1
|
Sun C, Xiao K, He Y, Li X. Common mechanisms of Wumei pills in treating ulcerative colitis and type 2 diabetes: Exploring an integrative approach through network pharmacology. Medicine (Baltimore) 2024; 103:e37094. [PMID: 38277529 PMCID: PMC10817042 DOI: 10.1097/md.0000000000037094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024] Open
Abstract
Wumei pills (WMP), a classical Chinese herbal formula, have shown efficacy in the treatment of ulcerative colitis (UC) and type 2 diabetes (T2DM). However, the underlying mechanisms by which WMP simultaneously targets these distinct diseases remain unclear. In this study, a network pharmacology approach was employed to unravel the potential molecular mechanisms of WMP in UC and T2DM treatment. This analysis provides a bioinformatics foundation for the traditional Chinese medicine concept of "treating different diseases with the same treatment." WMP was found to contain 65 active components, including flavonoids, sterols, and alkaloids, that act on 228 shared targets for UC and T2DM. Network analysis identified 5 core compounds (Quercetin, Kaempferol, beta-Sitosterol, Isocorypalmine, Stigmasterol) and 8 core proteins (AKT1, ESR1, TP53, IL6, JUN, MYC, TNF, EGFR) that play pivotal roles in the treatment of UC and T2DM by WMP. WMP exerts its therapeutic effects by modulating signaling pathways, including the NF-κB pathway, PI3K-Akt pathway, and p53 pathway. Molecular docking results indicate a strong binding affinity between core compounds and core genes. This study bridges the understanding of 2 diseases using network pharmacology and provides insights into shared therapeutic mechanisms, opening doors for further research in modern Chinese herbal formulations.
Collapse
Affiliation(s)
- Chang Sun
- Department of United Front Work, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Keyuan Xiao
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yinxiong He
- Graduate school, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xinghua Li
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
2
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Abstract
Significance: The significance of ferroptosis in cancer therapeutics has now been unveiled. Specific ferroptosis inducers are expected as a promising strategy for cancer treatment, especially in cancers with epithelial mesenchymal transition and possibly in cancers with activated Hippo signaling pathways, both of which cause resistance to traditional chemotherapy but tend to show ferroptosis susceptibility. Recent Advances: Ferroptosis is a new form of regulated non-apoptotic cell death, which is characterized by iron-dependent lipid peroxidation, leading eventually to plasma membrane rupture. Its core mechanisms have been elucidated, consisting of a driving force as catalytic Fe(II)-dependent Fenton reaction and an incorporation of polyunsaturated fatty acids to membrane phospholipids via peroxisome-dependent and -independent pathways, and suppressing factors as prevention of lipid peroxidation with glutathione peroxidase 4 and direct membrane repair via coenzyme Q10 and ESCRT-III pathways. Critical Issues: Developments of ferroptosis inducers are in progress by nanotechnology-based drugs or by innovative engineering devices. Especially, low-temperature (non-thermal) plasma is a novel technology at the preclinical stage. The exposure can induce ferroptosis selectively in cancer cells rich in catalytic Fe(II). Future Directions: We also summarize and discuss the recently uncovered responsible molecular mechanisms in association with iron metabolism, ferroptosis and cancer therapeutics. Targeting ferroptosis in addition to the current therapeutic modalities would be important to cure advanced-stage cancer.
Collapse
Affiliation(s)
- Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Biosystem Science Division, Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Pan HT, Xi ZQ, Wei XQ, Wang K. A network pharmacology approach to predict potential targets and mechanisms of " Ramulus Cinnamomi (cassiae) - Paeonia lactiflora" herb pair in the treatment of chronic pain with comorbid anxiety and depression. Ann Med 2022; 54:413-425. [PMID: 35098831 PMCID: PMC8812742 DOI: 10.1080/07853890.2022.2031268] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) prescriptions have multiple bioactive properties. "Gui Zhi-Shao Yao" herb pair is widely used to treat chronic pain (CP), as well as anxiety and depression. However, its related targets and underlying mechanisms have not been deciphered. METHODS In this study, the network pharmacology method was used to explore the bioactive components and targets of "Gui Zhi-Shao Yao" herb pair and further elucidate its potential biological mechanisms of action in the treatment of CP with comorbid anxiety disorder (AD) and mental depression (MD). RESULTS Following a series of analyses, we identified 15 active compounds, hitting 130 potential targets. After the intersections the targets of this herb pair and CP, AD and MD - sorted by the value of degree - nine targets were identified as the vital ones: Akt1, IL6, TNF, PTGS2, JUN, CASP3, MAPK8, PPARγ and NOS3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results demonstrated 11 pathways, such as AGE-RAGE signalling pathway, IL-17 signalling pathway, TNF signalling pathway, which primarily participate in the pathological processes. CONCLUSIONS This study preliminarily predicted and verified the pharmacological and molecular mechanisms of "Gui Zhi-Shao Yao" herb pair for treating CP with comorbid AD and MD from a holistic perspective. In vivo and in vitro experiments will be required to further investigate the mechanisms.KEY MESSAGEA network pharmacology approach was applied to identify key targets and molecular mechanisms.Nine targets were regarded as the vital targets for chronic pain with comorbid anxiety and depression.Predicted 11 pathways were the potential therapy targets and pharmacological mechanism of "Gui Zhi-Shao Yao" herb pair.
Collapse
Affiliation(s)
- Hao-Tian Pan
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Qi Xi
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Qiang Wei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Feng S, Yuan J, Zhao D, Li R, Liu X, Tian Y, Li J. Systematic characterization of the effective constituents and molecular mechanisms of Ardisiae Japonicae Herba using UPLC-Orbitrap Fusion MS and network pharmacology. PLoS One 2022; 17:e0269087. [PMID: 35704651 PMCID: PMC9200335 DOI: 10.1371/journal.pone.0269087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/14/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Ardisiae Japonicae Herba (AJH), the dried whole herb of Ardisia japonica (Thunb.) Blume [Primulaceae], has been used in treating chronic obstructive pulmonary disease (COPD) in China. However, the material basis and molecular mechanisms of AJH against COPD remain unclear. Therefore, in this study, we attempt to establish a systematic approach to elucidate the material basis and molecular mechanisms through compound identification, network analysis, molecular docking, and experimental validation. Methods Ultra-high performance liquid chromatography-Orbitrap Fusion mass spectrometry (UPLC-Orbitrap Fusion MS) was used to characterize the chemical compounds of AJH. The SwissTargetPrediction, String and Metascape databases were selected for network pharmacology analysis, including target prediction, protein-protein interaction (PPI) network analysis, GO and KEGG pathway enrichment analysis. Cytoscape 3.7.2 software was used to construct a component-target-pathway network to screen out the main active compounds. Autodock Vina software was used to verify the affinity between the key compounds and targets. TNF-α-stimulated A549 cell inflammation model was built to further verify the anti-inflammatory effects of active compounds. Results Altogether, 236 compounds were identified in AJH, including 33 flavonoids, 21 Phenylpropanoids, 46 terpenes, 7 quinones, 27 steroids, 71 carboxylic acids and 31 other compounds. Among them, 41 compounds were selected as the key active constituents, which might exhibit therapeutic effects against COPD by modulating 65 corresponding targets primarily involved in inflammation/metabolism/immune-related pathways. The results of molecular docking showed that the key compounds could spontaneously bind to the receptor proteins with a strong binding ability. Finally, the anti-inflammatory effects of the three active compounds were validated with the decreased levels of Interleukin-6 (IL-6) and Matrix Metalloproteinase 9 (MMP9) in TNF-α-induced A549 cells model. Conclusion This study clarified that AJH may exert therapeutic actions for COPD via regulating inflammation/immune/metabolism-related pathways using UPLC-Orbitrap Fusion MS technology combined with network pharmacology for the first time. This study had a deeper exploration of the chemical components and pharmacological activities in AJH, which provided a reference for the further study and clinical application of AJH in the treatment of COPD.
Collapse
Affiliation(s)
- Suxiang Feng
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, Henan, China
- * E-mail: (SF); (JL)
| | - Jie Yuan
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, Henan, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Di Zhao
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, Henan, China
| | - Rongrong Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, Henan, China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xuefang Liu
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, Henan, China
| | - Yange Tian
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, Henan, China
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, Henan, China
- The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- * E-mail: (SF); (JL)
| |
Collapse
|
6
|
Oh KK, Adnan M, Cho DH. Network Pharmacology-Based Study to Uncover Potential Pharmacological Mechanisms of Korean Thistle ( Cirsium japonicum var. maackii (Maxim.) Matsum.) Flower against Cancer. Molecules 2021; 26:5904. [PMID: 34641448 PMCID: PMC8513069 DOI: 10.3390/molecules26195904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Cirsium japonicum var. maackii (Maxim.) Matsum. or Korean thistle flower is a herbal plant used to treat tumors in Korean folk remedies, but its essential bioactives and pharmacological mechanisms against cancer have remained unexplored. This study identified the main compounds(s) and mechanism(s) of the C. maackii flower against cancer via network pharmacology. The bioactives from the C. maackii flower were revealed by gas chromatography-mass spectrum (GC-MS), and SwissADME evaluated their physicochemical properties. Next, target(s) associated with the obtained bioactives or cancer-related targets were retrieved by public databases, and the Venn diagram selected the overlapping targets. The networks between overlapping targets and bioactives were visualized, constructed, and analyzed by RPackage. Finally, we implemented a molecular docking test (MDT) to explore key target(s) and compound(s) on AutoDockVina and LigPlot+. GC-MS detected a total of 34 bioactives and all were accepted by Lipinski's rules and therefore classified as drug-like compounds (DLCs). A total of 597 bioactive-related targets and 4245 cancer-related targets were identified from public databases. The final 51 overlapping targets were selected between the bioactive targets network and cancer-related targets. With Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, a total of 20 signaling pathways were manifested, and a hub signaling pathway (PI3K-Akt signaling pathway), a key target (Akt1), and a key compound (Urs-12-en-24-oic acid, 3-oxo, methyl ester) were selected among the 20 signaling pathways via MDT. Overall, Urs-12-en-24-oic acid, 3-oxo, methyl ester from the C. maackii flower has potent anti-cancer efficacy by inactivating Akt1 on the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
| | | | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.-K.O.); (M.A.)
| |
Collapse
|
7
|
Logan SM, Storey KB. Markers of tissue remodeling and inflammation in the white and brown adipose tissues of a model hibernator. Cell Signal 2021; 82:109975. [PMID: 33711429 DOI: 10.1016/j.cellsig.2021.109975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
The thirteen-lined ground squirrel is a model fat-storing hibernator that nearly doubles its weight in the fall to fuel metabolism with triglycerides throughout the winter months. Hibernator brown and white adipose tissue (BAT, WAT) are important to study in terms of their inflammatory profile and tissue remodeling mechanisms since controlled and natural regulation of these processes could inform new pharmacological interventions that limit oxidative stress and inflammation in the adipose tissues of humans suffering from obesity, promote non-shivering thermogenesis-mediated weight loss, or prevent tissue damage in transplantable organs emerging from cold-storage. Thus, markers of inflammation like cytokines and soluble receptors and tissue remodeling proteins such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) were investigated in normothermic, torpid, and arousing ground squirrels. Multiplex protein assays and western blotting revealed fewer changes in WAT compared to BAT. Pro-inflammatory IL-1α levels increased during torpor and soluble epidermal growth factor receptor protein levels increased during arousal in BAT. Given their known roles in other model systems, these proteins could regulate processes like adipogenesis, lipid catabolism, or cell motility. Decreased TIMP2 levels combined with maintained MMP2 or MMP3 protein levels suggested that BAT may avoid tissue remodeling until arousal. No changes in WAT inflammatory cytokines or soluble receptors as well as decreased MMP2 levels during torpor and arousal suggested inflammation and modification to the extracellular matrix is likely suppressed in WAT. This study emphasizes the fat-but-fit nature of the hibernating ground squirrel and the ability of its fat stores to suppress inflammation.
Collapse
Affiliation(s)
- Samantha M Logan
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
8
|
MicroRNA expression patterns in the brown fat of hibernating 13-lined ground squirrels. Genomics 2021; 113:769-781. [PMID: 33529780 DOI: 10.1016/j.ygeno.2021.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/05/2021] [Accepted: 01/24/2021] [Indexed: 11/24/2022]
Abstract
The sequence diversity of microRNAs (miRNAs) allows these potent regulators of mRNA fate to bind multiple transcripts, giving them the power to inhibit diverse cellular processes. Therefore, miRNAs may regulate metabolic rate suppression (also termed torpor), an adaptation used by capable species to reduce energy expenditure, minimize tissue damage, and prolong life. Small RNA-sequencing of brown fat from control (37 °C) and torpid (5-8 °C) ground squirrels revealed a central role for miRNAs in torpor. Unsupervised clustering analysis of all 319 conserved miRNAs showed separation of control and torpor samples, which was supported by PCA analysis. Of the 76 miRNAs that were differentially expressed, 45 were upregulated during torpor. KEGG and GO analyses suggested these miRNAs inhibit genes within the ribosome, oxidative phosphorylation, and glycolysis/gluconeogenesis pathways. Some of the most downregulated miRNAs (miR-1-3p, miR-206 and miR-133a/b) had significant Pearson correlation coefficients, suggesting these myomiRs may be co-expressed in control animals. Only 3 of the 16 enriched KEGG pathways were less targeted by miRNAs during torpor, including cytokine-cytokine receptor interactions and the coagulation and complement cascades, suggesting epigenetic or post-translation modifications may inhibit these potentially damaging processes. Alternatively, their activation could promote damage sensing, wound repair, and improve tissue homeostasis. Overall, miRNA-seq analysis of brown fat revealed a strong role for miRNAs in the downregulation of central metabolic processes necessary for MRS, and highlighted miRNAs that could be inhibited by antagomiRs to promote brown fat activity in potential obesity treatments, or that could be used to replicate torpor in non-hibernating mammals.
Collapse
|
9
|
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms †. Front Physiol 2021; 11:623665. [PMID: 33551846 PMCID: PMC7854925 DOI: 10.3389/fphys.2020.623665] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, Brunoy, France
| | | | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
10
|
Logan SM, Storey KB. Inflammasome signaling could be used to sense and respond to endogenous damage in brown but not white adipose tissue of a hibernating ground squirrel. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103819. [PMID: 32781003 DOI: 10.1016/j.dci.2020.103819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Small mammalian hibernators use metabolic suppression to enhance survival during the winter. Torpor is punctuated by periods of euthermia used to clear metabolic by-products and damaged cell components. The current study was performed to determine if the innate immune system, specifically NLRP and AIM2 inflammasome signaling, may detect and respond to cell stress during hibernation. Nlrp3, Casp1, and Il1b genes were significantly upregulated in brown adipose tissue (BAT) during arousal with respect to the euthermic control, suggesting increased NLRP3 inflammasome priming. NLRP3, IL-18, and gasdermin D protein levels increased during torpor, indicating a lag between inflammasome priming and formation. AIM2 and gasdermin D levels increased in BAT during arousal, as did caspase-1 activity. Thus, non-shivering thermogenesis may generate pro-inflammatory triggers of inflammasome signaling. This study is the first to support a role for inflammasome signaling in sensing cellular perturbations at various points of the torpor-arousal cycle, in metabolically-active BAT, but not white adipose tissue (WAT).
Collapse
Affiliation(s)
- Samantha M Logan
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Kenneth B Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
11
|
Liu P, Xu H, Shi Y, Deng L, Chen X. Potential Molecular Mechanisms of Plantain in the Treatment of Gout and Hyperuricemia Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:3023127. [PMID: 33149752 PMCID: PMC7603577 DOI: 10.1155/2020/3023127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The incidence of gout and hyperuricemia is increasing year by year in the world. Plantain is a traditional natural medicine commonly used in the treatment of gout and hyperuricemia, but the molecular mechanism of its active compounds is still unclear. Based on network pharmacology, this article predicts the targets and pathways of effective components of plantain for gout and hyperuricemia and provides effective reference for clinical medication. METHOD Traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) and SymMap databases were used to screen out the active compounds and their targets in plantain. GeneCards, Therapeutic Target Database (TTD), and Online Mendelian Inheritance in Man (OMIM) databases were used to find the targets corresponding to gout and hyperuricemia. Venn diagram was used to obtain the intersection targets of plantain and diseases. The interaction network of the plantain active compounds-targets-pathways-diseases was constructed by using Cytoscape 3.7.2 software. Finally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out. RESULT Seven active compounds were identified by network pharmacological analysis, including dinatin, baicalein, baicalin, sitosterol, 6-OH-luteolin, stigmasterol, and luteolin. Plantain plays a role in gout and hyperuricemia diseases by regulating various biological processes, cellular components, and molecular functions. The core targets of plantain for treating gout are MAPK1, RELA, TNF, NFKBIA, and IFNG, and the key pathways are pathways in cancer, hypoxia-inducible factor-1 (HIF-1) signaling pathway, interleukin (IL)-17 signaling pathway, Chagas disease (American trypanosomiasis), and relaxin signaling pathway. The core targets of plantain for hyperuricemia are RELA, MAPK1, NFKBIA, CASP3, CASP8, and TNF, and the main pathways are pathways in cancer, apoptosis, hepatitis B, IL-17 signaling pathway, and toxoplasmosis. CONCLUSION This study explored the related targets and mechanisms of plantain for the treatment of gout and hyperuricemia from the perspective of network pharmacological analysis, reflecting the characteristics of multiple components, multiple targets, and multiple pathways, and it provides a good theoretical basis for the clinical application of plantain.
Collapse
Affiliation(s)
- Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Hadj-Moussa H, Wijenayake S, Storey KB. Multi-tissue profile of NFκB pathway regulation during mammalian hibernation. Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110460. [PMID: 32445797 DOI: 10.1016/j.cbpb.2020.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022]
Abstract
Hibernators have evolved effective mechanisms to overcome the challenges of torpor-arousal cycling. This study focuses on the antioxidant and inflammatory defenses under the control of the redox-sensitive and inflammatory-centered NFκB transcription factor in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), a well-established model of mammalian hibernation. While hibernators significantly depress oxygen consumption and overall metabolic rate during torpor, arousal brings with it a rapid increase in respiration that is associated with an influx of reactive oxygen species. As such, hibernators employ a variety of antioxidant defenses to combat oxidative damage. Herein, we used Luminex multiplex technology to examine the expression of key proteins in the NFκB transcriptional network, including NFκB, super-repressor IκBα, upstream activators TNFR1 and FADD, and downstream target c-Myc. Transcription factor DNA-binding ELISAs were also used to measure the relative degree of NFκB binding to DNA during hibernation. Analyses were performed across eight different tissues, cerebral cortex, brainstem, white and brown adipose tissue, heart, liver, kidney, and spleen, during euthermic control and late torpor to highlight tissue-specific NFκB mediated cytoprotective responses against oxidative stress experienced during torpor-arousal. Our findings demonstrated brain-specific NFκB activation during torpor, with elevated levels of upstream activators, inactive-phosphorylated IκBα, active-phosphorylated NFκB, and enhanced NFκB-DNA binding. Protein levels of downstream protein, c-Myc, also increased in the brain and adipose tissues during late torpor. The results show that NFκB regulation might serve a critical neuroprotective and cytoprotective role in hibernating brains and selective peripheral tissue.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Sanoji Wijenayake
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada; Department of Biological Sciences and Center for Environmental Epigenetics and Development, University of Toronto, Toronto, ON, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Logan SM, Storey KB. Angiogenic signaling in the lungs of a metabolically suppressed hibernating mammal ( Ictidomys tridecemlineatus). PeerJ 2019; 7:e8116. [PMID: 31763078 PMCID: PMC6870509 DOI: 10.7717/peerj.8116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
To conserve energy in times of limited resource availability, particularly during cold winters, hibernators suppress even the most basic of physiologic processes. Breathing rates decrease from 40 breaths/minute to less than 1 breath/min as they decrease body temperature from 37 °C to ambient. Nevertheless, after months of hibernation, these incredible mammals emerge from torpor unscathed. This study was conducted to better understand the protective and possibly anti-inflammatory adaptations that hibernator lungs may use to prevent damage associated with entering and emerging from natural torpor. We postulated that the differential protein expression of soluble protein receptors (decoy receptors that sequester soluble ligands to inhibit signal transduction) would help identify inhibited inflammatory signaling pathways in metabolically suppressed lungs. Instead, the only two soluble receptors that responded to torpor were sVEGFR1 and sVEGFR2, two receptors whose full-length forms are bound by VEGF-A to regulate endothelial cell function and angiogenesis. Decreased sVEGFR1/2 correlated with increased total VEGFR2 protein levels. Maintained or increased levels of key γ-secretase subunits suggested that decreased sVEGFR1/2 protein levels were not due to decreased levels of intramembrane cleavage complex subunits. VEGF-A protein levels did not change, suggesting that hibernators may regulate VEGFR1/2 signaling at the level of the receptor instead of increasing relative ligand abundance. A panel of angiogenic factors used to identify biomarkers of angiogenesis showed a decrease in FGF-1 and an increase in BMP-9. Torpid lungs may use VEGF and BMP-9 signaling to balance angiogenesis and vascular stability, possibly through the activation of SMAD signaling for adaptive tissue remodeling.
Collapse
Affiliation(s)
- Samantha M. Logan
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry, Departments of Biology and Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
14
|
Fan L, An G, Wang S, Chen X, Liu Y, Liu Z, Ma Q, Wang J. Circular RNA Expression Profiling and Selection of Key Circular RNAs in the Hypothalamus of Heat-Acclimated Rats. Front Physiol 2019; 10:1112. [PMID: 31555146 PMCID: PMC6722210 DOI: 10.3389/fphys.2019.01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs (circRNAs) have vital roles in great variety of biological processes. However, expression levels and functions of circRNAs related to heat acclimation (HA) are poorly understood. This study is the first time an in-depth circRNA expression profiling were used to investigate circRNA–miRNA interactions in HA rats in order to further comprehend the mechanisms underlying HA. CircRNA expression profile was performed in rats’ hypothalamus of HA and control group with microarray assays and their functions were predicted by using Bioinformatics analysis. Differential circRNAs and their regulated downstream miRNAs and mRNAs were quantitatively validated by means of quantitative polymerase chain reaction in real-time (RT-qPCR). Enzyme-linked immunosorbent assay (ELISA) was then applied to predict the expression of proteins. In total, 53 circRNAs were expressed distinctively between the HA and Control; up- and down-regulation of circRNAs were 28 and 25, respectively, in HA (fold change > 1.5, P < 0.05). Three circRNAs and two miRNAs and three predicted mRNAs were obviously regulated after validated by RT-qPCR in HA rats. Two proteins expression were proportional to their mRNA changes. Further analysis demonstrates that circRNAs closest to HA can be categorized into three signal pathways: including rno_circRNA_014301-vs-rno-miR-3575-vs-Hif-1α, rno_circRNA_014301-vs-rno-miR-3575-vs-Lppr4, and rno_circRNA_010393-vs-rno-miR-20b-3p-vs-Mfap4 in hypoxia response pathways, substance/energy metabolism, and inflammatory response pathways. Our findings implicate that many circRNAs regulate expressions of genes that interact with each other to exert their functions during HA.
Collapse
Affiliation(s)
- Lijun Fan
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Department of Human Movement Science, Tianjin University of Sport, Tianjin, China
| | - Gaihong An
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ying Liu
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhifeng Liu
- Department of Intensive Care Medicine, General Hospital of Southern Theatre Command of People's Liberation Army, Guangzhou, China
| | - Qiang Ma
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|