1
|
Kell DB, Pretorius E. Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots. Int J Mol Sci 2024; 25:10809. [PMID: 39409138 PMCID: PMC11476703 DOI: 10.3390/ijms251910809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
2
|
Bhopatkar AA, Bhatt N, Haque MA, Xavier R, Fung L, Jerez C, Kayed R. MAPT mutations associated with familial tauopathies lead to formation of conformationally distinct oligomers that have cross-seeding ability. Protein Sci 2024; 33:e5099. [PMID: 39145409 PMCID: PMC11325167 DOI: 10.1002/pro.5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 08/16/2024]
Abstract
The microtubule associated protein, tau, is implicated in a multitude of neurodegenerative disorders that are collectively termed as tauopathies. These disorders are characterized by the presence of tau aggregates within the brain of afflicted individuals. Mutations within the MAPT gene that encodes the tau protein form the genetic backdrop for familial forms of tauopathies, such as frontotemporal dementia (FTD), but the molecular consequences of such alterations and their pathological effects are unclear. We sought to investigate the conformational properties of the aggregates of three tau mutants: A152T, P301L, and R406W, all implicated within FTD, and compare them to those of the native form (WT-Tau 2N4R). Our immunochemical analysis reveals that mutants and WT tau oligomers exhibit similar affinity for conformation-specific antibodies but have distinct morphology and secondary structure. Additionally, these oligomers possess different dye-binding properties and varying sensitivity to proteolytic processing. These results point to conformational variety among them. We then tested the ability of the mutant oligomers to cross-seed the aggregation of WT tau monomer. Using similar array of experiments, we found that cross-seeding with mutant aggregates leads to the formation of conformationally unique WT oligomers. The results discussed in this paper provide a novel perspective on the structural properties of oligomeric forms of WT tau 2N4R and its mutant, along with shedding some light on their cross-seeding behavior.
Collapse
Affiliation(s)
- Anukool A. Bhopatkar
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nemil Bhatt
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Md Anzarul Haque
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rhea Xavier
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Leiana Fung
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
- Present address:
Neuroscience Graduate Program, UT Southwestern Medical CenterDallasTexasUSA
| | - Cynthia Jerez
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
3
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
4
|
Elkins M, Jain N, Tükel Ç. The menace within: bacterial amyloids as a trigger for autoimmune and neurodegenerative diseases. Curr Opin Microbiol 2024; 79:102473. [PMID: 38608623 PMCID: PMC11162901 DOI: 10.1016/j.mib.2024.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Bacteria are known to produce amyloids, proteins characterized by a conserved cross-beta sheet structure, which exhibit structural and functional similarities to human amyloids. The deposition of human amyloids into fibrillar plaques within organs is closely linked to several debilitating human diseases, including Alzheimer's and Parkinson's disease. Recently, bacterial amyloids have garnered significant attention as potential initiators of human amyloid-associated diseases as well as autoimmune diseases. This review aims to explore how bacterial amyloid, particularly curli found in gut biofilms, can act as a trigger for neurodegenerative and autoimmune diseases. We will elucidate three primary mechanisms through which bacterial amyloids exert their influence: By delving into these three distinct modes of action, this review will provide valuable insights into the intricate relationship between bacterial amyloids and the onset or progression of neurodegenerative and autoimmune diseases. A comprehensive understanding of these mechanisms may open new avenues for therapeutic interventions and preventive strategies targeting amyloid-associated diseases.
Collapse
Affiliation(s)
- Molly Elkins
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass, Karwar, Rajasthan, India
| | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Chowdhury S, Sarkar N. Exploring the potential of amyloids in biomedical applications: A review. Biotechnol Bioeng 2024; 121:26-38. [PMID: 37822225 DOI: 10.1002/bit.28569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
Amyloid is defined as a fibrous quaternary structure formed by assembling protein or peptide monomers into intermolecularly hydrogen linked β-sheets. There is a prevalent issue with protein aggregation and the buildup of amyloid molecules, which results in human neurological illnesses including Alzheimer's and Parkinson's. But it is now evident that many organisms, like bacteria, fungi as well as humans, use the same fibrillar structure to carry out a variety of biological functions, such as structure and protection supporting interface transitions and cell-cell recognition, protein control and storage, epigenetic inheritance, and memory. Recent discoveries of self-assembling amyloidogenic peptides and proteins, based on the amyloid core structure, give rise to interesting biomaterials with potential uses in numerous industries. These functions dramatically diverge from the initial conception of amyloid fibrils as intrinsically diseased entities. Apart from the natural ability of amyloids to spontaneously arrange themselves and their exceptional material characteristics, this aspect has prompted extensive research into engineering artificial amyloids for generating various nanostructures, molecular substances, and combined materials. Here, we discuss significant developments in the artificial design of useful amyloids as well as how amyloid materials serve as examples of how function emerges from protein self-assembly at various length scales.
Collapse
Affiliation(s)
- Srijita Chowdhury
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
6
|
Wojciechowski JW, Szczurek W, Szulc N, Szefczyk M, Kotulska M. PACT - Prediction of amyloid cross-interaction by threading. Sci Rep 2023; 13:22268. [PMID: 38097650 PMCID: PMC10721876 DOI: 10.1038/s41598-023-48886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Amyloid proteins are often associated with the onset of diseases, including Alzheimer's, Parkinson's and many others. However, there is a wide class of functional amyloids that are involved in physiological functions, e.g., formation of microbial biofilms or storage of hormones. Recent studies showed that an amyloid fibril could affect the aggregation of another protein, even from a different species. This may result in amplification or attenuation of the aggregation process. Insight into amyloid cross-interactions may be crucial for better understanding of amyloid diseases and the potential influence of microbial amyloids on human proteins. However, due to the demanding nature of the needed experiments, knowledge of such interactions is still limited. Here, we present PACT (Prediction of Amyloid Cross-interaction by Threading) - the computational method for the prediction of amyloid cross-interactions. The method is based on modeling of a heterogeneous fibril formed by two amyloidogenic peptides. The resulting structure is assessed by the structural statistical potential that approximates its plausibility and energetic stability. PACT was developed and first evaluated mostly on data collected in the AmyloGraph database of interacting amyloids and achieved high values of Area Under ROC (AUC=0.88) and F1 (0.82). Then, we applied our method to study the interactions of CsgA - a bacterial biofilm protein that was not used in our in-reference datasets, which is expressed in several bacterial species that inhabit the human intestines - with two human proteins. The study included alpha-synuclein, a human protein that is involved in Parkinson's disease, and human islet amyloid polypeptide (hIAPP), which is involved in type 2 diabetes. In both cases, PACT predicted the appearance of cross-interactions. Importantly, the method indicated specific regions of the proteins, which were shown to play a central role in both interactions. We experimentally confirmed the novel results of the indicated CsgA fragments interacting with hIAPP based on the kinetic characteristics obtained with the ThT assay. PACT opens the possibility of high-throughput studies of amyloid interactions. Importantly, it can work with fairly long protein fragments, and as a purely physicochemical approach, it relies very little on scarce training data. The tool is available as a web server at https://pact.e-science.pl/pact/ . The local version can be downloaded from https://github.com/KubaWojciechowski/PACT .
Collapse
Affiliation(s)
- Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370, Wrocław, Poland.
| | - Witold Szczurek
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| | - Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
- LPCT, CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| | - Malgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370, Wrocław, Poland.
| |
Collapse
|
7
|
Sampson T. Microbial amyloids in neurodegenerative amyloid diseases. FEBS J 2023:10.1111/febs.17023. [PMID: 38041542 PMCID: PMC11144261 DOI: 10.1111/febs.17023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Human-disease associated amyloidogenic proteins are not unique in their ability to form amyloid fibrillar structures. Numerous microbes produce amyloidogenic proteins that have distinct functions for their physiology in their amyloid form, rather than solely detrimental. Emerging data indicate associations between various microbial organisms, including those which produce functional amyloids, with neurodegenerative diseases. Here, we review some of the evidence suggesting that microbial amyloids impact amyloid disease in host organisms. Experimental data are building a foundation for continued lines of enquiry and suggest that that direct or indirect interactions between microbial and host amyloids may be a contributor to amyloid pathologies. Inhibiting microbial amyloids or their interactions with the host may therefore represent a tangible target to limit various amyloid pathologies.
Collapse
Affiliation(s)
- Timothy Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
8
|
Ali SA, Chung KHK, Forgham H, Olsen WP, Kakinen A, Balaji A, Otzen DE, Davis TP, Javed I. Alzheimer's Progenitor Amyloid-β Targets and Dissolves Microbial Amyloids and Impairs Biofilm Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301423. [PMID: 37594661 PMCID: PMC10582422 DOI: 10.1002/advs.202301423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Indexed: 08/19/2023]
Abstract
Alzheimer's disease (AD) is a leading form of dementia where the presence of extra-neuronal plaques of Amyloid-β (Aβ) is a pathological hallmark. However, Aβ peptide is also observed in the intestinal tissues of AD patients and animal models. In this study, it is reported that Aβ monomers can target and disintegrate microbial amyloids of FapC and CsgA formed by opportunistic gut pathogens, Pseudomonas aeruginosa and Escherichia coli, explaining a potential role of Aβ in the gut-brain axis. Employing a zebrafish-based transparent in vivo system and whole-mount live-imaging, Aβ is observed to diffuse into the vasculature and subsequently localize with FapC or CsgA fibrils that were injected into the tail muscles of the fish. FapC aggregates, produced after Aβ treatment (Faβ), present selective toxicity to SH-SY5Y neuronal cells while the intestinal Caco-2 cells are shown to phagocytose Faβ in a non-toxic cellular process. After remodeling by Aβ, microbial fibrils lose their native function of cell adhesion with intestinal Caco-2 cells and Aβ dissolves and detaches the microbial fibrils already attached to the cell membrane. Taken together, this study strongly indicates an anti-biofilm role for Aβ monomers that can help aid in the future development of selective anti-Alzheimer's and anti-infective medicine.
Collapse
Affiliation(s)
- Syed Aoun Ali
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Helen Forgham
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - William P. Olsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus C8000Denmark
- Sino‐Danish Center (SDC)Eastern Yanqihu CampusUniversity of Chinese Academy of Sciences380 Huaibeizhuang, Huairou DistrictBeijing101400China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinki00014Finland
| | - Arunpandian Balaji
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus C8000Denmark
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| |
Collapse
|
9
|
Indig RY, Landau M. Designed inhibitors to reduce amyloid virulence and cytotoxicity and combat neurodegenerative and infectious diseases. Curr Opin Chem Biol 2023; 75:102318. [PMID: 37196450 DOI: 10.1016/j.cbpa.2023.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
The review highlights the role of amyloids in various diseases and the challenges associated with targeting human amyloids in therapeutic development. However, due to the better understanding of microbial amyloids' role as virulence factors, there is a growing interest in repurposing and designing anti-amyloid compounds for antivirulence therapy. The identification of amyloid inhibitors has not only significant clinical implications but also provides valuable insights into the structure and function of amyloids. The review showcases small molecules and peptides that specifically target amyloids in both humans and microbes, reducing cytotoxicity and biofilm formation, respectively. The review emphasizes the importance of further research on amyloid structures, mechanisms, and interactions across all life forms to yield new drug targets and improve the design of selective treatments. Overall, the review highlights the potential for amyloid inhibitors in therapeutic development for both human diseases and microbial infections.
Collapse
Affiliation(s)
- Rinat Yona Indig
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Centre for Structural Systems Biology (CSSB) and Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany; Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany; European Molecular Biology Laboratory (EMBL), Hamburg, Germany.
| |
Collapse
|
10
|
Golan N, Engelberg Y, Landau M. Structural Mimicry in Microbial and Antimicrobial Amyloids. Annu Rev Biochem 2022; 91:403-422. [PMID: 35729071 DOI: 10.1146/annurev-biochem-032620-105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable variety of microbial species of human pathogens and microbiomes generates significant quantities of secreted amyloids, which are structured protein fibrils that serve diverse functions related to virulence and interactions with the host. Human amyloids are associated largely with fatal neurodegenerative and systemic aggregation diseases, and current research has put forward the hypothesis that the interspecies amyloid interactome has physiological and pathological significance. Moreover, functional and molecular-level connections between antimicrobial activity and amyloid structures suggest a neuroimmune role for amyloids that are otherwise known to be pathological. Compared to the extensive structural information that has been accumulated for human amyloids, high-resolution structures of microbial and antimicrobial amyloids are only emerging. These recent structures reveal both similarities and surprising departures from the typical amyloid motif, in accordance with their diverse activities, and advance the discovery of novel antivirulence and antimicrobial agents. In addition, the structural information has led researchers to postulate that amyloidogenic sequences are natural targets for structural mimicry, for instance in host-microbe interactions. Microbial amyloid research could ultimately be used to fight aggressive infections and possibly processes leading to autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Yizhaq Engelberg
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel;
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel; .,European Molecular Biology Laboratory (EMBL) and Center for Structural Systems Biology (CSSB), Hamburg, Germany
| |
Collapse
|
11
|
Seira Curto J, Surroca Lopez A, Casals Sanchez M, Tic I, Fernandez Gallegos MR, Sanchez de Groot N. Microbiome Impact on Amyloidogenesis. Front Mol Biosci 2022; 9:926702. [PMID: 35782871 PMCID: PMC9245625 DOI: 10.3389/fmolb.2022.926702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Our life is closely linked to microorganisms, either through a parasitic or symbiotic relationship. The microbiome contains more than 1,000 different bacterial species and outnumbers human genes by 150 times. Worryingly, during the last 10 years, it has been observed a relationship between alterations in microbiota and neurodegeneration. Several publications support the hypothesis that amyloid structures formed by microorganisms may trigger host proteins aggregation. In this review, we collect pieces of evidence supporting that the crosstalk between human and microbiota amyloid proteins could be feasible and, probably, a more common event than expected before. The combination of their outnumbers, the long periods of time that stay in our bodies, and the widespread presence of amyloid proteins in the bacteria Domain outline a worrying scenario. However, the identification of the exact microorganisms and the mechanisms through with they can influence human disease also opens the door to developing a new and diverse set of therapeutic strategies.
Collapse
|
12
|
Akbey Ü, Andreasen M. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 2022; 13:6457-6477. [PMID: 35756505 PMCID: PMC9172111 DOI: 10.1039/d2sc00645f] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University Wilhelm Meyers Allé 3 8000 Aarhus Denmark
| |
Collapse
|
13
|
Tang Y, Zhang D, Zhang Y, Liu Y, Miller Y, Gong K, Zheng J. Cross-seeding between Aβ and SEVI indicates a pathogenic link and gender difference between alzheimer diseases and AIDS. Commun Biol 2022; 5:417. [PMID: 35513705 PMCID: PMC9072343 DOI: 10.1038/s42003-022-03343-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/03/2022] [Indexed: 12/19/2022] Open
Abstract
Amyloid-β (Aβ) and semen-derived enhancer of viral infection (SEVI) are considered as the two causative proteins for central pathogenic cause of Alzheimer's disease (AD) and HIV/AIDS, respectively. Separately, Aβ-AD and SEVI-HIV/AIDS systems have been studied extensively both in fundamental research and in clinical trials. Despite significant differences between Aβ-AD and SEVI-HIV/AIDS systems, they share some commonalities on amyloid and antimicrobial characteristics between Aβ and SEVI, there are apparent overlaps in dysfunctional neurological symptoms between AD and HIV/AIDS. Few studies have reported a potential pathological link between Aβ-AD and SEVI-HIV/AIDS at a protein level. Here, we demonstrate the cross-seeding interactions between Aβ and SEVI proteins using in vitro and in vivo approaches. Cross-seeding of SEVI with Aβ enabled to completely prevent Aβ aggregation at sub-stoichiometric concentrations, disaggregate preformed Aβ fibrils, reduce Aβ-induced cell toxicity, and attenuate Aβ-accumulated paralysis in transgenic AD C. elegans. This work describes a potential crosstalk between AD and HIV/AIDS via the cross-seeding between Aβ and SEVI, identifies SEVI as Aβ inhibitor for possible treatment or prevention of AD, and explains the role of SEVI in the gender difference in AD.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 44325, Akron, OH, USA
| | - Yifat Miller
- Department of Chemistry Ben-Gurion, University of the Negev, 84105, Be'er Sheva, Israel
| | - Keven Gong
- Western Reserve Academy, Hudson, 44236, OH, USA
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 44325, Akron, OH, USA.
| |
Collapse
|
14
|
Choi H, Lee D, Mook-Jung I. Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1501-1526. [PMID: 35213369 DOI: 10.3233/jad-215235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is accompanied by cognitive impairment and shows representative pathological features, including senile plaques and neurofibrillary tangles in the brain. Recent evidence suggests that several systemic changes outside the brain are associated with AD and may contribute to its pathogenesis. Among the factors that induce systemic changes in AD, the gut microbiota is increasingly drawing attention. Modulation of gut microbiome, along with continuous attempts to remove pathogenic proteins directly from the brain, is a viable strategy to cure AD. Seeking a holistic understanding of the pathways throughout the body that can affect the pathogenesis, rather than regarding AD solely as a brain disease, may be key to successful therapy. In this review, we focus on the role of the gut microbiota in causing systemic manifestations of AD. The review integrates recently emerging concepts and provides potential mechanisms about the involvement of the gut-brain axis in AD, ranging from gut permeability and inflammation to bacterial translocation and cross-seeding.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Chatterjee D, Jacob RS, Ray S, Navalkar A, Singh N, Sengupta S, Gadhe L, Kadu P, Datta D, Paul A, Arunima S, Mehra S, Pindi C, Kumar S, Singru P, Senapati S, Maji SK. Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. eLife 2022; 11:73835. [PMID: 35257659 PMCID: PMC8993219 DOI: 10.7554/elife.73835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer’s disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary. The formation of plaques of proteins called ‘amyloids’ in the brain is one of the hallmark characteristics of both Alzheimer’s and Parkinson’s disease, but amyloids can form in many tissues and organs, often disrupting normal activity. A lot of the research into amyloids has focused on their role in disease, but it turns out that amyloids can also appear in healthy tissues. For example, some protein hormones form amyloids that act as storage depots, helping cells to release the hormone when it is needed. Normally, amyloids are made mostly of a single type of protein or protein fragment associated with a particular disease like Alzheimer's. Often, this type of amyloid promotes plaque formation in other proteins, which aggravates other diseases (for example, the amyloids that form in Alzheimer’s can lead to Parkinson’s disease or type II diabetes getting worse).The plaques start growing from small amyloid fragments called seeds. In mixed amyloids – amyloids made of two types of proteins – seeds made of one protein can trigger the formation of amyloids of the other protein. This raises the question, is this true for hormones? The body often releases more than one hormone at a time from the same tissue; for example, the pituitary gland releases prolactin and galanin simultaneously. However, these hormones have completely different structures, so whether they can form a mixed amyloid is unclear. To answer this question, Chatterjee et al. first determined that, within the pituitary gland of female rats, prolactin and galanin could be found together in the same cells, forming mixed amyloids. To understand out how this happens, Chatterjee et al. tried seeding new amyloids using either prolactin or galanin. This revealed that only prolactin seeds were able to trigger the formation of galanin amyloids. Chatterjee et al. also found that the mixed amyloids could release the hormones faster than amyloids made from either protein alone. Together, these results suggest that the collaboration between these two proteins may help maintain hormone balance in the body. Problems with hormone storage and release lead to various human diseases, including prolactinoma. Understanding amyloid storage depots could reveal new ways to control hormone levels. Further research could also help to explain more about well-studied diseases linked to amyloids, like Alzheimer's.
Collapse
Affiliation(s)
- Debdeep Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Reeba S Jacob
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Soumik Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shinjinee Sengupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sakunthala Arunima
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chinmai Pindi
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Praful Singru
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Sanjib Senapati
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
16
|
Vendrell-Fernández S, Lozano-Picazo P, Cuadros-Sánchez P, Tejero-Ojeda MM, Giraldo R. Conversion of the OmpF Porin into a Device to Gather Amyloids on the E. coli Outer Membrane. ACS Synth Biol 2022; 11:655-667. [PMID: 34852197 DOI: 10.1021/acssynbio.1c00347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein amyloids are ubiquitous in natural environments. They typically originate from microbial secretions or spillages from mammals infected by prions, currently raising concerns about their infectivity and toxicity in contexts such as gut microbiota or soils. Exploiting the self-assembly potential of amyloids for their scavenging, here, we report the insertion of an amyloidogenic sequence stretch from a bacterial prion-like protein (RepA-WH1) in one of the extracellular loops (L5) of the abundant Escherichia coli outer membrane porin OmpF. The expression of this grafted porin enables bacterial cells to trap on their envelopes the same amyloidogenic sequence when provided as an extracellular free peptide. Conversely, when immobilized on a surface as bait, the full-length prion-like protein including the amyloidogenic peptide can catch bacteria displaying the L5-grafted OmpF. Polyphenolic molecules known to inhibit amyloid assembly interfere with peptide recognition by the engineered OmpF, indicating that this is compatible with the kind of homotypic interactions expected for amyloid assembly. Our study suggests that synthetic porins may provide suitable scaffolds for engineering biosensor and clearance devices to tackle the threat posed by pathogenic amyloids.
Collapse
Affiliation(s)
- Sol Vendrell-Fernández
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - Paloma Lozano-Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Paula Cuadros-Sánchez
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
| | - María M. Tejero-Ojeda
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| | - Rafael Giraldo
- Department of Microbial Biotechnology, National Centre for Biotechnology (CSIC), c/ Darwin 3, Campus Cantoblanco, 28049 Madrid, Spain
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), c/ Ramiro de Maeztu 9, Campus Moncloa, 28040 Madrid, Spain
| |
Collapse
|
17
|
Ren B, Tang Y, Zhang D, Liu Y, Zhang Y, Chen H, Hu R, Zhang M, Zheng J. Conformational-Specific Self-Assembled Peptides as Dual-Mode, Multi-target Inhibitors and Detectors for Different Amyloid Pro-teins. J Mater Chem B 2022; 10:1754-1762. [DOI: 10.1039/d1tb02775a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prevention and detection of misfolded amyloid proteins and their β-structure-rich aggregates are the two promising but differ-ent (pre)clinical strategies to treat and diagnose neurodegenerative diseases including Alzheimer’s diseases (AD) and...
Collapse
|
18
|
Tang Y, Zhang D, Gong X, Zheng J. A mechanistic survey of Alzheimer's disease. Biophys Chem 2021; 281:106735. [PMID: 34894476 DOI: 10.1016/j.bpc.2021.106735] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common, age-dependent neurodegenerative disorder. While AD has been intensively studied from different aspects, there is no effective cure for AD, largely due to a lack of a clear mechanistic understanding of AD. In this mini-review, we mainly focus on the discussion and summary of mechanistic causes of Alzheimer's disease (AD). While different AD mechanisms illustrate different molecular and cellular pathways in AD pathogenesis, they do not necessarily exclude each other. Instead, some of them could work together to initiate, trigger, and promote the onset and development of AD. In a broader viewpoint, some AD mechanisms (e.g., amyloid aggregation mechanism, microbial infection/neuroinflammation mechanism, and amyloid cross-seeding mechanism) could also be applicable to other amyloid diseases including type II diabetes, Parkinson's disease, and prion disease. Such common mechanisms for AD and other amyloid diseases explain not only the pathogenesis of individual amyloid diseases, but also the spreading of pathologies between these diseases, which will inspire new strategies for therapeutic intervention and prevention for AD.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, OH, United States of America
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, OH, United States of America.
| |
Collapse
|
19
|
Zhang Y, Liu Y, Tang Y, Zhang D, He H, Wu J, Zheng J. Antimicrobial α-defensins as multi-target inhibitors against amyloid formation and microbial infection. Chem Sci 2021; 12:9124-9139. [PMID: 34276942 PMCID: PMC8261786 DOI: 10.1039/d1sc01133b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022] Open
Abstract
Amyloid aggregation and microbial infection are considered as pathological risk factors for developing amyloid diseases, including Alzheimer's disease (AD), type II diabetes (T2D), Parkinson's disease (PD), and medullary thyroid carcinoma (MTC). Due to the multifactorial nature of amyloid diseases, single-target drugs and treatments have mostly failed to inhibit amyloid aggregation and microbial infection simultaneously, thus leading to marginal benefits for amyloid inhibition and medical treatments. Herein, we proposed and demonstrated a new "anti-amyloid and antimicrobial hypothesis" to discover two host-defense antimicrobial peptides of α-defensins containing β-rich structures (human neutrophil peptide of HNP-1 and rabbit neutrophil peptide of NP-3A), which have demonstrated multi-target, sequence-independent functions to (i) prevent the aggregation and misfolding of different amyloid proteins of amyloid-β (Aβ, associated with AD), human islet amyloid polypeptide (hIAPP, associated with T2D), and human calcitonin (hCT, associated with MTC) at sub-stoichiometric concentrations, (ii) reduce amyloid-induced cell toxicity, and (iii) retain their original antimicrobial activity upon the formation of complexes with amyloid peptides. Further structural analysis showed that the sequence-independent amyloid inhibition function of α-defensins mainly stems from their cross-interactions with amyloid proteins via β-structure interactions. The discovery of antimicrobial peptides containing β-structures to inhibit both microbial infection and amyloid aggregation greatly expands the new therapeutic potential of antimicrobial peptides as multi-target amyloid inhibitors for better understanding pathological causes and treatments of amyloid diseases.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University Zhejiang China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University Zhejiang China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron Ohio USA
| |
Collapse
|
20
|
Kumar V, Sinha N, Thakur AK. Necessity of regulatory guidelines for the development of amyloid based biomaterials. Biomater Sci 2021; 9:4410-4422. [PMID: 34018497 DOI: 10.1039/d1bm00059d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amyloid diseases are caused due to protein homeostasis failure where incorrectly folded proteins/peptides form cross-β-sheet rich amyloid fibrillar structures. Besides proteins/peptides, small metabolite assemblies also exhibit amyloid-like features. These structures are linked to several human and animal diseases. In addition, non-toxic amyloids with diverse physiological roles are characterized as a new functional class. This finding, along with the unique properties of amyloid like stability and mechanical strength, led to a surge in the development of amyloid-based biomaterials. However, the usage of these materials by humans and animals may pose a health risk such as the development of amyloid diseases and toxicity. This is possible because amyloid-based biomaterials and their fragments may assist seeding and cross-seeding mechanisms of amyloid formation in the body. This review summarizes the potential uses of amyloids as biomaterials, the concerns regarding their usage, and a prescribed workflow to initiate a regulatory approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nabodita Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| |
Collapse
|
21
|
Walker AC, Bhargava R, Vaziriyan-Sani AS, Pourciau C, Donahue ET, Dove AS, Gebhardt MJ, Ellward GL, Romeo T, Czyż DM. Colonization of the Caenorhabditis elegans gut with human enteric bacterial pathogens leads to proteostasis disruption that is rescued by butyrate. PLoS Pathog 2021; 17:e1009510. [PMID: 33956916 PMCID: PMC8101752 DOI: 10.1371/journal.ppat.1009510] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Protein conformational diseases are characterized by misfolding and toxic aggregation of metastable proteins, often culminating in neurodegeneration. Enteric bacteria influence the pathogenesis of neurodegenerative diseases; however, the complexity of the human microbiome hinders our understanding of how individual microbes influence these diseases. Disruption of host protein homeostasis, or proteostasis, affects the onset and progression of these diseases. To investigate the effect of bacteria on host proteostasis, we used Caenorhabditis elegans expressing tissue-specific polyglutamine reporters that detect changes in the protein folding environment. We found that colonization of the C. elegans gut with enteric bacterial pathogens disrupted proteostasis in the intestine, muscle, neurons, and the gonad, while the presence of bacteria that conditionally synthesize butyrate, a molecule previously shown to be beneficial in neurodegenerative disease models, suppressed aggregation and the associated proteotoxicity. Co-colonization with this butyrogenic strain suppressed bacteria-induced protein aggregation, emphasizing the importance of microbial interaction and its impact on host proteostasis. Further experiments demonstrated that the beneficial effect of butyrate depended on the bacteria that colonized the gut and that this protective effect required SKN-1/Nrf2 and DAF-16/FOXO transcription factors. We also found that bacteria-derived protein aggregates contribute to the observed disruption of host proteostasis. Together, these results reveal the significance of enteric infection and gut dysbiosis on the pathogenesis of protein conformational diseases and demonstrate the potential of using butyrate-producing microbes as a preventative and treatment strategy for neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa C. Walker
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Rohan Bhargava
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Alfonso S. Vaziriyan-Sani
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Christine Pourciau
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Emily T. Donahue
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Autumn S. Dove
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Michael J. Gebhardt
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Garrett L. Ellward
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Tony Romeo
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Daniel M. Czyż
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
22
|
Zhang Y, Zhang M, Liu Y, Zhang D, Tang Y, Ren B, Zheng J. Dual amyloid cross-seeding reveals steric zipper-facilitated fibrillization and pathological links between protein misfolding diseases. J Mater Chem B 2021; 9:3300-3316. [PMID: 33651875 DOI: 10.1039/d0tb02958k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid cross-seeding, as a result of direct interaction and co-aggregation between different disease-causative peptides, is considered as a main mechanism for the spread of the overlapping pathology across different cells and tissues between different protein-misfolding diseases (PMDs). Despite the biomedical significance of amyloid cross-seeding in amyloidogenesis, it remains a great challenge to discover amyloid cross-seeding systems and reveal their cross-seeding structures and mechanisms. Herein, we are the first to report that GNNQQNY - a short fragment from yeast prion protein Sup35 - can cross-seed with both amyloid-β (Aβ, associated with Alzheimer's disease) and human islet amyloid polypeptide (hIAPP, associated with type II diabetes) to form β-structure-rich assemblies and to accelerate amyloid fibrillization. Dry, steric β-zippers, formed by the two β-sheets of different amyloid peptides, provide generally interactive and structural motifs to facilitate amyloid cross-seeding. The presence of different steric β-zippers in a variety of GNNQQNY-Aβ and GNNQQNY-hIAPP assemblies also explains amyloid polymorphism. In addition, alteration of steric zipper formation by single-point mutations of GNNQQNY and interactions of GNNQQNY with different Aβ and hIAPP seeds leads to different amyloid cross-seeding efficiencies, further confirming the existence of cross-seeding barriers. This work offers a better structural-based understanding of amyloid cross-seeding mechanisms linked to different PMDs.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Michiels E, Rousseau F, Schymkowitz J. Mechanisms and therapeutic potential of interactions between human amyloids and viruses. Cell Mol Life Sci 2021; 78:2485-2501. [PMID: 33244624 PMCID: PMC7690653 DOI: 10.1007/s00018-020-03711-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
The aggregation of specific proteins and their amyloid deposition in affected tissue in disease has been studied for decades assuming a sole pathogenic role of amyloids. It is now clear that amyloids can also encode important cellular functions, one of which involves the interaction potential of amyloids with microbial pathogens, including viruses. Human expressed amyloids have been shown to act both as innate restriction molecules against viruses as well as promoting agents for viral infectivity. The underlying molecular driving forces of such amyloid-virus interactions are not completely understood. Starting from the well-described molecular mechanisms underlying amyloid formation, we here summarize three non-mutually exclusive hypotheses that have been proposed to drive amyloid-virus interactions. Viruses can indirectly drive amyloid depositions by affecting upstream molecular pathways or induce amyloid formation by a direct interaction with the viral surface or specific viral proteins. Finally, we highlight the potential of therapeutic interventions using the sequence specificity of amyloid interactions to drive viral interference.
Collapse
Affiliation(s)
- Emiel Michiels
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Schimansky A, Yadav JK. Amyloid cross-sequence interaction between Aβ(1-40) and αA(66-80) in relation to the pathogenesis of cataract. Int J Biol Macromol 2021; 179:61-70. [PMID: 33626371 DOI: 10.1016/j.ijbiomac.2021.02.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) and cataract represent two common protein misfolding diseases closely associated with aging. Growing evidence suggests that these two diseases may be interrelated with each other through cross-sequence interactions between β-amyloid (Aβ) peptide and the short aggregating peptides derived from proteolytic breakdown of α-crystallin. αΑ(66-80) is one of several peptides produced by the proteolytic breakdown of α-crystallin in aged eye lens. Although it is evident that the Aβ(1-40) and αΑ(66-80) coexist in aged eye lenses and both the peptides are known to form macromolecular assemblies, their cross-sequence interaction and the seeding behavior are not known. In this study, the aggregation behavior of αΑ(66-80) has been examined in the presence of Aβ(1-40) on using thioflavin T (ThT) based aggregation kinetics. The presence of monomeric Aβ(1-40) augmented the aggregation kinetics of αΑ(66-80) and reduced the lag time of αΑ(66-80) aggregation. However, the addition of Aβ(1-40) or αΑ(66-80) fibrils (seeds) didn't result in any change in the rate of αΑ(66-80) aggregation. In this in vitro study, we could show that the presence Aβ(1-40) has substantial effect on the aggregation of αΑ(66-80), which suggests a possible interaction between AD and cataract pathologies.
Collapse
Affiliation(s)
- Anna Schimansky
- Ulm University, Institute of Protein Biochemistry, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Jay Kant Yadav
- Ulm University, Institute of Protein Biochemistry, Helmholtzstraße 8/1, 89081 Ulm, Germany; Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
25
|
Ivanova MI, Lin Y, Lee YH, Zheng J, Ramamoorthy A. Biophysical processes underlying cross-seeding in amyloid aggregation and implications in amyloid pathology. Biophys Chem 2021; 269:106507. [PMID: 33254009 PMCID: PMC10317075 DOI: 10.1016/j.bpc.2020.106507] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
Abnormal aggregation of proteins into filamentous aggregates commonly associates with many diseases, such as Alzheimer's disease, Parkinson's disease and type-2 diabetes. These filamentous aggregates, also known as amyloids, can propagate their abnormal structures to either the same precursor molecules (seeding) or other protein monomers (cross-seeding). Cross-seeding has been implicated in the abnormal protein aggregation and has been found to facilitate the formation of physiological amyloids. It has risen to be an exciting area of research with a high volume of published reports. In this review article, we focus on the biophysical processes underlying the cross-seeding for some of the most commonly studied amyloid proteins. Here we will discuss the relevant literature related to cross-seeded polymerization of amyloid-beta, human islet amyloid polypeptide (hIAPP, or also known as amylin) and alpha-synuclein. SEVI (semen-derived enhancer of viral infection) amyloid formation by the cross-seeding between the bacterial curli protein and PAP248-286 is also briefly discussed.
Collapse
Affiliation(s)
- Magdalena I Ivanova
- Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea; Research headquarters, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Zhang Y, Tang Y, Zhang D, Liu Y, He J, Chang Y, Zheng J. Amyloid cross-seeding between Aβ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Mechanistic insights of host cell fusion of SARS-CoV-1 and SARS-CoV-2 from atomic resolution structure and membrane dynamics. Biophys Chem 2020; 265:106438. [PMID: 32721790 PMCID: PMC7375304 DOI: 10.1016/j.bpc.2020.106438] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/04/2023]
Abstract
The emerging and re-emerging viral diseases are continuous threats to the wellbeing of human life. Previous outbreaks of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS had evidenced potential threats of coronaviruses in human health. The recent pandemic due to SARS-CoV-2 is overwhelming and has been going beyond control. Vaccines and antiviral drugs are ungently required to mitigate the pandemic. Therefore, it is important to comprehend the mechanistic details of viral infection process. The fusion between host cell and virus being the first step of infection, understanding the fusion mechanism could provide crucial information to intervene the infection process. Interestingly, all enveloped viruses contain fusion protein on their envelope that acts as fusion machine. For coronaviruses, the spike or S glycoprotein mediates successful infection through receptor binding and cell fusion. The cell fusion process requires merging of virus and host cell membranes, and that is essentially performed by the S2 domain of the S glycoprotein. In this review, we have discussed cell fusion mechanism of SARS-CoV-1 from available atomic resolution structures and membrane binding of fusion peptides. We have further discussed about the cell fusion of SARS-CoV-2 in the context of present pandemic situation.
Collapse
|
28
|
Rahimi Araghi L, Dee DR. Cross-Species and Cross-Polymorph Seeding of Lysozyme Amyloid Reveals a Dominant Polymorph. Front Mol Biosci 2020; 7:206. [PMID: 32923456 PMCID: PMC7456942 DOI: 10.3389/fmolb.2020.00206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
The ability to self-propagate is one of the most intriguing characteristics of amyloid fibrils, and is a feature of great interest both to stopping unwanted pathological amyloid, and for engineering functional amyloid as a useful nanomaterial. The sequence and structural tolerances for amyloid seeding are not well understood, particularly concerning the propagation of distinct fibril morphologies (polymorphs) across species. This study examined the seeding and cross-seeding reactions between two unique fibril polymorphs, one long and flexible (formed at pH 2) and the other short and rigid (formed at pH 6.3), of human lysozyme and hen egg-white lysozyme. Both polymorphs could cross-seed aggregation across species, but this reaction was markedly reduced under physiological conditions. For both species, the pH 6.3 fibril polymorph was dominant, seeding fibril growth with a faster growth rate constant at pH 2 than the pH 2 polymorph. Based on fibrillation kinetics and fibril morphology, we found that the pH 2 polymorph was not able to faithfully replicate itself at pH 6.3. These results show that two distinct amyloid polymorphs are both capable of heterologous seeding across two species (human and hen) of lysozyme, but that the pH 6.3 polymorph is favored, regardless of the species, likely due to a lower energy barrier, or faster configurational diffusion, to accessing this particular misfolded form. These findings contribute to our better understanding of amyloid strain propagation across species barriers.
Collapse
Affiliation(s)
- Lida Rahimi Araghi
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| | - Derek R Dee
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Hashimoto M, Ho G, Takamatsu Y, Wada R, Sugama S, Takenouchi T, Waragai M, Masliah E. Possible Role of Amyloid Cross-Seeding in Evolvability and Neurodegenerative Disease. JOURNAL OF PARKINSONS DISEASE 2020; 9:793-802. [PMID: 31524179 PMCID: PMC6839461 DOI: 10.3233/jpd-191675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging-related neurodegenerative disorders are frequently associated with the aggregation of multiple amyloidogenic proteins (APs), although the reason why such detrimental phenomena have emerged in the post-reproductive human brain across evolution is unclear. Speculatively, APs might provide physiological benefits for the human brain during developmental/reproductive stages. Of relevance, it is noteworthy that cross-seeding (CS) of APs has recently been characterized in cellular and animal models of neurodegenerative disease, and that normal physiological CS of multiple APs has also been observed in lower organisms, including yeast and bacteria. In this context, our main objective is to discuss a possible involvement of the CS of APs in promoting evolvability, a hypothetical view regarding the function of APs as an inheritance of acquired characteristics against human brain stressors, which are transgenerationally transmitted to offspring via germ cells. Mechanistically, the protofibrils formed by the CS of multiple APs might confer hormesis more potently than individual APs. By virtue of greater encoded stress information in parental brains being available, the brains of offspring can cope more efficiently with forth-coming stressors. On the other hand, subsequent neurodegeneration caused by APs in parental brain through the antagonistic pleiotropy mechanism in aging, may suggest that synergistically, multiple APs might be more detrimental compared to singular AP in neurodegeneration. Taken together, we suggest that the CS of multiple APs might be involved in both evolvability and neurodegenerative disease in human brain, which may be mechanistically and therapeutically important.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, Japan
| | - Ryoko Wada
- Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, Setagaya-Ku, Tokyo, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Abstract
Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). Amyloids are protein polymers that were initially linked to human diseases. Across the whole Tree of Life, many disease-unrelated proteins are now emerging for which amyloids represent distinct functional states. Most bacterial amyloids described are extracellular, contributing to biofilm formation. However, only a few have been found in the bacterial cytosol. This paper reviews from the perspective of synthetic biology (SynBio) our understanding of the subtle line that separates functional from pathogenic and transmissible amyloids (prions). In particular, it is focused on RepA-WH1, a functional albeit unconventional natural amyloidogenic protein domain that participates in controlling DNA replication of bacterial plasmids. SynBio approaches, including protein engineering and the design of allosteric effectors such as diverse ligands and an optogenetic module, have enabled the generation in RepA-WH1 of an intracellular cytotoxic prion-like agent in bacteria. The synthetic RepA-WH1 prion has the potential to develop into novel antimicrobials.
Collapse
|
31
|
Sewell L, Stylianou F, Xu Y, Taylor J, Sefer L, Matthews S. NMR insights into the pre-amyloid ensemble and secretion targeting of the curli subunit CsgA. Sci Rep 2020; 10:7896. [PMID: 32398666 PMCID: PMC7217966 DOI: 10.1038/s41598-020-64135-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/08/2020] [Indexed: 01/08/2023] Open
Abstract
The biofilms of Enterobacteriaceae are fortified by assembly of curli amyloid fibres on the cell surface. Curli not only provides structural reinforcement, but also facilitates surface adhesion. To prevent toxic intracellular accumulation of amyloid precipitate, secretion of the major curli subunit, CsgA, is tightly regulated. In this work, we have employed solution state NMR spectroscopy to characterise the structural ensemble of the pre-fibrillar state of CsgA within the bacterial periplasm, and upon recruitment to the curli pore, CsgG, and the secretion chaperone, CsgE. We show that the N-terminal targeting sequence (N) of CsgA binds specifically to CsgG and that its subsequent sequestration induces a marked transition in the conformational ensemble, which is coupled to a preference for CsgE binding. These observations lead us to suggest a sequential model for binding and structural rearrangement of CsgA at the periplasmic face of the secretion machinery.
Collapse
Affiliation(s)
- Lee Sewell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | - Yingqi Xu
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan Taylor
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Lea Sefer
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Steve Matthews
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
32
|
What Are the Molecular Mechanisms by Which Functional Bacterial Amyloids Influence Amyloid Beta Deposition and Neuroinflammation in Neurodegenerative Disorders? Int J Mol Sci 2020; 21:ijms21051652. [PMID: 32121263 PMCID: PMC7084682 DOI: 10.3390/ijms21051652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the enormous literature documenting the importance of amyloid beta (Aβ) protein in Alzheimer’s disease, we do not know how Aβ aggregation is initiated and why it has its unique distribution in the brain. In vivo and in vitro evidence has been developed to suggest that functional microbial amyloid proteins produced in the gut may cross-seed Aβ aggregation and prime the innate immune system to have an enhanced and pathogenic response to neuronal amyloids. In this commentary, we summarize the molecular mechanisms by which the microbiota may initiate and sustain the pathogenic processes of neurodegeneration in aging.
Collapse
|
33
|
Sampson TR, Challis C, Jain N, Moiseyenko A, Ladinsky MS, Shastri GG, Thron T, Needham BD, Horvath I, Debelius JW, Janssen S, Knight R, Wittung-Stafshede P, Gradinaru V, Chapman M, Mazmanian SK. A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. eLife 2020; 9:53111. [PMID: 32043464 PMCID: PMC7012599 DOI: 10.7554/elife.53111] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloids are a class of protein with unique self-aggregation properties, and their aberrant accumulation can lead to cellular dysfunctions associated with neurodegenerative diseases. While genetic and environmental factors can influence amyloid formation, molecular triggers and/or facilitators are not well defined. Growing evidence suggests that non-identical amyloid proteins may accelerate reciprocal amyloid aggregation in a prion-like fashion. While humans encode ~30 amyloidogenic proteins, the gut microbiome also produces functional amyloids. For example, curli are cell surface amyloid proteins abundantly expressed by certain gut bacteria. In mice overexpressing the human amyloid α-synuclein (αSyn), we reveal that colonization with curli-producing Escherichia coli promotes αSyn pathology in the gut and the brain. Curli expression is required for E. coli to exacerbate αSyn-induced behavioral deficits, including intestinal and motor impairments. Purified curli subunits accelerate αSyn aggregation in biochemical assays, while oral treatment of mice with a gut-restricted amyloid inhibitor prevents curli-mediated acceleration of pathology and behavioral abnormalities. We propose that exposure to microbial amyloids in the gastrointestinal tract can accelerate αSyn aggregation and disease in the gut and the brain.
Collapse
Affiliation(s)
- Timothy R Sampson
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Collin Challis
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Neha Jain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Anastasiya Moiseyenko
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Mark S Ladinsky
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Gauri G Shastri
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Taren Thron
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Brittany D Needham
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Justine W Debelius
- Department of Pediatrics, University of California, San Diego, San Diego, United States
| | - Stefan Janssen
- Department of Pediatrics, University of California, San Diego, San Diego, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, San Diego, United States.,Department of Computer Science and Engineering, University of California, San Diego, San Diego, United States
| | | | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Matthew Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
34
|
Ren B, Zhang Y, Zhang M, Liu Y, Zhang D, Gong X, Feng Z, Tang J, Chang Y, Zheng J. Fundamentals of cross-seeding of amyloid proteins: an introduction. J Mater Chem B 2019; 7:7267-7282. [PMID: 31647489 DOI: 10.1039/c9tb01871a] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Misfolded protein aggregates formed by the same (homologous) or different (heterologous/cross) sequences are the pathological hallmarks of many protein misfolding diseases (PMDs) including Alzheimer's disease (AD) and type 2 diabetes (T2D). Different from homologous-amyloid aggregation that is solely associated with a specific PMD, cross-amyloid aggregation (i.e. cross-seeding) of different amyloid proteins is more fundamentally and biologically important for understanding and untangling not only the pathological process of each PMD, but also a potential molecular cross-talk between different PMDs. However, the cross-amyloid aggregation is still a subject poorly explored and little is known about its sequence/structure-dependent aggregation mechanisms, as compared to the widely studied homo-amyloid aggregation. Here, we review the most recent and important findings of amyloid cross-seeding behaviors from in vitro, in vivo, and in silico studies. Some typical cross-seeding phenomena between Aβ/hIAPP, Aβ/tau, Aβ/α-synuclein, and tau/α-synuclein are selected and presented, and the underlying specific or general cross-seeding mechanisms are also discussed to better reveal their sequence-structure-property relationships. The potential use of the cross-seeding concept to design amyloid inhibitors is also proposed. Finally, we offer some personal perspectives on current major challenges and future research directions in this less-studied yet important field, and hopefully this work will stimulate more research to explore all possible fundamental and practical aspects of amyloid cross-seeding.
Collapse
Affiliation(s)
- Baiping Ren
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Yanxian Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Yonglan Liu
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Dong Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Ohio, USA
| | - Zhangqi Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA.
| |
Collapse
|
35
|
Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents. PLoS Pathog 2019; 15:e1007978. [PMID: 31469892 PMCID: PMC6748439 DOI: 10.1371/journal.ppat.1007978] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/17/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Curli amyloid fibrils secreted by Enterobacteriaceae mediate host cell adhesion and contribute to biofilm formation, thereby promoting bacterial resistance to environmental stressors. Here, we present crystal structures of amyloid-forming segments from the major curli subunit, CsgA, revealing steric zipper fibrils of tightly mated β-sheets, demonstrating a structural link between curli and human pathological amyloids. D-enantiomeric peptides, originally developed to interfere with Alzheimer's disease-associated amyloid-β, inhibited CsgA fibrillation and reduced biofilm formation in Salmonella typhimurium. Moreover, as previously shown, CsgA fibrils cross-seeded fibrillation of amyloid-β, providing support for the proposed structural resemblance and potential for cross-species amyloid interactions. The presented findings provide structural insights into amyloidogenic regions important for curli formation, suggest a novel strategy for disrupting amyloid-structured biofilms, and hypothesize on the formation of self-propagating prion-like species originating from a microbial source that could influence neurodegenerative diseases.
Collapse
|
36
|
Vojdani A, Vojdani E, Saidara E, Kharrazian D. Reaction of Amyloid-β Peptide Antibody with Different Infectious Agents Involved in Alzheimer's Disease. J Alzheimers Dis 2019; 63:847-860. [PMID: 29689721 DOI: 10.3233/jad-170961] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As early as the 1980s, molecular virologist Ruth Itzhaki began to investigate if there was a causal connection between infections and neurodegenerative disorder. Although the theory has yet to be universally embraced, in 2016 Itzhaki and 33 other scientists from all over the world published a review article in this very journal presenting evidence for the causal role of pathogens in Alzheimer's disease (AD). Exactly how and in what way pathogens affect the induction of AD has yet to be determined, but one possible answer may involve the cross-reactivity of different pathogens with amyloid-β (Aβ). Aβ autoantibodies have been detected in the serum and cerebrospinal fluid of AD patients and in some healthy individuals. In the present study our major goal was to investigate whether antibodies made against Aβ would react both with other brain proteins as well as pathogens associated with AD as a result of molecular mimicry or the binding of bacterial toxins to Aβ42. Our study used a specific monoclonal antibody made against Aβ42, which not only reacted strongly with Aβ42, tau protein, and α-synuclein, but also had from weak to strong reactions with 25 different pathogens or their molecules, some of which have been associated with AD. The homology between peptide stretches of microbial origin and proteins involved in AD could be a mechanism by which antibodies to homologous peptides mount attacks against autoantigens in AD. We concluded that bacterial molecules bind to Aβ protein, forming small oligomers, then encasing pathogens and their molecules to form amyloid plaques, the tell-tale markers of AD. Conversely, these same Aβ peptides induce the production of antibodies to both Aβ42 and bacterial molecules, which may inhibit bacterial pathogenesis, but in the process may promote amyloid plaque formation.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., Los Angeles, CA, USA.,Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | - Evan Saidara
- University of California Riverside, Riverside, CA, USA
| | - Datis Kharrazian
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Miraglia F, Colla E. Microbiome, Parkinson's Disease and Molecular Mimicry. Cells 2019; 8:E222. [PMID: 30866550 PMCID: PMC6468760 DOI: 10.3390/cells8030222] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Parkinson's Disease (PD) is typically classified as a neurodegenerative disease affecting the motor system. Recent evidence, however, has uncovered the presence of Lewy bodies in locations outside the CNS, in direct contact with the external environment, including the olfactory bulbs and the enteric nervous system. This, combined with the ability of alpha-synuclein (αS) to propagate in a prion-like manner, has supported the hypothesis that the resident microbial community, commonly referred to as microbiota, might play a causative role in the development of PD. In this article, we will be reviewing current knowledge on the importance of the microbiota in PD pathology, concentrating our investigation on mechanisms of microbiota-host interactions that might become harmful and favor the onset of PD. Such processes, which include the secretion of bacterial amyloid proteins or other metabolites, may influence the aggregation propensity of αS directly or indirectly, for example by favoring a pro-inflammatory environment in the gut. Thus, while the development of PD has not yet being associated with a unique microbial species, more data will be necessary to examine potential harmful interactions between the microbiota and the host, and to understand their relevance in PD pathogenesis.
Collapse
Affiliation(s)
- Fabiana Miraglia
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| | - Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
38
|
Radisavljevic N, Cirstea M, Brett Finlay B. Bottoms up: the role of gut microbiota in brain health. Environ Microbiol 2018; 21:3197-3211. [PMID: 30556271 DOI: 10.1111/1462-2920.14506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022]
Abstract
The gut microbiota affects many aspects of human health, and research, especially over the past decade, is demonstrating that the brain is no exception. This review summarizes existing human observational studies of the microbiota in brain health and neurological conditions at all ages, as well as animal studies that are advancing the field beyond correlation and into causality. Potential mechanisms by which the brain and the gut microbiota are connected are explored, including inflammation, bacterially-produced metabolites and neurotransmitters and specific roles for individual microbes. Finally, important challenges and potential mitigation strategies are discussed, as well as ways in which some of these same challenges can be harnessed to advance our understanding of this complex, exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Nina Radisavljevic
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mihai Cirstea
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Barton Brett Finlay
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Wang Y, Jiang J, Gao Y, Sun Y, Dai J, Wu Y, Qu D, Ma G, Fang X. Staphylococcus epidermidis small basic protein (Sbp) forms amyloid fibrils, consistent with its function as a scaffolding protein in biofilms. J Biol Chem 2018; 293:14296-14311. [PMID: 30049797 PMCID: PMC6139570 DOI: 10.1074/jbc.ra118.002448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Biofilms are communities of microbes embedded in a microbial extracellular matrix. Their formation is considered the main virulence mechanism enabling the opportunistic bacterial pathogen Staphylococcus epidermidis to cause devastating nosocomial, implant-associated infections. Biofilms often contain proteins, and an 18-kDa protein called small basic protein (Sbp) recently was discovered in the S. epidermidis biofilm matrix and may serve as a scaffolding protein in both polysaccharide intercellular adhesin (PIA)-dependent and accumulation-associated protein (Aap)-dependent biofilm formations. In Aap-mediated biofilm formation, Sbp colocalizes with Domain-B of Aap, implying that Sbp directly interacts with Aap's Domain-B. However, the structure of Sbp and its interaction with Aap, as well as the molecular mechanism underlying Sbp's roles in biofilm formation, are incompletely understood. In this work, we used small-angle X-ray scattering (SAXS), NMR, analytical size-exclusion chromatography, and isothermal titration calorimetry analyses to determine the Sbp structure and characterize its interaction with Aap's Domain-B. We found that Sbp is monomeric and partially folded in solution, and, unexpectedly, we observed no direct interactions between Sbp and Aap Domain-B. Instead, we noted that Sbp forms amyloid fibrils both in vitro and in vivo Atomic force, transmission electron, and confocal fluorescence microscopy methods confirmed the formation of Sbp amyloid fibrils and revealed their morphology. Taken together, the Sbp amyloid fibril structures identified here may account for Sbp's role as a scaffolding protein in the S. epidermidis biofilm matrix.
Collapse
Affiliation(s)
- Yan Wang
- From the Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingbo Jiang
- From the Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yachao Gao
- From the Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Sun
- From the Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou 215123, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education and Ministry of Public Health, Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, China, and
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education and Ministry of Public Health, Department of Medical Microbiology and Parasitology, Shanghai Medical College of Fudan University, 138 Yixueyuan Road, Shanghai 200032, China, and
| | - Gang Ma
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xianyang Fang
- From the Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
40
|
Röcker A, Roan NR, Yadav JK, Fändrich M, Münch J. Structure, function and antagonism of semen amyloids. Chem Commun (Camb) 2018; 54:7557-7569. [PMID: 29873340 DOI: 10.1039/c8cc01491d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Amyloid fibrils are linear polypeptide aggregates with a cross-β structure. These fibrils are best known for their association with neurodegenerative diseases, such as Alzheimer's or Parkinson's, but they may also be used by living organisms as functional units, e.g. in the synthesis of melanin or in the formation of bacterial biofilms. About a decade ago, in a search for semen factors that modulate infection by HIV-1 (a sexually transmitted virus and the causative agent of the acquired immune deficiency syndrome (AIDS)), it was demonstrated that semen harbors amyloid fibrils capable of markedly increasing HIV infection rates. This discovery not only created novel opportunities to prevent sexual HIV-1 transmission but also stimulated research to unravel the natural role of these factors. We discuss here the identification of these intriguing structures, their molecular properties, and their effects on both sexually transmitted diseases and reproductive health. Moreover, we review strategies to antagonize semen amyloid to prevent sexual transmission of viruses.
Collapse
Affiliation(s)
- Annika Röcker
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| | | | | | | | | |
Collapse
|
41
|
Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The Role of Functional Amyloids in Bacterial Virulence. J Mol Biol 2018; 430:3657-3684. [PMID: 30009771 PMCID: PMC6173799 DOI: 10.1016/j.jmb.2018.07.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Amyloid fibrils are best known as a product of human and animal protein misfolding disorders, where amyloid formation is associated with cytotoxicity and disease. It is now evident that for some proteins, the amyloid state constitutes the native structure and serves a functional role. These functional amyloids are proving widespread in bacteria and fungi, fulfilling diverse functions as structural components in biofilms or spore coats, as toxins and surface-active fibers, as epigenetic material, peptide reservoirs or adhesins mediating binding to and internalization into host cells. In this review, we will focus on the role of functional amyloids in bacterial pathogenesis. The role of functional amyloids as virulence factor is diverse but mostly indirect. Nevertheless, functional amyloid pathways deserve consideration for the acute and long-term effects of the infectious disease process and may form valid antimicrobial targets. Functional amyloids are widespread in bacteria, pathogenic and non-pathogenic. Bacterial biofilms most commonly function as structural support in the extracellular matrix of biofilms or spore coats, and in cell–cell and cell-surface adherence. The amyloid state can be the sole structured and functional state, or can be facultative, as a secondary state to folded monomeric subunits. Bacterial amyloids can enhance virulence by increasing persistence, cell adherence and invasion, intracellular survival, and pathogen spread by increased environmental survival. Bacterial amyloids may indirectly inflict disease by triggering inflammation, contact phase activation and possibly induce or aggravate human pathological aggregation disorders.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander E Van der Verren
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk M Reiter
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
42
|
Zhang T, Yang H, Yang Z, Tan S, Jin J, Liu S, Zhang J. Sulfonated Compounds Bind with Prostatic Acid Phosphatase (PAP 248-286) to Inhibit the Formation of Amyloid Fibrils. ChemistryOpen 2018; 7:447-456. [PMID: 29928568 PMCID: PMC5997223 DOI: 10.1002/open.201800041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 12/13/2022] Open
Abstract
The peptide segment of prostatic acid phosphatase (PAP248-286) aggregates to form SEVI (semen-derived enhancer of virus infection) amyloid fibrils. These are characteristic seminal amyloids that have the ability to promote the effect of HIV infection. In this paper, we explore the binding of sulfonated compounds with PAP248-286 through an in silico study. Three derivatives of suramin, NF110, NF279, and NF340, are selected. All of these sulfonated molecules bind to PAP248-286 and alter the conformation of the peptide, even though they have various structures, sizes, and configurations. The compounds bind with PAP248-286 through multiple interactions, such as hydrogen-bonding interactions, hydrophobic interactions, π-π stacking interactions, and electrostatic interactions. However, NF110, which has an X-shaped configuration, has the highest binding affinity of the three derivatives investigated. We also perform surface plasmon resonance and a Congo red assay to validate the results. The interactions between PAP248-286 and the sulfonated compounds are proposed to depend on the orientations of the sulfonate groups and the specific configurations of the compounds instead of the number of sulfonate groups. NF110 molecules occupy the exposed binding sites of PAP248-286, blocking interactions between the peptides. Therefore, these compounds are important in inhibiting the aggregation of PAP248-286. Herein, we provide useful information to develop new efficient microbicides to antagonize seminal amyloid fibrils and to block HIV transmission.
Collapse
Affiliation(s)
- Tingting Zhang
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P.R. China
| | - Haikui Yang
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P.R. China
| | - Zichao Yang
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P.R. China
| | - Suiyi Tan
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P.R. China
| | - Jiabin Jin
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P.R. China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P.R. China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515P.R. China
| |
Collapse
|
43
|
3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 2018; 138-139:26-38. [DOI: 10.1016/j.ymeth.2018.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/08/2023] Open
|
44
|
Lee YH, Ramamoorthy A. Semen-derived amyloidogenic peptides-Key players of HIV infection. Protein Sci 2018; 27:1151-1165. [PMID: 29493036 DOI: 10.1002/pro.3395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 12/26/2022]
Abstract
Misfolding and amyloid aggregation of intrinsically disordered proteins (IDPs) are implicated in a variety of diseases. Studies have shown that membrane plays important roles on the formation of intermediate structures of IDPs that can initiate (and/or speed-up) amyloid aggregation to form fibers. The process of amyloid aggregation also disrupts membrane to cause cell death in amyloid diseases like Alzheimer's disease and type-2 diabetes. On the other hand, recent studies reported the membrane fusion properties of amyloid fibers. Remarkably, amyloid-fibril formation by short peptide fragments of highly abundant prostatic acidic-phosphatase (PAP) in human semen and are capable of boosting the rate of HIV infection up to 400,000-fold during sexual contact. Unlike the least toxic fully matured fibers of most amyloid proteins, the semen-derived enhancer of virus infection (SEVI) amyloid-fibrils of PAP peptide fragments are highly potent in rendering the maximum rate of HIV infection. This unusual property of amyloid fibers has witnessed increasing number of studies on the biophysical aspects of fiber formation and fiber-membrane interactions. NMR studies have reported a highly disordered partial helical structure in a membrane environment for the intrinsically disordered PAP peptide that promotes the fusion of the viral membrane with that of host cells. The purpose of this review article is to unify and integrate biophysical and immunological research reported in the previous studies on SEVI. Specifically, amyloid aggregation, dramatic HIV infection enhancing properties, membrane fusion properties, high resolution NMR structure, and approaches to eliminate the enhancement of HIV infection of SEVI peptides are discussed.
Collapse
Affiliation(s)
- Young-Ho Lee
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka, 565-0871, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055
| |
Collapse
|
45
|
Bastian FO. Combined Creutzfeldt-Jakob/ Alzheimer's Disease Cases are Important in Search for Microbes in Alzheimer's Disease. J Alzheimers Dis 2018; 56:867-873. [PMID: 28059790 DOI: 10.3233/jad-160999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The question whether Alzheimer's disease is infectious as brought up in the recent editorial published in the Journal of Alzheimer's Disease is complicated by the controversy whether the causal agent is a microbe or a misfolded host protein (amyloid). The replicating amyloid (prion) theory, based upon data from studies of Creutzfeldt-Jakob disease (CJD) and other transmissible spongiform encephalopathies (TSEs), has been challenged since the prion can be separated from TSE infectivity, and spiroplasma, a wall-less bacterium, has been shown to be involved in the pathogenesis of CJD. Further support for a microbial cause for AD comes from occurrence of mixed CJD/AD cases involving up to 15% of AD brains submitted to brain banks. The association of CJD with AD suggests a common etiology rather than simply being a medical curiosity. A co-infection with the transmissible agent of CJD, which we propose to be a Spiroplasma sp., would explain the diversity of bacteria shown to be associated with cases of AD.
Collapse
Affiliation(s)
- Frank O Bastian
- School of Animal Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.,Tulane Medical School, New Orleans, LA, USA.,Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
46
|
Ren B, Hu R, Zhang M, Liu Y, Xu L, Jiang B, Ma J, Ma B, Nussinov R, Zheng J. Experimental and Computational Protocols for Studies of Cross-Seeding Amyloid Assemblies. Methods Mol Biol 2018; 1777:429-447. [PMID: 29744852 PMCID: PMC6456059 DOI: 10.1007/978-1-4939-7811-3_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are two common protein aggregation diseases. Compelling evidence has shown a link between AD and T2D, which may derive from interspecies cross-sequence interactions between amyloid-β peptide (Aβ), associated with AD, and human islet amyloid polypeptide (hIAPP), associated with T2D. Herein, we present experimental and computational protocols and tools to study the aggregate structures and kinetics, conformational conversion, and molecular interactions of Aβ-hIAPP mixtures. These protocols could be generally applied to other cross-seeding behaviors of amyloid peptides.
Collapse
Affiliation(s)
- Baiping Ren
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
| | - Rundong Hu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
| | - Mingzhen Zhang
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
| | - Yonglan Liu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
| | - Lijian Xu
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
- College of Life Sciences and Chemistry Hunan University of Technology, Zhuzhou, China
| | - Binbo Jiang
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jie Ma
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, USA.
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, USA.
| |
Collapse
|
47
|
Chen J, Ren R, Yu F, Wang C, Zhang X, Li W, Tan S, Jiang S, Liu S, Li L. A Degraded Fragment of HIV-1 Gp120 in Rat Hepatocytes Forms Fibrils and Enhances HIV-1 Infection. Biophys J 2017; 113:1425-1439. [PMID: 28978437 DOI: 10.1016/j.bpj.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/26/2022] Open
Abstract
Identification of the host or viral factors that enhance HIV infection is critical for preventing sexual transmission of HIV. Amyloid fibrils derived from human semen, including semen-derived enhancer of virus infection and semenogelins, enhance HIV-1 infection dramatically in vitro. In this study, we reported that a short-degraded peptide fragment 1 (DPF1) derived from native HIV-1 envelope protein gp120-loaded rat hepatocytes, formed fibrils by self-assembly and thus enhanced HIV-1 infection by promoting the binding of HIV-1 to target cells. Furthermore, DPF1-formed fibrils might be used as a crossing seed to accelerate the formation of semen-derived enhancer of virus infection and semenogelin fibrils. It will be helpful to clarify the viral factors that affect HIV-1 infection. DPF1 as an analog of gp120 containing the critical residues for CD4 binding might be useful for designing of HIV vaccines and developing HIV entry inhibitors.
Collapse
Affiliation(s)
- Jinquan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; Jiangsu Protein Drug Engineering Laboratory, Jiangsu Food and Pharmaceutical Science College, Huai'an, China
| | - Ruxia Ren
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fei Yu
- College of Life Sciences, Agricultural University of Hebei, Baoding, China; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chunyan Wang
- Center for Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuanxuan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjuan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Suiyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
48
|
Pritchard AB, Crean S, Olsen I, Singhrao SK. Periodontitis, Microbiomes and their Role in Alzheimer's Disease. Front Aging Neurosci 2017; 9:336. [PMID: 29114218 PMCID: PMC5660720 DOI: 10.3389/fnagi.2017.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
As far back as the eighteenth and early nineteenth centuries, microbial infections were responsible for vast numbers of deaths. The trend reversed with the introduction of antibiotics coinciding with longer life. Increased life expectancy however, accompanied the emergence of age related chronic inflammatory states including the sporadic form of Alzheimer's disease (AD). Taken together, the true challenge of retaining health into later years of life now appears to lie in delaying and/or preventing the progression of chronic inflammatory diseases, through identifying and influencing modifiable risk factors. Diverse pathogens, including periodontal bacteria have been associated with AD brains. Amyloid-beta (Aβ) hallmark protein of AD may be a consequence of infection, called upon due to its antimicrobial properties. Up to this moment in time, a lack of understanding and knowledge of a microbiome associated with AD brain has ensured that the role pathogens may play in this neurodegenerative disease remains unresolved. The oral microbiome embraces a range of diverse bacterial phylotypes, which especially in vulnerable individuals, will excite and perpetuate a range of inflammatory conditions, to a wide range of extra-oral body tissues and organs specific to their developing pathophysiology, including the brain. This offers the tantalizing opportunity that by controlling the oral-specific microbiome; clinicians may treat or prevent a range of chronic inflammatory diseases orally. Evolution has equipped the human host to combat infection/disease by providing an immune system, but Porphyromonas gingivalis and selective spirochetes, have developed immune avoidance strategies threatening the host-microbe homeostasis. It is clear from longitudinal monitoring of patients that chronic periodontitis contributes to declining cognition. The aim here is to discuss the contribution from opportunistic pathogens of the periodontal microbiome, and highlight the challenges, the host faces, when dealing with unresolvable oral infections that may lead to clinical manifestations that are characteristic for AD.
Collapse
Affiliation(s)
- Anna B. Pritchard
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - StJohn Crean
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K. Singhrao
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
49
|
Hewetson A, Do HQ, Myers C, Muthusubramanian A, Sutton RB, Wylie BJ, Cornwall GA. Functional Amyloids in Reproduction. Biomolecules 2017; 7:biom7030046. [PMID: 28661450 PMCID: PMC5618227 DOI: 10.3390/biom7030046] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022] Open
Abstract
Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.
Collapse
Affiliation(s)
- Aveline Hewetson
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Hoa Quynh Do
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Caitlyn Myers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Archana Muthusubramanian
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Roger Bryan Sutton
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Benjamin J Wylie
- Department of Chemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
50
|
Synthetic biology engineering of biofilms as nanomaterials factories. Biochem Soc Trans 2017; 45:585-597. [DOI: 10.1042/bst20160348] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 11/17/2022]
Abstract
Bottom-up fabrication of nanoscale materials has been a significant focus in materials science for expanding our technological frontiers. This assembly concept, however, is old news to biology — all living organisms fabricate themselves using bottom-up principles through a vast self-organizing system of incredibly complex biomolecules, a marvelous dynamic that we are still attempting to unravel. Can we use what we have gleaned from biology thus far to illuminate alternative strategies for designer nanomaterial manufacturing? In the present review article, new synthetic biology efforts toward using bacterial biofilms as platforms for the synthesis and secretion of programmable nanomaterials are described. Particular focus is given to self-assembling functional amyloids found in bacterial biofilms as re-engineerable modular nanomolecular components. Potential applications and existing challenges for this technology are also explored. This novel approach for repurposing biofilm systems will enable future technologies for using engineered living systems to grow artificial nanomaterials.
Collapse
|