1
|
Jimeno B, Rubalcaba JG. Modelling the role of glucocorticoid receptor as mediator of endocrine responses to environmental challenge. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220501. [PMID: 38310935 PMCID: PMC10838647 DOI: 10.1098/rstb.2022.0501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 02/06/2024] Open
Abstract
Glucocorticoid hormones (GCs) modulate acute 'stress' responses in vertebrates, exerting their actions across many physiological systems to help the organism face and overcome challenges. These actions take place via binding to the glucocorticoid receptor (GR), which determines not only the magnitude of the GC-mediated physiological response but also the negative feedback that downregulates GCs to restore homeostasis. Although GR function is assumed to determine GC regulation capacity, the associations between GR abundance and individuals' coping abilities remain cryptic. We developed a dynamic model fitted to empirical data to predict the effects of GR abundance on both plasma GC response patterns and the magnitude of GC-mediated physiological response. Individuals with higher GRs showed lower GC exposure, stronger physiological responses and greater capacity to adjust this response according to stressor intensity, which may be translated into more resilient and flexible GC phenotypes. Our results also show that among-individual variability in GR abundance challenges the detectability of the association between plasma GC measurements and physiological responses. Our approach provides mechanistic insights into the role of GRs in plasma GC measurements and function, which point at GR abundance fundamentally driving complex features of the GC regulation system in the face of environmental change. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Blanca Jimeno
- Instituto Pirenaico de Ecologia (IPE), CSIC, Avda. Nuestra Señora de la Victoria 16, 22700, Jaca, Spain
| | - Juan G. Rubalcaba
- Departamento de Biodiversidad, Ecología y Evolución, Facultad CC Biológicas, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040, Madrid, Spain
| |
Collapse
|
2
|
Ringler E, Dellefont K, Peignier M, Canoine V. Water-borne testosterone levels predict exploratory tendency in male poison frogs. Gen Comp Endocrinol 2024; 346:114416. [PMID: 38000762 DOI: 10.1016/j.ygcen.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/22/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Hormones play a fundamental role in mediating social behaviors of animals. However, it is less well understood to what extent behavioral variation between individuals can be attributed to variation in underlying hormonal profiles. The goal of the present study was to infer if individual androgen levels, and/or the modulation thereof, can explain among-individual variation in aggressiveness, boldness and exploration. We used as a model the dart-poison frog Allobates femoralis and took repeated non-invasive water-borne hormonal samples of individual males before (baseline) and after (experimental) a series of behavioral tests for assessing aggression, boldness, and exploratory tendency. Our results show that androgen levels in A. femoralis are quite stable across the reproductive season. Repeatability in wbT baseline levels was high, while time of day, age of the frog, and trial order did not show any significant impact on measured wbT levels. In general, experimental wbT levels after behavioral tests were lower compared to the respective baseline levels. However, we identified two different patterns with regard to androgen modulation in response to behavioral testing: individuals with low baseline wbT tended to have increased wbT levels after the behavioral testing, while individuals with comparatively high baseline wbT levels rather showed a decrease in hormonal levels after testing. Our results also suggest that baseline wbT levels are linked to the personality trait exploration, and that androgen modulation is linked to boldness in A. femoralis males. These results show that differences in hormonal profiles and/or hormonal modulation in response to social challenges can indeed explain among-individual differences in behavioral traits.
Collapse
Affiliation(s)
- Eva Ringler
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria.
| | - Katharina Dellefont
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Mélissa Peignier
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria; Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Virginie Canoine
- Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Pritchard AJ, Capitanio JP, Rosso LD, McCowan B, Vandeleest JJ. Hair and plasma cortisol throughout the first 3 years of development in infant rhesus macaques, Macaca mulatta. Dev Psychobiol 2023; 65:e22437. [PMID: 38010308 PMCID: PMC10752380 DOI: 10.1002/dev.22437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Cortisol expression has been demonstrated to have variation across development in rhesus macaques (Macaca mulatta). There exists contradictory evidence for the nature of this change, and age at which it occurs, across biological sample types. Consequently, we lack a cohesive understanding for cortisol concentrations across the development of a major human health translational model. We examined hair cortisol concentrations over the first 3 years of life for 49 mother-reared infant macaques from mixed-sex outdoor units at the California National Primate Research Center. For 48 of these subjects at infancy, 1 year, and 2 years, we obtained plasma cortisol samples for response to a stressor, adjustment to prolonged stress, and response to dexamethasone injection. Hair cortisol concentrations decreased dramatically between 3 and 10 months, followed by relative stability up to the final sampling event at around 34 months of age. Plasma cortisol showed within-year consistency, and consistency between infancy and year 1. We document variability in the infant plasma cortisol samples, especially in percent change between samples 1 and 2. Our plasma cortisol results indicate that infants possess the physiological capacity to effectively inhibit the release of cortisol when stimulated, as effectively as later responses in juveniles. Age-related changes in hair cortisol parallel findings indicating a large decline in the weeks following postparturation.
Collapse
Affiliation(s)
- Alexander J. Pritchard
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - John P. Capitanio
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Laura Del Rosso
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Brenda McCowan
- California National Primate Research Center, University of California, Davis, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Jessica J. Vandeleest
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| |
Collapse
|
4
|
Guzman A, Miller O, Gabor CR. Elevated water temperature initially affects reproduction and behavior but not cognitive performance or physiology in Gambusia affinis. Gen Comp Endocrinol 2023; 340:114307. [PMID: 37172618 DOI: 10.1016/j.ygcen.2023.114307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Warming temperatures associated with climate change and urbanization affect both terrestrial and aquatic populations with freshwater fish being especially vulnerable. As fish rely on water temperature to regulate their body temperature, elevated temperatures can alter physiology and in turn behavioral and cognitive skills. We examined whether reproduction, physiology, behavior, and cognitive skills were altered by exposure to elevated water temperatures during one reproductive cycle in the live-bearing fish, Gambusia affinis. We found that within four days of exposure to a higher temperature (31°C), females were more likely to drop underdeveloped offspring than females maintained at 25°C. However, females did not show a change in cortisol release rates over time or altered fecundity and reproductive allotment, despite increased growth at the higher temperature. But in the heat treatment fish that started the experiment with higher baseline cortisol dropped their offspring sooner than fish with lower cortisol release rates. We used a detour test to explore behavior and cognitive skills at three time points after exposure to the heat treatments: early, midway, and at the end (day 7, 20 and 34). We found that on day 7, females were less likely to exit the starting chamber when maintained at 31°C but did not differ in their time to exit the starting chamber or in their motivation (reach the clear barrier). Similarly, females did not differ in their time to swim around the barrier to reach a female fish reward (solving skill). Nonetheless, we found a link between behavior and cognition, where females who were slower to exit the start chamber got around the barrier faster, indicating that they learned from prior experience. Together our results indicate that G. affinis is initially affected by elevated water temperatures but may partially cope with higher temperatures by not altering their hypothalamus-interrenal axis (baseline cortisol), and at the same time this might act to buffer their young. Acclimation may reduce costs for this species and potentially explain why they are successful invaders and tolerant species despite climate change.
Collapse
Affiliation(s)
- Alex Guzman
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States; The Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666 United States
| | - Olivia Miller
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States; The Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666 United States
| | - Caitlin R Gabor
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States; The Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666 United States.
| |
Collapse
|
5
|
Mutwill AM, Schielzeth H, Richter SH, Kaiser S, Sachser N. Conditional on the social environment? Roots of repeatability in hormone concentrations of male guinea pigs. Horm Behav 2023; 155:105423. [PMID: 37713739 DOI: 10.1016/j.yhbeh.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
Individual differences in behavioral and physiological traits among members of the same species are increasingly being recognized as important in animal research. On the group level, shaping of behavioral and hormonal phenotypes by environmental factors has been reported in different taxa. The extent to which the environment impacts behavior and hormones on the individual level, however, is rather unexplored. Hormonal phenotypes of guinea pigs can be shaped by the social environment on the group level: pair-housed and colony-housed males differ systematically in average testosterone and stressor-induced cortisol levels (i.e. cortisol responsiveness). The aim of the present study was to evaluate whether repeatability and individual variance components (i.e. between- and within-individual variation) of hormonal phenotypes also differ in different social environments. To test this, we determined baseline testosterone, baseline cortisol, and cortisol responsiveness after challenge in same-aged pair-housed and colony-housed guinea pig males over a period of four months. We found comparable repeatability for baseline cortisol and cortisol responsiveness in males from both social conditions. In contrast, baseline testosterone was repeatable only in males from colonies. Interestingly, this result was brought about by significantly larger between-individual variation of testosterone, that was not explained by differences in dominance rank. Individualized social niches differentiated under complex colony, but not pair housing, could be an explanation for this finding.
Collapse
Affiliation(s)
- Alexandra M Mutwill
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany.
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburgerstr. 159, 07743 Jena, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
6
|
Tallo-Parra O, Salas M, Manteca X. Zoo Animal Welfare Assessment: Where Do We Stand? Animals (Basel) 2023; 13:1966. [PMID: 37370476 DOI: 10.3390/ani13121966] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Zoological institutions, such as zoos and aquariums, have made animal welfare a top priority, as it is not only a moral obligation but also crucial for fulfilling their roles in education and conservation. There is a need for science-based tools to assess and monitor animal welfare in these settings. However, assessing the welfare of zoo animals is challenging due to the diversity of species and lack of knowledge on their specific needs. This review aims to discuss the advantages and disadvantages of existing methodologies for assessing zoo animal welfare through: (1) A critical analysis of the main approaches to zoo animal welfare assessment; (2) A description of the most relevant animal-based welfare indicators for zoo animals with a particular focus on behavioural and physiological indicators; and (3) An identification of areas that require further research.
Collapse
Affiliation(s)
- Oriol Tallo-Parra
- School of Veterinary Science, Universitat Autònoma de Barcelona, Campus UAB, 08193 Barcelona, Spain
- Animal Welfare Education Centre, AWEC Advisors SL, Universitat Autònoma de Barcelona, Campus UAB, 08193 Barcelona, Spain
| | - Marina Salas
- Antwerp Zoo Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, 2018 Antwerpen, Belgium
| | - Xavier Manteca
- School of Veterinary Science, Universitat Autònoma de Barcelona, Campus UAB, 08193 Barcelona, Spain
- Animal Welfare Education Centre, AWEC Advisors SL, Universitat Autònoma de Barcelona, Campus UAB, 08193 Barcelona, Spain
| |
Collapse
|
7
|
Duckworth RA, Chenard KC, Meza L, Beiriz MC. Coping styles vary with species' sociality and life history: A systematic review and meta-regression analysis. Neurosci Biobehav Rev 2023; 151:105241. [PMID: 37216998 DOI: 10.1016/j.neubiorev.2023.105241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Despite a long history of animal studies investigating coping styles, the causal connections between behavior and stress physiology remain unclear. Consistency across taxa in effect sizes would support the idea of a direct causal link maintained by either functional or developmental dependencies. Alternatively, lack of consistency would suggest coping styles are evolutionarily labile. Here, we investigated correlations between personality traits and baseline and stress-induced glucocorticoid levels using a systematic review and meta-analysis. Most personality traits did not consistently vary with either baseline or stress-induced glucocorticoids. Only aggression and sociability showed a consistent negative correlation with baseline glucocorticoids. We found that life history variation affected the relationship between stress-induced glucocorticoid levels and personality traits, especially anxiety and aggression. The relationship between anxiety and baseline glucocorticoids depended on species' sociality with solitary species showing more positive effect sizes. Thus, integration between behavioral and physiological traits depends on species' sociality and life history and suggests high evolutionary lability of coping styles.
Collapse
Affiliation(s)
- Renée A Duckworth
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Kathryn C Chenard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Lexis Meza
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Maria Carolina Beiriz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Natural Resources, Universidade Federal do Ceará, Fortaleza, CE 60440-900, Brazil
| |
Collapse
|
8
|
Trait Covariances in Eastern Box Turtles Do Not Support Pleiotropic Effects of the Melanocortin System on Color, Behavior, and Stress Physiology. J HERPETOL 2022. [DOI: 10.1670/22-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Kärkkäinen T, Briga M, Laaksonen T, Stier A. Within-individual repeatability in telomere length: A meta-analysis in nonmammalian vertebrates. Mol Ecol 2022; 31:6339-6359. [PMID: 34455645 DOI: 10.1111/mec.16155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Telomere length is increasingly used as a biomarker of long-term somatic state and future survival prospects. While most studies have overlooked this aspect, biological interpretations based on a given telomere length will benefit from considering the level of within-individual repeatability of telomere length through time. Therefore, we conducted a meta-analysis on 74 longitudinal studies in nonmammalian vertebrates, with the aim to establish the current pattern of within-individual repeatability in telomere length and to identify the methodological (e.g., qPCR/TRF) and biological factors (e.g., age class, phylogeny) that may affect it. While the median within-individual repeatability of telomere length was moderate to high (R = 0.55; 95% CI: 0.05-0.95; N = 82), marked heterogeneity between studies was evident. Measurement method affected the repeatability estimate strongly, with TRF-based studies exhibiting high repeatability (R = 0.80; 95% CI: 0.34-0.96; N = 25), while repeatability of qPCR-based studies was markedly lower and more variable (R = 0.46; 95% CI: 0.04-0.82; N = 57). While phylogeny explained some variance in repeatability, phylogenetic signal was not significant (λ = 0.32; 95% CI: 0.00-0.83). None of the biological factors investigated here significantly explained variation in the repeatability of telomere length, being potentially obscured by methodological differences. Our meta-analysis highlights the high variability in within-individual repeatability estimates between studies and the need to put more effort into separating technical and biological explanations. This is important to better understand to what extent biological factors can affect the repeatability of telomere length and thus the interpretation of telomere length data.
Collapse
Affiliation(s)
| | - Michael Briga
- Department of Biology, University of Turku, Turku, Finland
| | - Toni Laaksonen
- Department of Biology, University of Turku, Turku, Finland
| | - Antoine Stier
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Sinclair ECC, Martin PR, Bonier F. Among-species variation in hormone concentrations is associated with urban tolerance in birds. Proc Biol Sci 2022; 289:20221600. [PMID: 36448281 PMCID: PMC9709560 DOI: 10.1098/rspb.2022.1600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
As cities expand across the globe, understanding factors that underlie variation in urban tolerance is vital for predicting changes in patterns of biodiversity. Endocrine traits, like circulating hormone concentrations and regulation of endocrine responses, might contribute to variation in species' ability to cope with urban challenges. For example, variation in glucocorticoid and androgen concentrations has been linked to life-history and behavioural traits that are associated with urban tolerance. However, we lack an understanding of the degree to which evolved differences in endocrine traits predict variation in urban tolerance across species. We analysed 1391 estimates of circulating baseline corticosterone, stress-induced corticosterone, and testosterone concentrations paired with citizen-science-derived urban occurrence scores in a broad comparative analysis of endocrine phenotypes across 71 bird species that differ in their occurrence in urban habitats. Our results reveal context-dependent links between baseline corticosterone and urban tolerance, as well as testosterone and urban tolerance. Stress-induced corticosterone was not related to urban tolerance. These findings suggest that some endocrine phenotypes contribute to a species' tolerance of urban habitats, but also indicate that other aspects of the endocrine phenotype, such as the ability to appropriately attenuate responses to urban challenges, might be important for success in cities.
Collapse
Affiliation(s)
- Emma C. C. Sinclair
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Paul R. Martin
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Frances Bonier
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
11
|
Hau M, Deimel C, Moiron M. Great tits differ in glucocorticoid plasticity in response to spring temperature. Proc Biol Sci 2022; 289:20221235. [PMID: 36350212 PMCID: PMC9653245 DOI: 10.1098/rspb.2022.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 09/05/2023] Open
Abstract
Fluctuations in environmental temperature affect energy metabolism and stimulate the expression of reversible phenotypic plasticity in vertebrate behavioural and physiological traits. Changes in circulating concentrations of glucocorticoid hormones often underpin environmentally induced phenotypic plasticity. Ongoing climate change is predicted to increase fluctuations in environmental temperature globally, making it imperative to determine the standing phenotypic variation in glucocorticoid responses of free-living populations to evaluate their potential for coping via plastic or evolutionary changes. Using a reaction norm approach, we repeatedly sampled wild great tit (Parus major) individuals for circulating glucocorticoid concentrations during reproduction across five years to quantify individual variation in glucocorticoid plasticity along an environmental temperature gradient. As expected, baseline and stress-induced glucocorticoid concentrations increased with lower environmental temperatures at the population and within-individual level. Moreover, we provide unique evidence that individuals differ significantly in their plastic responses to the temperature gradient for both glucocorticoid traits, with some displaying greater plasticity than others. Average concentrations and degree of plasticity covaried for baseline glucocorticoids, indicating that these two reaction norm components are linked. Hence, individual variation in glucocorticoid plasticity in response to a key environmental factor exists in a wild vertebrate population, representing a crucial step to assess their potential to endure temperature fluctuations.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
- University of Konstanz, Konstanz, Germany
| | | | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany
| |
Collapse
|
12
|
Rubin AM, Seebacher F. Bisphenols impact hormone levels in animals: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154533. [PMID: 35288143 DOI: 10.1016/j.scitotenv.2022.154533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Bisphenols are used in the manufacture of plastics and are endocrine disrupting compounds detectable in free living organisms and environments globally. The original bisphenol, bisphenol A (BPA), is best known as a xenoestrogen, but it also disrupts other steroid hormones and other classes of hormones including thyroid and pituitary hormones. When its toxicity became better known, BPA was replaced by presumably less toxic alternatives, including bisphenols S, F, and AF. However, recent data suggest that all bisphenols can have endocrine disrupting effects, although their impacts remain unresolved particularly in non-human animals. Our aim was to establish the current state-of-knowledge of the effects of different bisphenols on circulating hormone levels in non-human animals. Our meta-analysis showed that a diverse range of hormones (including thyroid hormones, corticosterone, follicle stimulating hormone, luteinizing hormone, and estradiol) are strongly impacted by exposure to any bisphenol type, and that in laboratory rats (Rattus norvegicus) the effect was modified by life-stage. Although there were qualitative differences, BPA alternatives had as great or greater effects on hormone levels as BPA. However, data coverage across hormones was uneven, and most studies measured the effects of BPA on vertebrate reproductive hormones. Similarly, taxonomic coverage was poor. Over 80% of data originated from laboratory rats and zebrafish (Danio rerio) and there are no data for whole classes of invertebrates and vertebrates (e.g., amphibians). Our results show that all bisphenols alter circulating levels of a broad range of hormones. However, the current state-of-knowledge is incomplete so that the ecological impacts of bisphenols are difficult to gauge, although based on the available data bisphenols are likely to be detrimental to a broad range of taxa and ecosystems.
Collapse
Affiliation(s)
- Alexander M Rubin
- School Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
13
|
Earl AD, Kimmitt AA, Yorzinski JL. Circulating hormones and dominance status predict female behavior during courtship in a lekking species. Integr Comp Biol 2022; 62:9-20. [PMID: 35467712 DOI: 10.1093/icb/icac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Female competitive behaviors during courtship can have substantial fitness consequences yet we know little about the physiological and social mechanisms underlying these behaviors - particularly for females of polygynous lek mating species. We explored the hormonal and social drivers of female intersexual and intrasexual behavior during courtship by males in a captive population of Indian peafowl. We investigated whether (1) female non-stress induced circulating estradiol (E2) and corticosterone (CORT) levels or (2) female dominance status in a dyad predict female solicitation behavior. We also tested whether female circulating E2 and CORT predict dominant females' aggressive behaviors toward subordinate females in the courtship context. Our findings demonstrate that females with higher levels of circulating E2 as well as higher levels of circulating CORT solicit more courtships from males. Dominant females also solicit more courtships from males than subordinate females. Female intrasexual aggressive behaviors during courtship, however, were not associated with circulating levels of E2 or CORT. Overall, we conclude that circulating steroid hormones in conjunction with social dominance might play a role in mediating female behaviors associated with competition for mates. Experimental manipulation and measures of hormonal flexibility throughout the breeding season in relation to competitive and sexual behaviors will be necessary to further examine the link between hormonal mechanisms and female behavior in polygynous lekking systems.
Collapse
Affiliation(s)
- Alexis D Earl
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, 77843, USA.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, 10027, USA
| | - Abigail A Kimmitt
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jessica L Yorzinski
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
14
|
Midttun HLE, Øverli Ø, Tudorache C, Mayer I, Johansen IB. Non-invasive sampling of water-borne hormones demonstrates individual consistency of the cortisol response to stress in laboratory zebrafish (Danio rerio). Sci Rep 2022; 12:6278. [PMID: 35428763 PMCID: PMC9012867 DOI: 10.1038/s41598-022-10274-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoid (GC) stress hormones are well-known for their impact on phenotypic traits ranging from immune function to behaviour and cognition. For that reason, consistent aspects of an individual's physiological stress response (i.e. GC responsiveness) can predict major elements of life-history trajectory. Zebrafish (Danio rerio) emerge as a promising model to study such consistent trait correlations, including the development of individual stress coping styles, i.e. consistent associations between physiological and behavioral traits. However, consistency in GC responsiveness of this popular animal model remains to be confirmed. Such a study has so far been hampered by the small-bodied nature and insufficient blood volume of this species to provide repeated measurements of circulating GCs. Here, we adopted a technique that allows for repeated, non-invasive sampling of individual zebrafish by quantifying GCs from holding water. Our findings indicate consistency of the magnitude of post-stress GC production over several consecutive stress events in zebrafish. Moreover, water-borne GCs reflect individual variation in GC responsiveness with the strongest consistency seen in males.
Collapse
Affiliation(s)
- H L E Midttun
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ø Øverli
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - C Tudorache
- Institute for Biology, Leiden University, Leiden, The Netherlands
| | - I Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - I B Johansen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
15
|
Nagel R, Kaiser S, Stainfield C, Toscani C, Fox‐Clarke C, Paijmans AJ, Costa Castro C, Vendrami DLJ, Forcada J, Hoffman JI. Low heritability and high phenotypic plasticity of salivary cortisol in response to environmental heterogeneity in a wild pinniped. Ecol Evol 2022; 12:e8757. [PMID: 35356576 PMCID: PMC8956859 DOI: 10.1002/ece3.8757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Individuals are unique in how they interact with and respond to their environment. Correspondingly, unpredictable challenges or environmental stressors often produce an individualized response of the hypothalamic-pituitary-adrenal (HPA) axis and its downstream effector cortisol. We used a fully crossed, repeated measures design to investigate the factors shaping individual variation in baseline cortisol in Antarctic fur seal pups and their mothers. Saliva samples were collected from focal individuals at two breeding colonies, one with low and the other with high density, during two consecutive years of contrasting food availability. Mothers and pups were sampled concurrently at birth and shortly before weaning, while pups were additionally sampled every 20 days. We found that heritability was low for baseline cortisol, while within-individual repeatability and among-individual variability were high. A substantial proportion of the variation in baseline cortisol could be explained in pups and mothers by a combination of intrinsic and extrinsic factors including sex, weight, day, season, and colony of birth. Our findings provide detailed insights into the individualization of endocrine phenotypes and their genetic and environmental drivers in a wild pinniped. Furthermore, the strong associations between cortisol and life history traits that we report in fur seals could have important implications for understanding the population dynamics of species impacted by environmental change.
Collapse
Affiliation(s)
- Rebecca Nagel
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Sylvia Kaiser
- Department of Behavioural BiologyUniversity of MünsterMünsterGermany
| | | | | | | | | | | | | | | | - Joseph I. Hoffman
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
- British Antarctic SurveyCambridgeUK
| |
Collapse
|
16
|
Rimbach R, Hartman KJ, Currin C, Schradin C, Pillay N. Females of solitary- and group-living sister species of African striped mice show a similar social structure following experimentally imposed group-living. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03144-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Rystrom TL, Prawitt RC, Richter SH, Sachser N, Kaiser S. Repeatability of endocrine traits and dominance rank in female guinea pigs. Front Zool 2022; 19:4. [PMID: 35031061 PMCID: PMC8760769 DOI: 10.1186/s12983-021-00449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucocorticoids (e.g. cortisol) are associated with variation in social behavior, and previous studies have linked baseline as well as challenge-induced glucocorticoid concentrations to dominance status. It is known that cortisol response to an acute challenge is repeatable and correlates to social behavior in males of many mammal species. However, it is unclear whether these patterns are also consistent for females. The aim of this study was to investigate whether baseline and response cortisol concentrations are repeatable in female guinea pigs (Cavia aperea f. porcellus) and whether dominance rank is stable and correlated to baseline cortisol concentration and/or cortisol responsiveness. RESULTS Our results show that cortisol responsiveness (after 1 h: R = 0.635, 95% CI = 0.229, 0.927; after 2 h: R = 0.764, 95% CI = 0.433, 0.951) and dominance rank (R = 0.709, 95% CI = 0.316, 0.935) of females were significantly repeatable after six weeks but not correlated. Baseline cortisol was not repeatable (R = 0, 95% CI = 0, 0.690) and also did not correlate to dominance rank. Furthermore, the difference in repeatability estimates of baseline and response values was due to high within-individual variance of baseline cortisol concentration; the amount of between-individual variance was similar for baseline cortisol and the two measures of cortisol responsiveness. CONCLUSIONS Females occupying different dominance ranks did not have long-term differences in cortisol concentrations, and cortisol responsiveness does not seem to be significantly involved in the maintenance of dominance rank. Overall, this study reveals the remarkable stability of cortisol responsiveness and dominance rank in a female rodent, and it remains an open question whether the magnitude of cortisol responsiveness is adaptive in social contexts for females.
Collapse
Affiliation(s)
- Taylor L Rystrom
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149, Münster, Germany. .,Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149, Münster, Germany.
| | - Romy C Prawitt
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149, Münster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149, Münster, Germany.,Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149, Münster, Germany.,Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149, Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149, Münster, Germany.,Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149, Münster, Germany
| |
Collapse
|
18
|
Tapper S, Nocera JJ, Burness G. Body temperature is a repeatable trait in a free-ranging passerine bird. J Exp Biol 2021; 224:272129. [PMID: 34498672 DOI: 10.1242/jeb.243057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Body temperature (Tb) affects animal function through its influence on rates of biochemical and biophysical reactions, the molecular structures of proteins and tissues, and, ultimately, organismal performance. Despite its importance in driving physiological processes, there are few data on how much variation in Tb exists within populations of organisms, and whether this variation consistently differs among individuals over time (i.e. repeatability of a trait). Here, using thermal radio-frequency identification implants, we quantified the repeatability of Tb, both in the context of a fixed average environment (∼21°C) and across ambient temperatures (6-31°C), in a free-living population of tree swallows (Tachycineta bicolor, n=16). By experimentally trimming the ventral plumage of a subset of female swallows (n=8), we also asked whether the repeatability of Tb is influenced by the capacity to dissipate body heat. We found that both female and male tree swallow Tb was repeatable at 21°C (R=0.89-92), but female Tb was less repeatable than male Tb across ambient temperature (Rfemale=0.10, Rmale=0.58), which may be due to differences in parental investment. Trimmed birds had on average lower Tb than control birds (by ∼0.5°C), but the repeatability of female Tb did not differ as a function of heat dissipation capacity. This suggests that trimmed individuals adjusted their Tb to account for the effects of heat loss on Tb. Our study provides a first critical step toward understanding whether Tb is responsive to natural selection, and for predicting how animal populations will respond to climatic warming.
Collapse
Affiliation(s)
- Simon Tapper
- Environmental and Life Sciences Graduate Department, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| | - Joseph J Nocera
- Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, NB, Canada, E3B 5A3
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| |
Collapse
|
19
|
Medger K, Prins A, Lutermann H, Ganswindt A, Ganswindt SB, Bennett NC. Repeatability of daily profiles of baseline glucocorticoid metabolites measured in the urine and faeces of eastern rock sengis (Elephantulus myurus). Gen Comp Endocrinol 2021; 312:113857. [PMID: 34284023 DOI: 10.1016/j.ygcen.2021.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Repeatability of hormone concentrations is of great interest for studies investigating the evolution of hormonal traits. Particularly the repeatability of glucocorticoids (GCs) in response to a stressor is frequently investigated, but often only point (initial and/or response value), or single measures are used. A new method takes into account the entire individual hormone profile and generates an individual profile repeatability (PR) score. The method was developed for response profiles, but it may also be valuable for baseline values in species with diurnal changes in hormone concentrations. GCs are determined in a variety of matrices, and repeatability can vary considerably depending on the matrix. We investigated the repeatability of baseline GC metabolite (GCM) concentrations measured in urine (uGCM) and faeces (fGCM) of captive eastern rock sengis (Elephantulus myurus) using the more traditional linear mixed model approach and the PR method. GCMs were assessed over 24 h and measurements were repeated twice with two weeks between replicates. A diurnal rhythm in GCM concentrations associated with the activity period of the sengis was found in urine, but not in the faeces. Urinary GCM concentrations exhibited a moderate repeatability, whereas the repeatability of fGCM concentrations was low. Urinary GCM concentrations and their repeatability differed between the sexes; with higher concentrations and lower PR scores in females. No such sex differences were apparent for fGCM concentrations and the PR score was not able to characterise repeatability of fGCM concentrations, which were lacking a distinct profile. The PR score enabled a successful quantification of the repeatability of the diurnal uGCM profiles. Hormone profile, sex and sample matrix can affect hormonal traits considerably and the results may be obscured if these factors are not carefully considered.
Collapse
Affiliation(s)
- Katarina Medger
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - André Prins
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Heike Lutermann
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - André Ganswindt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Stefanie B Ganswindt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; SARChI Chair of Mammal Behavioural Ecology and Physiology, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
20
|
Baldan D, Negash M, Ouyang JQ. Are individuals consistent? Endocrine reaction norms under different ecological challenges. J Exp Biol 2021; 224:269204. [PMID: 34142697 DOI: 10.1242/jeb.240499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/21/2021] [Indexed: 12/29/2022]
Abstract
Quantifying organismal capacity for compensatory mechanisms is essential to forecast responses to environmental change. Despite accumulating evidence for individual variation in physiological plasticity, the causes and consequences of this variation remain unclear. An outstanding question is whether individual reaction norms are consistent across different environmental challenges, i.e. whether an individual that is responsive to one environmental variable will be equally responsive to a different environmental variable. Additionally, are these reaction norms themselves consistent over time, i.e. repeatable? Here, we quantified individual baseline glucocorticoid responses in house sparrows, Passer domesticus, to sequential manipulations of temperature, wind speed and food unpredictability that were repeated in discrete blocks of sampling under both control and stressor-exposed conditions. Individuals significantly decreased their baseline corticosterone levels and increased their mass during treatment exposure. This response was consistent across environmental challenge types. There was high repeatability in the intercept and slope of the baseline corticosterone reaction norm between environmental challenges but broad credible intervals in the repeatability of the reaction norm slope, suggesting that although glucocorticoid levels during baseline conditions are repeatable, among-individual variation in the shape of the glucocorticoid response may be higher than within-individual variation. Within-subject variation in baseline corticosterone levels was mainly explained by within-individual variation in body mass during stressor exposure. Despite the high lability in physiological traits, endocrine plasticity is repeatable across environmental challenges and may be able to evolve as a result of genetic accommodation, in which selection acts on genetic variation of reaction norms.
Collapse
Affiliation(s)
- Davide Baldan
- Department of Biology, University of Nevada, Reno, Reno, NV 89557-0314, USA
| | - Mekail Negash
- Department of Biology, University of Nevada, Reno, Reno, NV 89557-0314, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV 89557-0314, USA
| |
Collapse
|
21
|
Mitchell DJ, Beckmann C, Biro PA. Understanding the unexplained: The magnitude and correlates of individual differences in residual variance. Ecol Evol 2021; 11:7201-7210. [PMID: 34188806 PMCID: PMC8216950 DOI: 10.1002/ece3.7603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 01/11/2023] Open
Abstract
Behavioral and physiological ecologists have long been interested in explaining the causes and consequences of trait variation, with a focus on individual differences in mean values. However, the majority of phenotypic variation typically occurs within individuals, rather than among individuals (as indicated by average repeatability being less than 0.5). Recent studies have further shown that individuals can also differ in the magnitude of variation that is unexplained by individual variation or environmental factors (i.e., residual variation). The significance of residual variation, or why individuals differ, is largely unexplained, but is important from evolutionary, methodological, and statistical perspectives. Here, we broadly reviewed literature on individual variation in behavior and physiology, and located 39 datasets with sufficient repeated measures to evaluate individual differences in residual variance. We then analyzed these datasets using methods that permit direct comparisons of parameters across studies. This revealed substantial and widespread individual differences in residual variance. The magnitude of individual variation appeared larger in behavioral traits than in physiological traits, and heterogeneity was greater in more controlled situations. We discuss potential ecological and evolutionary implications of individual differences in residual variance and suggest productive future research directions.
Collapse
Affiliation(s)
- David J. Mitchell
- Centre for Integrative EcologySchool of Life & Environmental SciencesDeakin UniversityGeelongVICAustralia
- Department of Zoology/EthologyStockholm UniversityStockholmSweden
| | - Christa Beckmann
- Centre for Integrative EcologySchool of Life & Environmental SciencesDeakin UniversityGeelongVICAustralia
- School of Science and HealthWestern Sydney UniversityParramattaNSWAustralia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Peter A. Biro
- Centre for Integrative EcologySchool of Life & Environmental SciencesDeakin UniversityGeelongVICAustralia
| |
Collapse
|
22
|
Forsburg ZR, Guzman A, Gabor CR. Artificial light at night (ALAN) affects the stress physiology but not the behavior or growth of Rana berlandieri and Bufo valliceps. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116775. [PMID: 33639600 DOI: 10.1016/j.envpol.2021.116775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Artificial light at night (ALAN) alters the natural light dark patterns in ecosystems. ALAN can have a suite of effects on community structure and is a driver of evolutionary processes that influences a range of behavioral and physiological traits. Our understanding of possible effects of ALAN across species amphibians is lacking and research is warranted as ALAN could contribute to stress and declines of amphibian populations, particularly in urban areas. We tested the hypothesis that exposure to constant light or pulsed ALAN would physiologically stress Rio Grande leopard frog (Rana berlandieri) and Gulf Coast toad (Bufo valliceps) tadpoles. We reared tadpoles under constant or pulsed (on and off again) ALAN for 14 days and measured corticosterone release rates over time using a non-invasive water-borne hormone protocol. ALAN treatments did not affect behavior or growth. Tadpoles of both species had higher corticosterone (cort) release rates after 14 days of constant light exposure. Leopard frog tadpoles had lower cort release rates after exposure to pulsed ALAN while toad tadpoles had higher cort release rates. These results suggest that short-term exposure to constant or pulsed light at night may contribute to stress in tadpoles but that each species differentially modulated their cort response to ALAN exposure and a subsequent stressor. This flexibility in the upregulation and downregulation of hypothalamic-pituitary-interrenal axis response may indicate an alternative mechanism for diminishing the deleterious effects of chronic stress. Nonetheless, ALAN should be considered in management and conservation plans for amphibians.
Collapse
Affiliation(s)
- Zachery R Forsburg
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Alex Guzman
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| | - Caitlin R Gabor
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| |
Collapse
|
23
|
Mutwill AM, Schielzeth H, Zimmermann TD, Richter SH, Kaiser S, Sachser N. Individuality meets plasticity: Endocrine phenotypes across male dominance rank acquisition in guinea pigs living in a complex social environment. Horm Behav 2021; 131:104967. [PMID: 33862349 DOI: 10.1016/j.yhbeh.2021.104967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022]
Abstract
The time of dominance rank acquisition is a crucial phase in male life history that often affects reproductive success and hence fitness. Hormones such as testosterone and glucocorticoids can influence as well as be affected by this process. At the same time, hormone concentrations can show large individual variation. The extent to which such variation is repeatable, particularly in dynamic social settings, is a question of current interest. The aim of the present study was therefore to investigate how dominance rank and individual differences contribute to variance in hormone concentrations during male rank acquisition in a complex social environment. For this purpose, dominance rank as well as baseline testosterone, baseline cortisol, and cortisol responsiveness after exposure to a novel environment were determined in colony-housed guinea pig males from late adolescence through adulthood. Hormone-dominance relationships and repeatability of hormone measures beyond their relation to rank were assessed. There was a significant positive relationship between baseline testosterone and rank, but this link became weaker with increasing age. Baseline cortisol or cortisol responsiveness, in contrast, were not significantly related to dominance. Notably, all three endocrine parameters were significantly repeatable independent of dominance rank from late adolescence through adulthood. Baseline testosterone and cortisol responsiveness showed a significantly higher repeatability than baseline cortisol. This suggests that testosterone titres and cortisol responsiveness represent stable individual attributes even under complex social conditions.
Collapse
Affiliation(s)
- Alexandra M Mutwill
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburgerstr. 159, 07743 Jena, Germany
| | - Tobias D Zimmermann
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; Münster Graduate School of Evolution, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany
| |
Collapse
|
24
|
Costanzo A, Ambrosini R, Parolini M, Caprioli M, Secomandi S, Rubolini D, Fusani L, Canoine V. Telomere shortening is associated with corticosterone stress response in adult barn swallows. Curr Zool 2021; 68:93-101. [PMID: 35169632 PMCID: PMC8836332 DOI: 10.1093/cz/zoab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
When vertebrates face stressful events, the hypothalamic–pituitary–adrenal (HPA) axis is activated, generating a rapid increase in circulating glucocorticoid (GC) stress hormones followed by a return to baseline levels. However, repeated activation of HPA axis may lead to increase in oxidative stress. One target of oxidative stress is telomeres, nucleoprotein complexes at the end of chromosomes that shorten at each cell division. The susceptibility of telomeres to oxidizing molecules has led to the hypothesis that increased GC levels boost telomere shortening, but studies on this link are scanty. We studied if, in barn swallows Hirundo rustica, changes in adult erythrocyte telomere length between 2 consecutive breeding seasons are related to corticosterone (CORT) (the main avian GC) stress response induced by a standard capture-restraint protocol. Within-individual telomere length did not significantly change between consecutive breeding seasons. Second-year individuals showed the highest increase in circulating CORT concentrations following restraint. Moreover, we found a decline in female stress response along the breeding season. In addition, telomere shortening covaried with the stress response: a delayed activation of the negative feedback loop terminating the stress response was associated with greater telomere attrition. Hence, among-individual variation in stress response may affect telomere dynamics.
Collapse
Affiliation(s)
- Alessandra Costanzo
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Simona Secomandi
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Leonida Fusani
- Department of Behavioral and Cognitive Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Savoyenstr. 1a, 1160 Vienna, Austria
| | - Virginie Canoine
- Department of Behavioral and Cognitive Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
25
|
Taborsky B, English S, Fawcett TW, Kuijper B, Leimar O, McNamara JM, Ruuskanen S, Sandi C. Towards an Evolutionary Theory of Stress Responses. Trends Ecol Evol 2021; 36:39-48. [PMID: 33032863 DOI: 10.1016/j.tree.2020.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
All organisms have a stress response system to cope with environmental threats, yet its precise form varies hugely within and across individuals, populations, and species. While the physiological mechanisms are increasingly understood, how stress responses have evolved remains elusive. Here, we show that important insights can be gained from models that incorporate physiological mechanisms within an evolutionary optimality analysis (the 'evo-mecho' approach). Our approach reveals environmental predictability and physiological constraints as key factors shaping stress response evolution, generating testable predictions about variation across species and contexts. We call for an integrated research programme combining theory, experimental evolution, and comparative analysis to advance scientific understanding of how this core physiological system has evolved.
Collapse
Affiliation(s)
- Barbara Taborsky
- Behavioural Ecology Division, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Tim W Fawcett
- Centre for Research in Animal Behaviour (CRAB), University of Exeter, Exeter, UK
| | - Bram Kuijper
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK; Institute for Data Science and Artificial Intelligence, University of Exeter, Exeter, UK
| | - Olof Leimar
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | - Suvi Ruuskanen
- Department of Biology, University of Turku, Turku, Finland
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
26
|
Béziers P, Korner-Nievergelt F, Jenni L, Roulin A, Almasi B. Glucocorticoid levels are linked to lifetime reproductive success and survival of adult barn owls. J Evol Biol 2020; 33:1689-1703. [PMID: 32945025 DOI: 10.1111/jeb.13707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Abstract
Glucocorticoid hormones, such as corticosterone, are crucial in regulating daily life metabolism and energy expenditure, as well as promoting short-term physiological and behavioural responses to unpredictable environmental challenges. Therefore, glucocorticoids are considered to mediate trade-offs between survival and reproduction. Relatively little is known about how selection has shaped glucocorticoid levels. We used 15 years of capture-recapture and dead recovery data combined with 13 years of corticosterone and breeding success data taken on breeding barn owls (Tyto alba) to investigate such trade-offs. We found that survival was positively correlated with stress-induced corticosterone levels in both sexes, whereas annual and lifetime reproductive success (i.e. the sum of young successfully fledged during the entire reproductive career) was positively correlated with both baseline and stress-induced corticosterone levels in females only. Our results suggest that, in the barn owl, the stress-induced corticosterone response is a good proxy for adult survival and lifetime reproductive success. However, selection pressure appears to act differently on corticosterone levels of males and females.
Collapse
Affiliation(s)
- Paul Béziers
- Swiss Ornithological Institute, Sempach, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Lukas Jenni
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
27
|
Burns SM, Bonier F. A comparison of sex, morphology, physiology and behavior of black-capped chickadees trapped using two common capture methods. PeerJ 2020; 8:e10037. [PMID: 33024645 PMCID: PMC7518160 DOI: 10.7717/peerj.10037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/03/2020] [Indexed: 11/20/2022] Open
Abstract
Many biological studies require the capture of individuals for sampling, for example for measurement of morphological or physiological traits, or for marking individuals for later observations. Capture methods employed often vary both within and between studies, and these differing methods could be more or less effective in capture of different individuals based on their morphology or behavior. If individuals that are prone to capture by the selected method differ with respect to traits of interest, such sampling bias could generate misleading or simply inaccurate results. The selection of capture methods could introduce two different forms of sampling bias, with the individuals that are sampled differing from the population at large or with individuals sampled via one method differing from individuals that could be sampled using a different method. We investigated this latter form of sampling bias by comparing individual birds sampled using two common capture techniques. We caught free-ranging black-capped chickadees (Poecile atricapillus) using walk-in traps baited with seed and mist nets paired with playback of an audio stimulus (conspecific mobbing calls). We measured 18 traits that we expect might vary among birds that are trappable by these differing methods—one that targets birds that are food motivated and potentially less neophobic and another that targets birds that respond readily to a perceived predation risk. We found no differences in the sex, morphology, initial and stress-induced corticosterone concentrations, behavioral response to a novel object, or behavioral response to a predator between individuals captured by these two methods. Individual variation in the behavioral response to a novel object was greater among birds caught by mist nets, suggesting this method might provide a sample that better reflects population-level individual variation. We do not know if the birds caught by these two methods provide a representative sample of the population at large, but can conclude that selection of either of these two common capture methods can similarly sample mean trait values of a population of interest. To accurately assess individual variation, particularly in behavior, mist nets might be preferable.
Collapse
Affiliation(s)
- Sara M Burns
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Frances Bonier
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
28
|
Reiche AM, Hankele AK, Hess HD, Dohme-Meier F, Ulbrich SE. The ACTH challenge and its repeatability in fattening bulls-influences of physiological state, challenge time standardization, and horn status. Domest Anim Endocrinol 2020; 72:106360. [PMID: 32361420 DOI: 10.1016/j.domaniend.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/07/2019] [Accepted: 03/09/2019] [Indexed: 11/21/2022]
Abstract
Adrenocorticotropic hormone (ACTH) challenges are frequently performed in repetition when evaluating stress or welfare in animals. To our knowledge, the repeatability of ACTH challenges in cattle, although fundamental to further studies of this type, has not yet been the subject of research. Therefore, the objective of this study was to evaluate the repeatability of ACTH challenges in fattening bulls of different horn status. Eight-one bulls were subjected to 3 consecutive ACTH challenges. The first challenge (C1) was performed in calves aged 1.5 mo. Subsequently, animals were characterized as high or low cortisol responders and either disbudded or left with horns. They were then assigned to 1 of 3 rearing groups: a horned group (H+), a disbudded group (H-), and a mixed group (M; 50% horned and 50% disbudded), with each group containing an equal number of high and low responders. The second ACTH challenge (C2) was performed at the age of 11 mo. Time of day (TOD) of challenge was either fixed (ST = same TOD) or alternated (AT = alternate TOD) between C1 and C2. The third ACTH challenge (C3) was performed 7 d after and at the same TOD as C2. Saliva samples were taken 60 and 30 min before and 30, 60, 90, 120, and 150 min after each intravenous ACTH injection. The area under the curve (AUC) was calculated with respect to both ground (AUCG) and to increase (AUCI). The AUCI increased markedly between C1 and C2 (P < 0.05) in ST bulls, and no effects were observed for AUCG between C1 and C2 in ST or AT bulls, nor for any AUC between C2 and C3 (P > 0.1). The overall repeatability of AUCG and AUCI between C1 and C2, reflecting the repeatability between 2 different physiological states, was poor and moderate, respectively, for ST bulls (AUCG: r = 0.24, P > 0.1, intraclass correlation coefficient (ICC) = 0.21; AUCI: r = 0.48, P < 0.01, ICC = 0.41) and lacked in AT bulls (AUCG: r = 0.07, P > 0.1; ICC = 0.03; AUCI: r = 0.08, P > 0.1, ICC = 0.06). The repeatability of AUCG and AUCI between C2 and C3, reflecting the repeatability within the same physiological state, was moderate (AUCG: r = 0.59, P < 0.001; ICC = 0.53; AUCI: r = 0.58, P < 0.001, ICC = 0.52). Assignment to high and low responder groups based on peak cortisol concentration in C1 did not persist over time. H+ bulls showed higher AUCI in C2 and C3 (P < 0.1 and P < 0.05, respectively) than H- bulls. The M group differed from the H- group only in C3 (P < 0.05). Thus, the effect of horn status on ACTH challenges needs further investigation. In conclusion, our results report poor repeatability of the cortisol response to ACTH challenges for challenges performed in different physiological states and moderate repeatability for challenges performed within the same physiological state. Moreover, they point out the importance of standardization of TOD when performing repeated ACTH challenge.
Collapse
Affiliation(s)
- A-M Reiche
- Agroscope, Ruminant Research Unit, Posieux, Switzerland; ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| | - A-K Hankele
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - H D Hess
- Agroscope, Ruminant Research Unit, Posieux, Switzerland
| | - F Dohme-Meier
- Agroscope, Ruminant Research Unit, Posieux, Switzerland
| | - S E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
29
|
Bell AM. Individual variation and the challenge hypothesis. Horm Behav 2020; 123:104549. [PMID: 31247185 PMCID: PMC6980443 DOI: 10.1016/j.yhbeh.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
In this paper I discuss how the challenge hypothesis (Wingfield et al., 1990) influenced the development of ideas about animal personality, and describe particularly promising areas for future study at the intersection of these two topics. I argue that the challenge hypothesis influenced the study of animal personality in at least three specific ways. First, the challenge hypothesis drew attention to the ways in which the environment experienced by an organism - including the social environment - can influence biological processes internal to the organism, e.g. changes to physiology, gene expression, neuroendocrine state and epigenetic modifications. That is, the challenge hypothesis illustrated the bidirectional, dynamic relationship between hormones and (social) environments, thereby helping us to understand how behavioral variation among individuals can emerge over time. Because the paper was inspired by data collected on free living animals in natural populations, it drew behavioral ecologists' attention to this phenomenon. Second, the challenge hypothesis highlighted what became a paradigmatic example of a hormonal mechanism for a behavioral spillover, i.e. testosterone's pleiotropic effects on both territorial aggression and parental care causes aggression to "spillover" to influence parenting behavior, thereby limiting behavioral plasticity. Third, the challenge hypothesis contributed to what is now a cottage industry examining individual differences in hormone titres and their relationship with behavioral variation. I argue that one particularly promising future research direction in this area is to consider the active role of behavior and behavioral types in eliciting social interactions, including territorial challenges.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, Carl R. Woese Institute for Genomic Biology, Program in Ecology, Evolution and Conservation, Neuroscience Program, University of Illinois, Urbana Champaign, United States of America.
| |
Collapse
|
30
|
Grant AR, Baldan D, Kimball MG, Malisch JL, Ouyang JQ. Across time and space: Hormonal variation across temporal and spatial scales in relation to nesting success. Gen Comp Endocrinol 2020; 292:113462. [PMID: 32171744 PMCID: PMC7187986 DOI: 10.1016/j.ygcen.2020.113462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 12/30/2022]
Abstract
There is a renewed interest in investigating individual variation in hormone levels in relation to fitness metrics, as hormones act as mediators of life-history trade-offs. Hormone concentrations, however, are labile, responding to both internal and external stimuli, so the relationship between hormones and fitness can be non-consistent. One explanation of this inconsistent relationship is that a single hormone sample may not be representative of individual phenotypes in a free-living species. We addressed this issue by repeatedly sampling a free-living population of mountain white-crowned sparrows, Zonotrichia leucophrys oriantha, for baseline and stress-induced corticosterone (cort) and testosterone (T) across different stages of the breeding season. We measured (co)variation using three different methods, taking into account inter- and intra-individual variances, to determine whether hormone levels and the stress response are repeatable. We documented the temporal (over 3 months) and spatial (home-range) variation of individual hormone phenotypes and investigated how these components related to nesting success. At the population level, we found significant repeatability in male stress-induced cort concentrations but no repeatability in male or female baseline cort or male T concentrations. Using a new metric of intra-individual variance focusing on the stress response (profile repeatability), we found a wide range of variance scores, with most individuals showing high variation in their stress response. Similarly, we found a low level of repeatability of the reaction norm intercept and slope for the stress response across different life-history stages. Males with higher concentrations of stress-induced cort had more central home-ranges. Males with higher body condition had larger home-ranges; however, home-range size did not relate to male hormone concentrations or nesting success. We also did not find any significant relationship between variation in hormone levels and nesting success. We recommend that future studies combine both physiological and environmental components to better understand the relationship between hormones and fitness.
Collapse
Affiliation(s)
- Avery R Grant
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
| | - Davide Baldan
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Melanie G Kimball
- Department of Biology, St. Mary's College of Maryland, St. Marys City, MD, USA
| | - Jessica L Malisch
- Department of Biology, St. Mary's College of Maryland, St. Marys City, MD, USA
| | - Jenny Q Ouyang
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| |
Collapse
|
31
|
Thompson MJ, Pearse KA, Foote JR. Seasonal and diel plasticity of song type use in individual ovenbirds (
Seiurus aurocapilla). Ethology 2020. [DOI: 10.1111/eth.13040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Bowers EK, Thompson CF, Bowden RM, Sakaluk SK. Posthatching Parental Care and Offspring Growth Vary with Maternal Corticosterone Level in a Wild Bird Population. Physiol Biochem Zool 2020; 92:496-504. [PMID: 31393208 DOI: 10.1086/705123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Corticosterone is the primary metabolic steroid in birds and is vital for maintaining homeostasis. However, the relationship between baseline corticosterone and reproduction is unclear, and we lack an understanding of how differences in baseline corticosterone at one stage of the breeding cycle influence reproductive effort at later stages. In a wild population of house wrens, we quantified the concentration of corticosterone in yolks of freshly laid eggs as an integrated measure of maternal physiology and related this to a behavioral measure of stress reactivity made during the nestling period, namely, the latency with which females resumed parental activities following a standardized disturbance at their nest (setting up a camera to record provisioning). Females that recently produced eggs containing higher corticosterone concentrations, which were significantly repeatable within females, took longer to resume activity related to parental care (i.e., feeding and brooding young) following the disturbance. Moreover, a female's latency to resume parental activities negatively predicted her provisioning of nestlings with food and the condition of these young at fledging but did not predict the number fledged. We cross-fostered offspring prior to hatching so these effects on maternal behavior are independent of any prenatal maternal effects on nestlings via the egg. These results are consistent with earlier findings, suggesting that females with higher baseline corticosterone during egg laying or early incubation tend to prioritize self-maintenance over reproduction compared with females with lower baseline corticosterone and suggest that a female's latency to return to her nest and resume parental care following a disturbance might represent a simple, functional measure of maternal stress reactivity.
Collapse
|
33
|
Palma A, Blas J, Tella JL, Cabezas S, Marchant TA, Carrete M. Differences in adrenocortical responses between urban and rural burrowing owls: poorly-known underlying mechanisms and their implications for conservation. CONSERVATION PHYSIOLOGY 2020; 8:coaa054. [PMID: 32665848 PMCID: PMC7336563 DOI: 10.1093/conphys/coaa054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 08/08/2019] [Accepted: 06/17/2020] [Indexed: 05/10/2023]
Abstract
The hypothalamus-pituitary-adrenal/interrenal (HPA) axis of vertebrates integrates external information and orchestrates responses to cope with energy-demanding and stressful events through changes in circulating glucocorticoid levels. Urbanization exposes animals to a wide variety of ever-changing stimuli caused by human activities that may affect local wildlife populations. Here, we empirically tested the hypothesis that urban and rural owls (Athene cunicularia) show different adrenocortical responses to stress, with urban individuals showing a reduced HPA-axis response compared to rural counterparts to cope with the high levels of human disturbance typical of urban areas. We applied a standard capture-restraint protocol to measure baseline levels and stress-induced corticosterone (CORT) responses. Urban and rural owls showed similar circulating baseline CORT levels. However, maximum CORT levels were attained earlier and were of lower magnitude in urban compared to rural owls, which showed a more pronounced and long-lasting response. Variability in CORT responses was also greater in rural owls and contained the narrower variability displayed by urban ones. These results suggest that only individuals expressing low-HPA-axis responses can thrive in cities, a pattern potentially mediated by three alternative and non-exclusive hypotheses: phenotypic plasticity, natural selection and matching habitat choice. Due to their different conservation implications, we recommend further research to properly understand wildlife responses to humans in an increasingly urbanized world.
Collapse
Affiliation(s)
- Antonio Palma
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
- Corresponding author: Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain.
| | - Julio Blas
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
- Department of Biology, University of Saskatchewan, S7N 5E2 Saskatoon, Saskatchewan, Canada
| | - José L Tella
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
| | - Sonia Cabezas
- Department of Biology, University of Saskatchewan, S7N 5E2 Saskatoon, Saskatchewan, Canada
| | - Tracy A Marchant
- Department of Biology, University of Saskatchewan, S7N 5E2 Saskatoon, Saskatchewan, Canada
| | - Martina Carrete
- Department of Conservation Biology, Estación Biológica de Doñana (EBD-CSIC), 41092 Seville, Spain
- Departament of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide (UPO), 41013 Seville, Spain
| |
Collapse
|
34
|
Carbillet J, Rey B, Lavabre T, Chaval Y, Merlet J, Débias F, Régis C, Pardonnet S, Duhayer J, Gaillard JM, Hewison AJM, Lemaître JF, Pellerin M, Rannou B, Verheyden H, Gilot-Fromont E. The neutrophil to lymphocyte ratio indexes individual variation in the behavioural stress response of wild roe deer across fluctuating environmental conditions. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2755-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Mitchell DJ, Dujon AM, Beckmann C, Biro PA. Temporal autocorrelation: a neglected factor in the study of behavioral repeatability and plasticity. Behav Ecol 2019. [DOI: 10.1093/beheco/arz180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Quantifying individual variation in labile physiological or behavioral traits often involves repeated measures through time, so as to test for consistency of individual differences (often using repeatability, “R”) and/or individual differences in trendlines over time. Another form of temporal change in behavior is temporal autocorrelation, which predicts observations taken closely together in time to be correlated, leading to nonrandom residuals about individual temporal trendlines. Temporal autocorrelation may result from slowly changing internal states (e.g., hormone or energy levels), leading to slowly changing behavior. Autocorrelation is a well-known phenomenon, but has been largely neglected by those studying individual variation in behavior. Here, we provide two worked examples which show substantial temporal autocorrelation (r > 0.4) is present in spontaneous activity rates of guppies (Poecilia reticulata) and house mice (Mus domesticus) in stable laboratory conditions, even after accounting for temporal plasticity of individuals. Second, we show that ignoring autocorrelation does bias estimates of R and temporal reaction norm variances upwards, both in our worked examples and in separate simulations. This bias occurs due to the misestimation of individual-specific means and slopes. Given the increasing use of technologies that generate behavioral and physiological data at high sampling rates, we can now study among- and within-individual changes in behavior in more detailed ways, including autocorrelation, which we discuss from biological and methodological perspectives and provide recommendations and annotated R code to help researchers implement these models on their data.
Collapse
Affiliation(s)
- David J Mitchell
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong VIC 3216, Australia
- Department of Zoology/Ethology, Stockholm University, Svante Arrheniusväg 18B. SE-10691, Stockholm, Sweden
| | - Antoine M Dujon
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong VIC 3216, Australia
| | - Christa Beckmann
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong VIC 3216, Australia
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peter A Biro
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong VIC 3216, Australia
| |
Collapse
|
36
|
Forsburg ZR, Goff CB, Perkins HR, Robicheaux JA, Almond GF, Gabor CR. Validation of water-borne cortisol and corticosterone in tadpoles: Recovery rate from an acute stressor, repeatability, and evaluating rearing methods. Gen Comp Endocrinol 2019; 281:145-152. [PMID: 31199927 DOI: 10.1016/j.ygcen.2019.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 06/10/2019] [Indexed: 12/23/2022]
Abstract
Amphibian populations are declining globally, so understanding how individuals respond to anthropogenic and environmental stressors may aid conservation efforts. Using a non-invasive water-borne hormone assay, we measured the release rates of two glucocorticoid hormones, corticosterone and cortisol, in Rio Grande Leopard frog, Rana berlandieri, tadpoles. We validated this method pharmacologically and biologically using an adrenocorticotropic hormone (ACTH) challenge, exposure to exogenous corticosterone, and an agitation test. We calculated the repeatability of hormone release rates, the recovery time from an acute stressor, and explored rearing methods for tadpoles. Tadpole corticosterone release rates increased following an ACTH challenge, exposure to exogenous corticosterone, and agitation, validating the use of water-borne hormone methods in this species. After exposure to an acute stressor via agitation, corticosterone release rates began to decline after 2 h and were lowest after 6 h, suggesting a relatively rapid recovery from an acute stressor. Tadpoles reared in groups had higher corticosterone release rates than tadpoles reared individually, and lost mass by Day 7, while tadpoles reared individually did not show a stress response, therefore either rearing method is viable, but have differing physiological costs for tadpoles. Repeatability of corticosterone release rates was moderate to high in R. berlandieri tadpoles, indicating that this species can show a response to selection and potentially respond to rapid environmental change. Our results show that the water-borne hormone assay is a viable way to measure glucocorticoids in this species and is useful in the field of conservation physiology for rare and endangered species.
Collapse
Affiliation(s)
- Zachery R Forsburg
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States.
| | - Cory B Goff
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States
| | - Hannah R Perkins
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States
| | - Joseph A Robicheaux
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States
| | - Grayson F Almond
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States
| | - Caitlin R Gabor
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States
| |
Collapse
|
37
|
Hammond TT, Vo M, Burton CT, Surber LL, Lacey EA, Smith JE. Physiological and behavioral responses to anthropogenic stressors in a human-tolerant mammal. J Mammal 2019. [DOI: 10.1093/jmammal/gyz134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
As humans continue to alter natural habitats, many wild animals are facing novel suites of environmental stimuli. These changes, including increased human–wildlife interactions, may exert sublethal impacts on wildlife such as alterations in stress physiology and behavior. California ground squirrels (Otospermophilus beecheyi) occur in human-modified as well as more pristine environments, where they face a variety of anthropogenic and naturally occurring threats. This makes this species a valuable model for examining the effects of diverse challenges on the physiology and behavior of free-living mammals. To explore potential sublethal effects of habitat modification on O. beecheyi, we compared body masses, behaviors, and fecal glucocorticoid metabolite (FGM) levels for free-living squirrels in human-disturbed versus undisturbed habitats. Prior to these analyses, we validated the use of FGMs in this species by exposing captive O. beecheyi to pharmacological and handling challenges; both challenges produced significant increases in FGMs in the study animals. While FGM responses were repeatable within captive individuals, responses by free-living animals were more variable, perhaps reflecting a greater range of life-history traits and environmental conditions within natural populations of squirrels. Animals from our human-disturbed study site had significantly higher FGMs, significantly lower body masses, and were significantly less behaviorally reactive to humans than those from our more pristine study site. Thus, despite frequent exposure of California ground squirrels to human impacts, anthropogenic stressors appear to influence stress physiology and other phenotypic traits in this species. These findings suggest that even human-tolerant mammalian species may experience important sublethal consequences due to human modifications of natural habitats.
Collapse
Affiliation(s)
- Talisin T Hammond
- San Diego Zoo Institute for Conservation Research, Escondido, CA, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | - Minnie Vo
- Biology Department, Mills College, Oakland, CA, USA
| | | | | | - Eileen A Lacey
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
38
|
Santicchia F, Wauters LA, Dantzer B, Westrick SE, Ferrari N, Romeo C, Palme R, Preatoni DG, Martinoli A. Relationships between personality traits and the physiological stress response in a wild mammal. Curr Zool 2019; 66:197-204. [PMID: 32440278 PMCID: PMC7233610 DOI: 10.1093/cz/zoz040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
Glucocorticoids (GCs) are involved in the regulation of an animal's energetic state. Under stressful situations, they are part of the neuroendocrine response to cope with environmental challenges. Animals react to aversive stimuli also through behavioral responses, defined as coping styles. Both in captive and wild populations, individuals differ in their behavior along a proactive-reactive continuum. Proactive animals exhibit a bold, active-explorative and social personality, whereas reactive ones are shy, less active-explorative and less social. Here, we test the hypothesis that personality traits and physiological responses to stressors covary, with more proactive individuals having a less pronounced GC stress response. In wild populations of invasive gray squirrels Sciurus carolinensis, we measured fecal glucocorticoid metabolites (FGMs), an integrated measure of circulating GCs, and 3 personality traits (activity, sociability, and exploration) derived from open field test (OFT) and mirror image stimulation (MIS) test. Gray squirrels had higher FGMs in Autumn than in Winter and males with scrotal testes had higher FGMs than nonbreeding males. Personality varied with body mass and population density. Squirrels expressed more activity-exploration at higher than at lower density and heavier squirrels had higher scores for activity-exploration than animals that weighed less. Variation in FGM concentrations was not correlated with the expression of the 3 personality traits. Hence, our results do not support a strong association between the behavioral and physiological stress responses but show that in wild populations, where animals experience varying environmental conditions, the GC endocrine response and the expression of personality are uncorrelated traits among individuals.
Collapse
Affiliation(s)
- Francesca Santicchia
- Department of Theoretical and Applied Sciences, Environment Analysis and Management Unit - Guido Tosi Research Group - Università degli Studi dell'Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| | - Lucas A Wauters
- Department of Theoretical and Applied Sciences, Environment Analysis and Management Unit - Guido Tosi Research Group - Università degli Studi dell'Insubria, Via J. H. Dunant 3, 21100 Varese, Italy.,Department of Biology, Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ben Dantzer
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, MI 48109, USA
| | - Sarah E Westrick
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
| | - Nicola Ferrari
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy.,Centro di Ricerca Coordinata Epidemiologia e Sorveglianza Molecolare delle Infezioni, Università degli Studi di Milano, Milano, Italy
| | - Claudia Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Celoria 10, 20133 Milano, Italy
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Damiano G Preatoni
- Department of Theoretical and Applied Sciences, Environment Analysis and Management Unit - Guido Tosi Research Group - Università degli Studi dell'Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| | - Adriano Martinoli
- Department of Theoretical and Applied Sciences, Environment Analysis and Management Unit - Guido Tosi Research Group - Università degli Studi dell'Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
39
|
Montreuil-Spencer C, Schoenemann K, Lendvai ÁZ, Bonier F. Winter corticosterone and body condition predict breeding investment in a nonmigratory bird. Behav Ecol 2019. [DOI: 10.1093/beheco/arz129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Reproduction is an energetically demanding life history stage that requires costly physiological and behavioral changes, yet some individuals will invest more into reproduction and breed more successfully than others. To understand variation in reproductive investment, previous studies have evaluated factors during breeding, but conditions outside of this life history stage may also play a role. Using a free-ranging population of black-capped chickadees (Poecile atricapillus), we assessed the repeatability of plastic traits relating to energetic condition (circulating initial corticosterone concentrations and body condition) during the nonbreeding season and evaluated whether these traits predicted reproductive investment in the subsequent breeding season. We found that initial corticosterone concentrations and an index of body condition, but not fat score, were moderately repeatable over a 1-week period in winter. This trait repeatability supports the interpretation that among-individual variation in these phenotypic traits could reflect an intrinsic strategy to cope with challenging conditions across life history stages. We found that females with larger fat reserves during winter laid eggs sooner and tended to spend more time incubating their eggs and feeding their offspring. In contrast, we found that females with higher residual body mass delayed breeding, after controlling for the relationship between fat score and timing of breeding. Additionally, females with higher initial corticosterone in winter laid lighter eggs. Our findings suggest that conditions experienced outside of the breeding season may be important factors explaining variation in reproductive investment.
Collapse
Affiliation(s)
| | - Kelsey Schoenemann
- Biology Department, Queen’s University, Kingston, ON, Canada
- Virginia Working Landscapes, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1. Debrecen, Hungary
- Department of Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Frances Bonier
- Biology Department, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
40
|
Ouyang JQ, Baldan D, Munguia C, Davies S. Genetic inheritance and environment determine endocrine plasticity to urban living. Proc Biol Sci 2019; 286:20191215. [PMID: 31362633 DOI: 10.1098/rspb.2019.1215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As urban areas continue to expand globally, understanding how and why species respond to novel habitats becomes increasingly important. Knowledge of the mechanisms behind observed phenotypic changes in urban animals will enable us to better evaluate the impact of urbanization on current and future generations of wildlife. Physiological changes, such as those involved in the endocrine stress response, may allow individuals to inhabit and thrive in urbanized areas, but it is currently unknown how these changes arise in natural populations. In this study, we performed a four-way cross-foster experiment in free-living house wren chicks, Troglodytes aedon, to disentangle whether differences in baseline corticosterone between urban and rural individuals are a result of genetic and/or plastic mechanisms during development. We found that urban chicks already had higher corticosterone levels than their rural counterparts on the day they hatched, which suggests a possible genetic component to the corticosterone phenotype. However, rural offspring that were moved to an urban environment significantly increased their corticosterone levels, mimicking those of urban offspring. Our findings suggest that, although differences in baseline corticosterone concentrations between urban and rural individuals may have a genetic component, plasticity plays a pivotal role and can modify the corticosterone phenotype in response to the environment experienced in the first two weeks of life.
Collapse
Affiliation(s)
- Jenny Q Ouyang
- Department of Biology, University of Nevada, 1664 N Virginia Street, Reno, NV 89557, USA
| | - Davide Baldan
- Department of Biology, University of Nevada, 1664 N Virginia Street, Reno, NV 89557, USA
| | - Crystal Munguia
- Department of Biology, University of Nevada, 1664 N Virginia Street, Reno, NV 89557, USA
| | - Scott Davies
- Department of Biology, University of Nevada, 1664 N Virginia Street, Reno, NV 89557, USA.,Department of Biological Sciences, Quinnipiac University, Hamden, CT, USA
| |
Collapse
|
41
|
Prasher S, Thompson MJ, Evans JC, El-Nachef M, Bonier F, Morand-Ferron J. Innovative consumers: ecological, behavioral, and physiological predictors of responses to novel food. Behav Ecol 2019. [DOI: 10.1093/beheco/arz067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractConsumer innovation, that is, the acquisition and consumption of novel food types, has received little attention, despite its predominance among animal innovations and its potential implications for the ecology and evolution of species in a changing world. Results of the few studies that have investigated individual responses to novel foods suggest that various ecological, behavioral, and physiological variables may affect individual propensity for consumer innovation, but further work is needed to clarify these relationships. We investigated whether urbanization, social rank, exploratory personality, and baseline levels of corticosterone predict food neophobia and consumer innovation responses of wild-caught black-capped chickadees (N = 170) from 14 sites along an urbanization gradient. Our analyses do not support a link between food neophobia or consumer innovation and urbanization, dominance, or exploratory personality. However, birds with higher levels of baseline corticosterone were quicker to contact novel food types, and more likely to consume novel foods than individuals with lower levels of the hormone. This finding suggests that physiological states that promote foraging behavior might drive individual responses to novel food. Additionally, we found that chickadees tested later in autumn were less neophobic than those tested earlier in the season, perhaps reflecting seasonal changes in food availability. Together, the ability of baseline corticosterone and date of capture to predict responses to novel food suggest that necessity may drive consumer innovation in chickadees.
Collapse
Affiliation(s)
- Sanjay Prasher
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Megan J Thompson
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Julian C Evans
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael El-Nachef
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Frances Bonier
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | | |
Collapse
|
42
|
Sarpong K, Madliger CL, Harris CM, Love OP, Doucet SM, Bitton PP. Baseline corticosterone does not reflect iridescent plumage traits in female tree swallows. Gen Comp Endocrinol 2019; 270:123-130. [PMID: 30392885 DOI: 10.1016/j.ygcen.2018.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/03/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023]
Abstract
The production of high quality secondary sexual traits can be constrained by trade-offs in the allocation of energy and nutrients with other metabolic activities, and is mediated by physiological processes. In birds, the factors influencing male plumage quality have been well studied; however, factors affecting female plumage quality are poorly understood. Furthermore, it remains uncertain which physiological traits mediate the relationship between body condition and ornaments. In this three-year study of after-second-year female tree swallows (Tachycineta bicolor), we investigated (1) the relationship between baseline corticosterone near the end of the brood-rearing period (CORTBR) and feather colour characteristics (hue, saturation, brightness) the following year, and (2) the relationship between baseline corticosterone measured during incubation (CORTI) and brood rearing (CORTBR), and feather colour in the same year. To control for reproductive effort, we included reproductive parameters as covariates in all analyses. In this first study between CORT and the plumage colour characteristics of a species bearing iridescent feathers, we did not find any relationship between CORTBR and the colour of subsequently-produced feathers, nor did we find any relationship between CORT and the colour of feathers displayed during that breeding season. If CORT levels at the end of breeding carry over to influence the immediately subsequent moult period as we expect, our results generally indicate that structural plumage quality may not be as sensitive to circulating CORT levels compared to carotenoid-based colouration. Future studies, particularly those employing experimental manipulations of CORT during moult in species with iridescent traits, are necessary to fully determine the role glucocorticoids play in mediating the quality of secondary sexual characteristics.
Collapse
Affiliation(s)
- Keneth Sarpong
- Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Christine L Madliger
- Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Christopher M Harris
- Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Oliver P Love
- Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Stéphanie M Doucet
- Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Pierre-Paul Bitton
- Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
43
|
Endocrine and immune responses of larval amphibians to trematode exposure. Parasitol Res 2018; 118:275-288. [DOI: 10.1007/s00436-018-6154-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022]
|
44
|
Fanson KV, Biro PA. Meta-analytic insights into factors influencing the repeatability of hormone levels in agricultural, ecological, and medical fields. Am J Physiol Regul Integr Comp Physiol 2018; 316:R101-R109. [PMID: 30427725 DOI: 10.1152/ajpregu.00006.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Interest in individual variation in hormone concentrations is rapidly increasing, particularly with regard to the evolutionary and practical implications. A key aspect of studying individual variation in any labile trait is estimating the degree of within- versus among-individual variation, but at present, we do not have a broad consensus on the extent to which hormone levels are repeatable and what factors might influence repeatability. To address this knowledge gap, we conducted a comprehensive meta-analysis of hormone levels that included 1,132 estimates of repeatability from 368 studies across three fields of study: agriculture, ecology, and medicine. We assessed the influence of sex, age class, sample type, hormone family, type of hormone measure, assay type, number of subjects, number of samples per subject, and sampling interval on repeatability estimates. Overall mean repeatability was 0.58, but estimates differed substantially among study disciplines, being lowest in ecology (0.34), moderate in agriculture (0.52), and relatively high in medicine (0.68). In addition, repeatability decreased slightly as sampling interval increased, and also tended to be higher for peak hormone levels than baseline levels. Overall, hormone levels are moderately repeatable, suggesting that they can potentially be useful indicators of individual variation. However, estimates of repeatability are quite variable among fields, so caution should be used when relying on single samples to assess individual variation.
Collapse
Affiliation(s)
- Kerry V Fanson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia.,Department of Ecology, Environment and Evolution, La Trobe University , Bundoora , Australia
| | - Peter A Biro
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| |
Collapse
|
45
|
Weimer SL, Wideman RF, Scanes CG, Mauromoustakos A, Christensen KD, Vizzier-Thaxton Y. An evaluation of methods for measuring stress in broiler chickens. Poult Sci 2018; 97:3381-3389. [DOI: 10.3382/ps/pey204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/06/2018] [Indexed: 11/20/2022] Open
|
46
|
Acker M, Mastromonaco G, Schulte-Hostedde AI. The effects of body region, season and external arsenic application on hair cortisol concentration. CONSERVATION PHYSIOLOGY 2018; 6:coy037. [PMID: 30018762 PMCID: PMC6041973 DOI: 10.1093/conphys/coy037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/25/2018] [Accepted: 06/28/2018] [Indexed: 05/31/2023]
Abstract
Hair cortisol analysis has been used to quantify hormone levels in circulation in several mammal species. Hair remains stable for decades or centuries, allowing researchers to use archived hair samples to investigate hormone levels that span long time periods. However, several studies have found that intra-individual variability, driven by the body region from which a sample is derived, confounds measurements of systemic glucocorticoid hormone concentrations. In addition, the external application of chemical agents to hair can remove or concentrate molecules of interest. These may preclude the use of samples that have been collected opportunistically and/or those that have been housed in museum collections. Using a captive population of Vancouver Island marmots (Marmota vancouverensis), we found a strong effect of body region on the concentration of cortisol within hair, as well as an effect of season. Using a collection of American mink (Neovison vison) pelts, we found that application of the preservative arsenic in the form of a soap does not cause a significant decrease in cortisol. The marmot results suggest that intra-individual variability is not stable through time. The reason for these seasonal effects is not clear and further study is necessary. Researchers using samples from an unknown body region should exercise caution in interpreting their results. The mink results suggest that samples held in museum collections can be used to quantify cortisol, even when arsenic preservation is suspected.
Collapse
Affiliation(s)
- Madison Acker
- Department of Biology, Laurentian University, 935 Ramsey Lake Rd., Sudbury, Ontario, Canada
| | - Gabriela Mastromonaco
- Reproductive Physiology, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|
47
|
Guindre-Parker S. The Evolutionary Endocrinology of Circulating Glucocorticoids in Free-Living Vertebrates: Recent Advances and Future Directions across Scales of Study. Integr Comp Biol 2018; 58:814-825. [DOI: 10.1093/icb/icy048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Sarah Guindre-Parker
- Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|