molecular mechanisms through which SCEV-miRNAs exert their downstream effects may inform a greater understanding of the biology of aging, elucidate their role in stem cell function, and identify important targets for future regenerative therapies. Additionally, current studies evaluating therapeutic role of SCEVs and SCEV-miRNAs in treating several age-associated diseases are also discussed.
Collapse
|
16
|
Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D, Hong J, Yu H, Qi L. Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res Ther 2019; 10:381. [PMID: 31842978 PMCID: PMC6915914 DOI: 10.1186/s13287-019-1446-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) play a significant role in cancer initiation and metastasis, sometimes by releasing exosomes that mediate cell communication by delivering microRNAs (miRNAs). This study aimed to investigate the effects of exosomal miR-133b derived from MSCs on glioma cell behaviors. Methods Microarray-based analysis identified the differentially expressed genes (DEGs) in glioma. The expression patterns of EZH2 and miR-133b along with interaction between them were clarified in glioma. The expression of miR-133b and EZH2 in glioma cells was altered to examine their functions on cell activities. Furthermore, glioma cells were co-cultured with MSC-derived exosomes treated with miR-133b mimic or inhibitor, and EZH2-over-expressing vectors or shRNA against EZH2 to characterize their effect on proliferation, invasion, and migration of glioma cells in vitro. In vivo assays were also performed to validate the in vitro findings. Results miR-133b was downregulated while EZH2 was upregulated in glioma tissues and cells. miR-133b was found to target and negatively regulate EZH2 expression. Moreover, EZH2 silencing resulted in inhibited glioma cell proliferation, invasion, and migration. Additionally, MSC-derived exosomes containing miR-133b repressed glioma cell proliferation, invasion, and migration by inhibiting EZH2 and the Wnt/β-catenin signaling pathway. Furthermore, in vivo experiments confirmed the tumor-suppressive effects of MSC-derived exosomal miR-133b on glioma development. Conclusion Collectively, the obtained results suggested that MSC-derived exosomes carrying miR-133b could attenuate glioma development via disrupting the Wnt/β-catenin signaling pathway by inhibiting EZH2, which provides a potential treatment biomarker for glioma.
Collapse
Affiliation(s)
- Haiyang Xu
- Department of Oncological Neurosurgery, First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China
| | - Guifang Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24, Yinquan South Road, Qingyuan, 511518, Guangdong Province, People's Republic of China.,Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013, Jilin Province, People's Republic of China
| | - Yu Zhang
- Department of Neurovascular, First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Hong Jiang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Weiyao Wang
- Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013, Jilin Province, People's Republic of China
| | - Donghai Zhao
- Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013, Jilin Province, People's Republic of China
| | - Jin Hong
- Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013, Jilin Province, People's Republic of China
| | - Hongquan Yu
- Department of Oncological Neurosurgery, First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, Jilin Province, People's Republic of China.
| | - Ling Qi
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, B24, Yinquan South Road, Qingyuan, 511518, Guangdong Province, People's Republic of China. .,Department of Pathophysiology, Jilin Medical University, No. 5, Jilin Street, Jilin, 132013, Jilin Province, People's Republic of China.
| |
Collapse
|
17
|
Wu HY, Xia S, Liu AG, Wei MD, Chen ZB, Li YX, He Y, Liao MJ, Hu QP, Pan SL. Upregulation of miR‑132‑3p in cholangiocarcinoma tissues: A study based on RT‑qPCR, The Cancer Genome Atlas miRNA sequencing, Gene Expression Omnibus microarray data and bioinformatics analyses. Mol Med Rep 2019; 20:5002-5020. [PMID: 31638221 PMCID: PMC6854587 DOI: 10.3892/mmr.2019.10730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) have been reported to be closely associated with numerous human diseases, including cholangiocarcinoma (CCA). However, the number of miRNAs known to be involved in CCA is limited, and the association between miR-132-3p and CCA remains unknown. In the present study, the clinical role of miR-132-3p and its potential signaling pathways were investigated by multiple approaches. Reverse transcription-quantitative PCR (RT-qPCR), CCA-associated Gene Expression Omnibus (GEO), ArrayExpress and Sequence Read Archive (SRA) miRNA-microarray or miRNA-sequencing data were screened, and meta-analyses were conducted, in order to calculate the receiver operating characteristic (ROC) curve and standardized mean difference (SMD). The predicted target genes of miR-132-3p were obtained from 12 online databases and were combined with the downregulated differentially expressed genes identified in the RNA-sequencing data of CCA. Gene Ontology annotation and pathway analysis were performed in WebGestalt. Protein-protein interaction analyses were conducted in STRING. The Cancer Genome Atlas (TCGA) mRNA expression profiles were used to validate the expression levels of hub genes at the mRNA level. The Human Protein Atlas was used to identify the protein expression levels of hub genes in CCA tissues and non-tumor biliary epithelium. The meta-analyses comprised 10 groups of RT-qPCR data, eight GEO microarray datasets and one TCGA miRNA-sequencing dataset. The SMD of miR-132-3p in CCA was 0.75 (95% CI: 0.25, 1.24), which indicated that miR-132-3p was overexpressed in CCA tissues. This finding was supported by a summary ROC value of 0.80 (95% CI: 0.76, 0.83). The pooled sensitivity and specificity were 0.81 (95% CI: 0.59, 0.93) and 0.71 (95% CI: 0.58, 0.81), respectively. The relative expression level of miR-132-3p in the early stage of CCA (stages I–II) was 6.8754±0.5279, which was markedly lower than that in the advanced stage (stages III–IVB), 7.3034±0.3267 (P=0.003). Consistently, the miR-132-3p level in low-grade CCA (grades G1-G2) was 6.7581±0.5297, whereas it was 7.1191±0.4651 in patients with high-grade CCA (grades G3-G4) (P=0.037). Furthermore, 555 potential target genes of miR-132-3p in CCA were mainly enriched in the ‘Focal Adhesion-PI3K-Akt-mTOR-signaling pathway’. In conclusion, upregulation of miR-132-3p may serve a pivotal role in the tumorigenesis and progression of CCA by targeting different pathways. Further in vitro and in vivo studies are required to support the current findings.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shuang Xia
- Department of Human Anatomy, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - An-Gui Liu
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Min-Da Wei
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhong-Biao Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Xin Li
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu He
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Min-Jun Liao
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qi-Ping Hu
- Department of Cell Biology and Genetics, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
18
|
Kulkarni B, Kirave P, Gondaliya P, Jash K, Jain A, Tekade RK, Kalia K. Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer. Drug Discov Today 2019; 24:2058-2067. [PMID: 31228614 DOI: 10.1016/j.drudis.2019.06.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/22/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
In the treatment of cancer, there are three significant limitations causing high mortality and recurrence rates among cancer patients. First, the escape of tumor cells from the immune system; second, the development of multi-drug resistance (MDR) to chemotherapeutic drugs; and, third, the noxious metastases of cancer cells. Exosomes are vesicular cargos involved in the transportation of miRNA, mRNA and proteins from one cell to another cell. This review details the current understanding of the exosomal transmission of miRNA and crosstalk with the downstream consequences, ultimately leading to the progression and metastasis of cancer. Further, this review also discusses how exosomal miRNA can provide promising novel targets for the treatment and detection of cancer.
Collapse
Affiliation(s)
- Bhagyashri Kulkarni
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air force station, Gandhinagar, 382355, Gujarat, India
| | - Prathibha Kirave
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air force station, Gandhinagar, 382355, Gujarat, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air force station, Gandhinagar, 382355, Gujarat, India
| | - Kavya Jash
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air force station, Gandhinagar, 382355, Gujarat, India
| | - Alok Jain
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air force station, Gandhinagar, 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air force station, Gandhinagar, 382355, Gujarat, India; Department of Materials Science Engineering, Indian Institute of Technology-Jammu, Jagti, PO Nagrota, Jammu - 181 221, J&K, India.
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opposite Air force station, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
19
|
Kim KS, Park JI, Oh N, Cho HJ, Park JH, Park KS. ELK3 expressed in lymphatic endothelial cells promotes breast cancer progression and metastasis through exosomal miRNAs. Sci Rep 2019; 9:8418. [PMID: 31182803 PMCID: PMC6557839 DOI: 10.1038/s41598-019-44828-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated lymphatic vessels (LV) serve as a route of cancer dissemination through the prometastatic crosstalk between lymphatic endothelial cells (LECs) lining the LVs and cancer cells. Compared to blood endothelial cell-derived angiocrine factors, however, LEC-secreted factors in the tumor microenvironment and their roles in tumor metastasis are poorly understood. Here, we report that ELK3 expressed in LECs contributes to the dissemination of cancer cells during tumor growth by providing oncogenic miRNAs to tumor cells through exosomes. We found that conditioned medium from ELK3-suppressed LECs (LCM) lost its ability to promote the migration and invasion of breast cancer cells such as MDA-MB-231, Hs578T and BT20 in vitro. Suppression of ELK3 in LECs diminished the ability of LECs to promote tumor growth and metastasis of MDA-MB-231 in vivo. Exosomes derived from LECs significantly increased the migration and invasion of MDA-MB-231 in vitro, but ELK3 suppression significantly diminished the pro-oncogenic activity of exosomes from LECs. Based on the miRNA expression profiles of LECs and functional analysis, we identified miR-503-3p, miR-4269 and miR-30e-3p as downstream targets of ELK3 in LECs, which cause the above phenotype of cancer cells. These findings strongly suggest that ELK3 expressed in LECs is a major regulator that controls the communication between the tumor microenvironment and tumors to support cancer metastasis.
Collapse
Affiliation(s)
- Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Ji-In Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Nuri Oh
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Hyeon-Ju Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Ji-Hoon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Republic of Korea.
| |
Collapse
|
20
|
Bone Metastasis Phenotype and Growth Undergo Regulation by Micro-Environment Stimuli: Efficacy of Early Therapy with HGF or TGFβ1-Type I Receptor Blockade. Int J Mol Sci 2019; 20:ijms20102520. [PMID: 31121879 PMCID: PMC6567054 DOI: 10.3390/ijms20102520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hepatocyte growth factor (HGF) and transforming growth factor β1 (TGFβ1) are biological stimuli of the micro-environment which affect bone metastasis phenotype through transcription factors, but their influence on the growth is scarcely known. In a xenograft model prepared with 1833 bone metastatic cells, derived from breast carcinoma cells, we evaluated mice survival and Twist and Snail expression and localization after competitive inhibition of HGF with NK4, or after blockade of TGFβ1-type I receptor (RI) with SB431542: in the latter condition HGF was also measured. To explain the in vivo data, in 1833 cells treated with SB431542 plus TGFβ1 we measured HGF formation and the transduction pathway involved. Altogether, HGF seemed relevant for bone-metastatic growth, being hampered by NK4 treatment, which decreased Twist more than Snail in the metastasis bulk. TGFβ1-RI blockade enhanced HGF in metastasis and adjacent bone marrow, while reducing prevalently Snail expression at the front and bulk of bone metastasis. The HGF accumulation in 1833 cells depended on an auxiliary signaling pathway, triggered by TGFβ1 under SB431542, which interfered in the transcription of HGF activator inhibitor type 1 (HAI-1) downstream of TGFβ-activated kinase 1 (TAK1): HGF stimulated Twist transactivation. In conclusion, the impairment of initial outgrowth with NK4 seemed therapeutically promising more than SB431542 chemotherapy; a functional correlation between Twist and Snail in bone metastasis seemed to be influenced by the biological stimuli of the micro-environment, and the targeting of these phenotype biomarkers might inhibit metastasis plasticity and colonization, even if it would be necessary to consider the changes of HGF levels in bone metastases undergoing TGFβ1-RI blockade.
Collapse
|
21
|
Kuang M, Tao X, Peng Y, Zhang W, Pan Y, Cheng L, Yuan C, Zhao Y, Mao H, Zhuge L, Zhou Z, Chen H, Sun Y. Proteomic analysis of plasma exosomes to differentiate malignant from benign pulmonary nodules. Clin Proteomics 2019; 16:5. [PMID: 30733650 PMCID: PMC6359787 DOI: 10.1186/s12014-019-9225-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background It is difficult to distinguish benign pulmonary nodules (PNs) from malignant PNs by conventional examination. Therefore, novel biomarkers that can identify the nature of PNs are needed. Exosomes have recently been identified as an attractive alternative approach since tumor-specific molecules can be found in exosomes isolated from biological fluids. Methods Plasma exosomes were extracted via the exoEasy reagent method. The major proteins from plasma exosomes in patients with PNs were identified via labelfree analysis and screened for differentially expressed proteins. A GO classification analysis and KEGG pathway analysis were performed on plasma exosomal protein from patients with benign and malignant PNs. Results Western blot confirmed that protein expression of CD63 and CD9 could be detected in the exosome extract. Via a search of the human Uniprot database, 736 plasma exosome proteins from patients with PNs were detected using high-confidence peptides. There were 33 differentially expressed proteins in the benign and malignant PNs. Of these, 12 proteins were only expressed in the benign PNs group, while 9 proteins were only expressed in the malignant PNs group. We further obtained important information on signaling pathways and nodal proteins related to differential benign and malignant PNs via bioinformatic analysis methods such as GO, KEGG, and String. Conclusions This study provides a new perspective on the identification of novel detection strategies for benign and malignant PNs. We hope our findings can provide clues for the identification of benign and malignant PNs. Electronic supplementary material The online version of this article (10.1186/s12014-019-9225-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muyu Kuang
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,3Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaoting Tao
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizhou Peng
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjing Zhang
- 4Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Yafang Pan
- 4Shanghai Institute of Biochemistry and Cell Biology, Shanghai, China
| | - Lei Cheng
- 5Cancer Institute, Collaborative Innovation Center for Cancer Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chongze Yuan
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhao
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hengyu Mao
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingdun Zhuge
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenhua Zhou
- 6Department of Orthopaedic Oncology, Changzheng Hospital, Naval Military Medical University (The Second Military Medical University), Shanghai, China
| | - Haiquan Chen
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yihua Sun
- 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,7Present Address: Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, No. 270, Dongan Road, Shanghai, 200030 China
| |
Collapse
|
22
|
Banerjee A, Chabria Y, Kanna N. R. R, Gopi J, Rowlo P, Sun XF, Pathak S. Role of Tumor Specific niche in Colon Cancer Progression and Emerging Therapies by Targeting Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1341:177-192. [DOI: 10.1007/5584_2019_355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Hu C, Chen M, Jiang R, Guo Y, Wu M, Zhang X. Exosome-related tumor microenvironment. J Cancer 2018; 9:3084-3092. [PMID: 30210631 PMCID: PMC6134819 DOI: 10.7150/jca.26422] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
The tumor microenvironment (tumor cells are located in the internal and external environment) is vital for the occurrence, growth and metastasis of tumors. An increasing number of studies have shown that exosomes are closely related to the tumor microenvironment. The mechanisms involved, however, are unclear. The focus of this review is on the exosome-related tumor microenvironment and other relevant factors, such as hypoxia, inflammation and angiogenesis. Many studies have suggested that exosomes are important mediators of metastasis, angiogenesis, and immune modulation in the tumor microenvironment. Additionally, exosomes can be isolated from bodily fluids of cancer patients, including urine, blood, saliva, milk, tumor effusion, cerebrospinal fluid, amniotic fluid and so on. Consequently, exosomes are potential biomarkers for clinical predictions and are also good drug carriers because they can cross the biofilm without triggering an immune response. Collectively, these findings illustrate that exosomes are crucial for developing potential targets for a new generation of pharmaceutical therapies that would improve the tumor microenvironment.
Collapse
Affiliation(s)
- Cheng Hu
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Meijuan Chen
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Rilei Jiang
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Yuanyuan Guo
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Mianhua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Xu Zhang
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| |
Collapse
|
24
|
Abd El Gwad A, Matboli M, El-Tawdi A, Habib EK, Shehata H, Ibrahim D, Tash F. Role of exosomal competing endogenous RNA in patients with hepatocellular carcinoma. J Cell Biochem 2018; 119:8600-8610. [PMID: 30015383 DOI: 10.1002/jcb.27109] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022]
Abstract
Recent research has tried to use exosomal RNAs (coding and noncoding) as potential diagnostic markers for hepatocellular carcinoma (HCC). Initially, by using bioinformatics, we selected an HCC-exosomal RNA-based biomarker panel. The choice of this panel depends on the integration of Ras-related in brain (RAB11A) gene expression and its competing endogenous network. This network includes long noncoding RNA RP11-513I15.6 (lncRNA-RP11-513I15.6) and microRNA-1262 (miR-1262). Secondly, we tried to validate the expression of this network in the sera of 60 patients with HCC in comparison with 42 chronic hepatitis C virus-infected patients and 18 healthy controls. Then we assessed the diagnostic efficiency of this panel using a receiver operating characteristic curve analysis. The panel of 3 exosomal RNA-based biomarkers (lncRNA-RP11-513I15.6, miR-1262, and RAB11A) showed excellent sensitivity and specificity in discriminating patients with HCC from patients with chronic hepatitis C virus and healthy controls. Among these 3 RNAs, serum RAB11A mRNA was the most independent prognostic factor. The selected circulatory exosomal RNA-based biomarker panel showed its ability to be used as a diagnostic and prognostic biomarker tool for HCC. Moreover, these biomarkers could be therapeutic targets.
Collapse
Affiliation(s)
- Asmaa Abd El Gwad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed El-Tawdi
- General Surgery Department, Military Medical Academy, Egypt
| | - Eman K Habib
- Anatomy & Embryology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan Shehata
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Ibrahim
- Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fathy Tash
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|