1
|
Guenin S, Pakula CJ, Skaggs J, Fernández-Juricic E, DeVault TL. Inefficacy of mallard flight responses to approaching vehicles. PeerJ 2024; 12:e18124. [PMID: 39346053 PMCID: PMC11438428 DOI: 10.7717/peerj.18124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Vehicle collisions with birds are financially costly and dangerous to humans and animals. To reduce collisions, it is necessary to understand how birds respond to approaching vehicles. We used simulated (i.e., animals exposed to video playback) and real vehicle approaches with mallards (Anas platyrynchos) to quantify flight behavior and probability of collision under different vehicle speeds and times of day (day vs. night). Birds exposed to simulated nighttime approaches exhibited reduced probability of attempting escape, but when escape was attempted, fled with more time before collision compared to birds exposed to simulated daytime approaches. The lower probability of flight may indicate that the visual stimulus of vehicle approaches at night (i.e., looming headlights) is perceived as less threatening than when the full vehicle is more visible during the day; alternatively, the mallard visual system might be incompatible with vehicle lighting in dark settings. Mallards approached by a real vehicle exhibited a delayed margin of safety (both flight initiation distance and time before collision decreased with speed); they are the first bird species found to exhibit this response to vehicle approach. Our findings suggest mallards are poorly equipped to adequately respond to fast-moving vehicles and demonstrate the need for continued research into methods promoting effective avian avoidance behaviors.
Collapse
Affiliation(s)
- Shane Guenin
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, Georgia, United States
| | - Carson J Pakula
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens, Georgia, United States
| | - Jonathon Skaggs
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States
| | | | - Travis L DeVault
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, United States
| |
Collapse
|
2
|
Lunn R, Baumhardt PE, Blackwell BF, Freyssinier JP, Fernández-Juricic E. Light wavelength and pulsing frequency affect avoidance responses of Canada geese. PeerJ 2023; 11:e16379. [PMID: 38025716 PMCID: PMC10668863 DOI: 10.7717/peerj.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Collisions between birds and aircraft cause bird mortality, economic damage, and aviation safety hazards. One proposed solution to increasing the distance at which birds detect and move away from an approaching aircraft, ultimately mitigating the probability of collision, is through onboard lighting systems. Lights in vehicles have been shown to lead to earlier reactions in some bird species but they could also generate attraction, potentially increasing the probability of collision. Using information on the visual system of the Canada goose (Branta canadensis), we developed light stimuli of high chromatic contrast to their eyes. We then conducted a controlled behavioral experiment (i.e., single-choice test) to assess the avoidance or attraction responses of Canada geese to LED lights of different wavelengths (blue, 483 nm; red, 631 nm) and pulsing frequencies (steady, pulsing at 2 Hz). Overall, Canada geese tended to avoid the blue light and move towards the red light; however, these responses depended heavily on light exposure order. At the beginning of the experiment, geese tended to avoid the red light. After further exposure the birds developed an attraction to the red light, consistent with the mere exposure effect. The response to the blue light generally followed a U-shape relationship (avoidance, attraction, avoidance) with increasing number of exposures, again consistent with the mere exposure effect, but followed by the satiation effect. Lights pulsing at 2 Hz enhanced avoidance responses under high ambient light conditions; whereas steady lights enhanced avoidance responses under dim ambient light conditions. Our results have implications for the design of lighting systems aimed at mitigating collisions between birds and human objects. LED lights in the blue portion of the spectrum are good candidates for deterrents and lights in the red portion of the spectrum may be counterproductive given the attraction effects with increasing exposure. Additionally, consideration should be given to systems that automatically modify pulsing of the light depending on ambient light intensity to enhance avoidance.
Collapse
Affiliation(s)
- Ryan Lunn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Patrice E. Baumhardt
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Bradley F. Blackwell
- United States Department of Agriculture, Animal and Plant Health and Inspection Services, National Wildlife Research Center, Sandusky, OH, United States of America
| | - Jean Paul Freyssinier
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | | |
Collapse
|
3
|
Goller B, Baumhardt P, Dominguez-Villegas E, Katzner T, Fernández-Juricic E, Lucas JR. Selecting auditory alerting stimuli for eagles on the basis of auditory evoked potentials. CONSERVATION PHYSIOLOGY 2022; 10:coac059. [PMID: 36134144 PMCID: PMC9486983 DOI: 10.1093/conphys/coac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Development of wind energy facilities results in interactions between wildlife and wind turbines. Raptors, including bald and golden eagles, are among the species known to incur mortality from these interactions. Several alerting technologies have been proposed to mitigate this mortality by increasing eagle avoidance of wind energy facilities. However, there has been little attempt to match signals used as alerting stimuli with the sensory capabilities of target species like eagles. One potential approach to tuning signals is to use sensory physiology to determine what stimuli the target eagle species are sensitive to even in the presence of background noise, thereby allowing the development of a maximally stimulating signal. To this end, we measured auditory evoked potentials of bald and golden eagles to determine what types of sounds eagles can process well, especially in noisy conditions. We found that golden eagles are significantly worse than bald eagles at processing rapid frequency changes in sounds, but also that noise effects on hearing in both species are minimal in response to rapidly changing sounds. Our findings therefore suggest that sounds of intermediate complexity may be ideal both for targeting bald and golden eagle hearing and for ensuring high stimulation in noisy field conditions. These results suggest that the sensory physiology of target species is likely an important consideration when selecting auditory alerting sounds and may provide important insight into what sounds have a reasonable probability of success in field applications under variable conditions and background noise.
Collapse
Affiliation(s)
- Benjamin Goller
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Patrice Baumhardt
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Todd Katzner
- U.S. Geological Survey, Forest & Rangeland Ecosystem Science Center, 230 N Collins Rd., Boise, ID 83702, USA
| | | | - Jeffrey R Lucas
- Corresponding author: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. Tel: 765-494-8112.
| |
Collapse
|
4
|
Owens ACS, Dressler CT, Lewis SM. Costs and benefits of "insect friendly" artificial lights are taxon specific. Oecologia 2022; 199:487-497. [PMID: 35650413 DOI: 10.1007/s00442-022-05189-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/17/2022] [Indexed: 01/13/2023]
Abstract
The expansion of human activity into natural habitats often results in the introduction of artificial light at night, which can disrupt local ecosystems. Recent advances in LED technology have enabled spectral tuning of artificial light sources, which could in theory limit their impact on vulnerable taxa. To date, however, experimental comparisons of ecologically friendly candidate colors have often considered only one type of behavioral impact, sometimes on only single species. Resulting recommendations cannot be broadly implemented if their consequences for other local taxa are unknown. Working at a popular firefly ecotourism site, we exposed the insect community to artificial illumination of three colors (blue, broad-spectrum amber, red) and measured flight-to-light behavior as well as the courtship flash behavior of male Photinus carolinus fireflies. Firefly courtship activity was greatest under blue and red lights, while the most flying insects were attracted to blue and broad-spectrum amber lights. Thus, while impacts of spectrally tuned artificial light varied across taxa, our results suggest that red light, rather than amber light, is least disruptive to insects overall, and therefore more generally insect friendly.
Collapse
Affiliation(s)
- Avalon C S Owens
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.
| | - Caroline T Dressler
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, 02155, USA.,Department of Ecology, Evolution, and Organismal Biology, Brown University, 80 Waterman Street, Providence, RI, 02912, USA
| | - Sara M Lewis
- Department of Biology, Tufts University, 200 College Avenue, Medford, MA, 02155, USA
| |
Collapse
|
5
|
Lunn RB, Blackwell BF, DeVault TL, Fernández-Juricic E. Can we use antipredator behavior theory to predict wildlife responses to high-speed vehicles? PLoS One 2022; 17:e0267774. [PMID: 35551549 PMCID: PMC9098083 DOI: 10.1371/journal.pone.0267774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Animals seem to rely on antipredator behavior to avoid vehicle collisions. There is an extensive body of antipredator behavior theory that have been used to predict the distance/time animals should escape from predators. These models have also been used to guide empirical research on escape behavior from vehicles. However, little is known as to whether antipredator behavior models are appropriate to apply to an approaching high-speed vehicle scenario. We addressed this gap by (a) providing an overview of the main hypotheses and predictions of different antipredator behavior models via a literature review, (b) exploring whether these models can generate quantitative predictions on escape distance when parameterized with empirical data from the literature, and (c) evaluating their sensitivity to vehicle approach speed using a simulation approach wherein we assessed model performance based on changes in effect size with variations in the slope of the flight initiation distance (FID) vs. approach speed relationship. The slope of the FID vs. approach speed relationship was then related back to three different behavioral rules animals may rely on to avoid approaching threats: the spatial, temporal, or delayed margin of safety. We used literature on birds for goals (b) and (c). Our review considered the following eight models: the economic escape model, Blumstein's economic escape model, the optimal escape model, the perceptual limit hypothesis, the visual cue model, the flush early and avoid the rush (FEAR) hypothesis, the looming stimulus hypothesis, and the Bayesian model of escape behavior. We were able to generate quantitative predictions about escape distance with the last five models. However, we were only able to assess sensitivity to vehicle approach speed for the last three models. The FEAR hypothesis is most sensitive to high-speed vehicles when the species follows the spatial (FID remains constant as speed increases) and the temporal margin of safety (FID increases with an increase in speed) rules of escape. The looming stimulus effect hypothesis reached small to intermediate levels of sensitivity to high-speed vehicles when a species follows the delayed margin of safety (FID decreases with an increase in speed). The Bayesian optimal escape model reached intermediate levels of sensitivity to approach speed across all escape rules (spatial, temporal, delayed margins of safety) but only for larger (> 1 kg) species, but was not sensitive to speed for smaller species. Overall, no single antipredator behavior model could characterize all different types of escape responses relative to vehicle approach speed but some models showed some levels of sensitivity for certain rules of escape behavior. We derive some applied applications of our findings by suggesting the estimation of critical vehicle approach speeds for managing populations that are especially susceptible to road mortality. Overall, we recommend that new escape behavior models specifically tailored to high-speeds vehicles should be developed to better predict quantitatively the responses of animals to an increase in the frequency of cars, airplanes, drones, etc. they will face in the next decade.
Collapse
Affiliation(s)
- Ryan B. Lunn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Bradley F. Blackwell
- USDA, APHIS, Wildlife Services, National Wildlife Research Center, Sandusky, OH, United States of America
| | - Travis L. DeVault
- Savannah River Ecology Laboratory, University of Georgia, Jackson, SC, United States of America
| | | |
Collapse
|
6
|
Thady RG, Emerson LC, Swaddle JP. Evaluating acoustic signals to reduce avian collision risk. PeerJ 2022; 10:e13313. [PMID: 35573177 PMCID: PMC9104101 DOI: 10.7717/peerj.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/30/2022] [Indexed: 01/13/2023] Open
Abstract
Collisions with human-made structures are responsible for billions of bird deaths each year, resulting in ecological damage as well as regulatory and financial burdens to many industries. Acoustic signals can alert birds to obstacles in their flight paths in order to mitigate collisions, but these signals should be tailored to the sensory ecology of birds in flight as the effectiveness of various acoustic signals potentially depends on the influence of background noise and the relative ability of various sound types to propagate within a landscape. We measured changes in flight behaviors from zebra finches released into a flight corridor containing a physical obstacle, either in no-additional-sound control conditions or when exposed to one of four acoustic signals. We selected signals to test two frequency ranges (4-6 kHz or 6-8 kHz) and two temporal modulation patterns (broadband or frequency-modulated oscillating) to determine whether any particular combination of sound attributes elicited the strongest collision avoidance behaviors. We found that, relative to control flights, all sound treatments caused birds to maintain a greater distance from hazards and to adjust their flight trajectories before coming close to obstacles. There were no statistical differences among different sound treatments, but consistent trends within the data suggest that the 4-6 kHz frequency-modulated oscillating signal elicited the strongest avoidance behaviors. We conclude that a variety of acoustic signals can be effective as avian collision deterrents, at least in the context in which we tested these birds. These results may be most directly applicable in scenarios when birds are at risk of collisions with solid structures, such as wind turbines and communication towers, as opposed to window collisions or collisions involving artificial lighting. We recommend the incorporation of acoustic signals into multimodal collision deterrents and demonstrate the value of using behavioral data to assess collision risk.
Collapse
Affiliation(s)
- Robin G. Thady
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - Lauren C. Emerson
- Biology Department, William & Mary, Williamsburg, VA, United States of America
| | - John P. Swaddle
- Biology Department, William & Mary, Williamsburg, VA, United States of America,Institute for Integrative Conservation, William & Mary, Williamsburg, VA, United States of America
| |
Collapse
|
7
|
Cryan PM, Gorresen PM, Straw BR, Thao S(S, DeGeorge E. Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light. Animals (Basel) 2021; 12:ani12010009. [PMID: 35011115 PMCID: PMC8744972 DOI: 10.3390/ani12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Bats often fly near wind turbines. The fatalities associated with this behavior continue to be an issue for wind energy development and wildlife conservation. We tested an experimental method intended to reduce bat fatalities at the wind turbines. We assumed that bats navigate over long distances at night by dim-light vision and might be dissuaded from approaching artificially lit structures. For over a year, we experimentally lit wind turbines at night with dim, flickering ultraviolet (UV) light while measuring the presence and activity of bats, birds, and insects with thermal-imaging cameras. We detected no statistical differences in the activity of the bats, insects, or birds at a test turbine when lit with UV light compared with that of unlit nights. Additional experiments to test this or other possible bat-deterrence methods may benefit from considering subtle measures of animal response that can provide useful information on the possible behavioral effects of fatality-reduction experiments. Abstract Wind energy producers need deployable devices for wind turbines that prevent bat fatalities. Based on the speculation that bats approach turbines after visually mistaking them for trees, we tested a potential light-based deterrence method. It is likely that the affected bats see ultraviolet (UV) light at low intensities. Here, we present the results of a multi-month experiment to cast dim, flickering UV light across wind turbine surfaces at night. Our objectives were to refine and test a practical system for dimly UV-illuminating turbines while testing whether the experimental UV treatment influenced the activity of bats, birds, and insects. We mounted upward-facing UV light arrays on turbines and used thermal-imaging cameras to quantify the presence and activity of night-flying animals. The results demonstrated that the turbines can be lit to the highest reaches of the blades with “invisible” UV light, and the animal responses to such experimental treatment can be concurrently monitored. The UV treatment did not significantly change nighttime bat, insect, or bird activity at the wind turbine. Our findings show how observing flying animals with thermal cameras at night can help test emerging technologies intended to variably affect their behaviors around wind turbines.
Collapse
Affiliation(s)
- Paul M. Cryan
- U.S. Geological Survey (USGS), Fort Collins Science Center, Fort Collins, CO 80526, USA;
- Correspondence:
| | - Paulo M. Gorresen
- Hawaii Cooperative Studies Unit, University of Hawaii at Hilo, Hilo, HI 96720, USA;
- USGS Pacific Island Ecosystems Science Center, Hawaii Volcanoes National Park, Hilo, HI 96718, USA
| | - Bethany R. Straw
- U.S. Geological Survey (USGS), Fort Collins Science Center, Fort Collins, CO 80526, USA;
| | - Syhoune (Simon) Thao
- U.S. Department of Energy, National Renewable Energy Laboratory, National Wind Technology Center, Boulder, CO 80007, USA; (S.T.); (E.D.)
| | - Elise DeGeorge
- U.S. Department of Energy, National Renewable Energy Laboratory, National Wind Technology Center, Boulder, CO 80007, USA; (S.T.); (E.D.)
| |
Collapse
|
8
|
Responses of turkey vultures to unmanned aircraft systems vary by platform. Sci Rep 2021; 11:21655. [PMID: 34737377 PMCID: PMC8569017 DOI: 10.1038/s41598-021-01098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
A challenge that conservation practitioners face is manipulating behavior of nuisance species. The turkey vulture (Cathartes aura) can cause substantial damage to aircraft if struck. The goal of this study was to assess vulture responses to unmanned aircraft systems (UAS) for use as a possible dispersal tool. Our treatments included three platforms (fixed-wing, multirotor, and a predator-like ornithopter [powered by flapping flight]) and two approach types (30 m overhead or targeted towards a vulture) in an operational context. We evaluated perceived risk as probability of reaction, reaction time, flight-initiation distance (FID), vulture remaining index, and latency to return. Vultures escaped sooner in response to the fixed-wing; however, fewer remained after multirotor treatments. Targeted approaches were perceived as riskier than overhead. Vulture perceived risk was enhanced by flying the multirotor in a targeted approach. We found no effect of our treatments on FID or latency to return. Latency was negatively correlated with UAS speed, perhaps because slower UAS spent more time over the area. Greatest visual saliency followed as: ornithopter, fixed-wing, and multirotor. Despite its appearance, the ornithopter was not effective at dispersing vultures. Because effectiveness varied, multirotor/fixed-wing UAS use should be informed by management goals (immediate dispersal versus latency).
Collapse
|
9
|
Boycott TJ, Mullis SM, Jackson BE, Swaddle JP. Field testing an "acoustic lighthouse": Combined acoustic and visual cues provide a multimodal solution that reduces avian collision risk with tall human-made structures. PLoS One 2021; 16:e0249826. [PMID: 33909647 PMCID: PMC8081207 DOI: 10.1371/journal.pone.0249826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
Billions of birds fatally collide with human-made structures each year. These mortalities have consequences for population viability and conservation of endangered species. This source of human-wildlife conflict also places constraints on various industries. Furthermore, with continued increases in urbanization, the incidence of collisions continues to increase. Efforts to reduce collisions have largely focused on making structures more visible to birds through visual stimuli but have shown limited success. We investigated the efficacy of a multimodal combination of acoustic signals with visual cues to reduce avian collisions with tall structures in open airspace. Previous work has demonstrated that a combination of acoustic and visual cues can decrease collision risk of birds in captive flight trials. Extending to field tests, we predicted that novel acoustic signals would combine with the visual cues of tall communication towers to reduce collision risk for birds. We broadcast two audible frequency ranges (4 to 6 and 6 to 8 kHz) in front of tall communication towers at locations in the Atlantic migratory flyway of Virginia during annual migration and observed birds' flight trajectories around the towers. We recorded an overall 12-16% lower rate of general bird activity surrounding towers during sound treatment conditions, compared with control (no broadcast sound) conditions. Furthermore, in 145 tracked "at-risk" flights, birds reduced flight velocity and deflected flight trajectories to a greater extent when exposed to the acoustic stimuli near the towers. In particular, the 4 to 6 kHz stimulus produced the greater effect sizes, with birds altering flight direction earlier in their trajectories and at larger distances from the towers, perhaps indicating that frequency range is more clearly audible to flying birds. This "acoustic lighthouse" concept reduces the risk of collision for birds in the field and could be applied to reduce collision risk associated with many human-made structures, such as wind turbines and tall buildings.
Collapse
Affiliation(s)
- Timothy J. Boycott
- Biology Department, William & Mary, Williamsburg, Virginia, United States of America
| | - Sally M. Mullis
- Biology Department, William & Mary, Williamsburg, Virginia, United States of America
| | - Brandon E. Jackson
- Department of Biological and Environmental Sciences, Longwood University, Farmville, Virginia, United States of America
| | - John P. Swaddle
- Biology Department, William & Mary, Williamsburg, Virginia, United States of America
- Institute for Integrative Conservation, William & Mary, Williamsburg, Virginia, United States of America
| |
Collapse
|
10
|
Greggor AL, Berger-Tal O, Swaisgood RR, Cooke SJ, DeVault TL, Fernández-Juricic E, Gienapp A, Hall S, Hostetter C, Owen MA, Rankin S, Ruppert KA, Swaddle JP, Blumstein DT. Using Change Models to Envision Better Applications of Animal Behavior Research in Conservation Management and Beyond. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.653056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While most animal behavior researchers have mastered the process of knowledge creation, generating knowledge that can readily be applied requires a different set of skills. The process and timeframe of fundamental scientific knowledge production is often not relevant to those who might apply it, such as conservation or wildlife managers. Additionally, the complex challenges that policy makers, managers and practitioners face are often not adequately communicated to and among scientists. This mutual disconnect in discourse, relationships, common terms, and practices is especially apparent when animal behavior researchers seek to have applied impact. We argue that bridging the complex implementation gap in animal behavior requires a formalized vision for change. We turn to change model theory, a tool commonly used in other fields for identifying the links between actions and outcomes necessary for enacting large-scale change. We focus on the subfield of conservation behavior with a change model that outlines specific ways to improve collaboration and coordination between animal behavior science and conservation practice. We present this targeted change model, review each strategy the model outlines, and highlight pressing actions that people from various career stages and backgrounds can take. We encourage researchers to further the alignment of science with management needs by developing the proper communication mechanisms for improved cultural exchange and plan future change model efforts directly targeting managers. Beyond the conservation behavior change model we present, we also discuss the broad applicability of change models to enhance the application of academic research to other fields. Fundamental science researchers are increasingly required to show impact of their work on society; the change model process we describe here can enable further impact.
Collapse
|
11
|
Elmer LK, Madliger CL, Blumstein DT, Elvidge CK, Fernández-Juricic E, Horodysky AZ, Johnson NS, McGuire LP, Swaisgood RR, Cooke SJ. Exploiting common senses: sensory ecology meets wildlife conservation and management. CONSERVATION PHYSIOLOGY 2021; 9:coab002. [PMID: 33815799 PMCID: PMC8009554 DOI: 10.1093/conphys/coab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 05/21/2023]
Abstract
Multidisciplinary approaches to conservation and wildlife management are often effective in addressing complex, multi-factor problems. Emerging fields such as conservation physiology and conservation behaviour can provide innovative solutions and management strategies for target species and systems. Sensory ecology combines the study of 'how animals acquire' and process sensory stimuli from their environments, and the ecological and evolutionary significance of 'how animals respond' to this information. We review the benefits that sensory ecology can bring to wildlife conservation and management by discussing case studies across major taxa and sensory modalities. Conservation practices informed by a sensory ecology approach include the amelioration of sensory traps, control of invasive species, reduction of human-wildlife conflicts and relocation and establishment of new populations of endangered species. We illustrate that sensory ecology can facilitate the understanding of mechanistic ecological and physiological explanations underlying particular conservation issues and also can help develop innovative solutions to ameliorate conservation problems.
Collapse
Affiliation(s)
- Laura K Elmer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23668, USA
| | - Nicholas S Johnson
- USGS, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | - Liam P McGuire
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ronald R Swaisgood
- Institute for Conservation Research, San Diego Zoo Global, San Diego, CA 92027-7000, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
12
|
Gradolewski D, Dziak D, Kaniecki D, Jaworski A, Skakuj M, Kulesza WJ. A Runway Safety System Based on Vertically Oriented Stereovision. SENSORS 2021; 21:s21041464. [PMID: 33672458 PMCID: PMC7923446 DOI: 10.3390/s21041464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023]
Abstract
In 2020, over 10,000 bird strikes were reported in the USA, with average repair costs exceeding $200 million annually, rising to $1.2 billion worldwide. These collisions of avifauna with airplanes pose a significant threat to human safety and wildlife. This article presents a system dedicated to monitoring the space over an airport and is used to localize and identify moving objects. The solution is a stereovision based real-time bird protection system, which uses IoT and distributed computing concepts together with advanced HMI to provide the setup's flexibility and usability. To create a high degree of customization, a modified stereovision system with freely oriented optical axes is proposed. To provide a market tailored solution affordable for small and medium size airports, a user-driven design methodology is used. The mathematical model is implemented and optimized in MATLAB. The implemented system prototype is verified in a real environment. The quantitative validation of the system performance is carried out using fixed-wing drones with GPS recorders. The results obtained prove the system's high efficiency for detection and size classification in real-time, as well as a high degree of localization certainty.
Collapse
Affiliation(s)
- Dawid Gradolewski
- Bioseco Sp. z. o. o., Budowlanych 68, 80-298 Gdansk, Poland; (D.D.); (D.K.); (A.J.)
- Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden;
- Correspondence:
| | - Damian Dziak
- Bioseco Sp. z. o. o., Budowlanych 68, 80-298 Gdansk, Poland; (D.D.); (D.K.); (A.J.)
| | - Damian Kaniecki
- Bioseco Sp. z. o. o., Budowlanych 68, 80-298 Gdansk, Poland; (D.D.); (D.K.); (A.J.)
| | - Adam Jaworski
- Bioseco Sp. z. o. o., Budowlanych 68, 80-298 Gdansk, Poland; (D.D.); (D.K.); (A.J.)
| | - Michal Skakuj
- Ekoaviation, ul. Piecewska 30B/16, 80-288 Gdansk, Poland;
| | - Wlodek J. Kulesza
- Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden;
| |
Collapse
|
13
|
Gradolewski D, Dziak D, Martynow M, Kaniecki D, Szurlej-Kielanska A, Jaworski A, Kulesza WJ. Comprehensive Bird Preservation at Wind Farms. SENSORS 2021; 21:s21010267. [PMID: 33401575 PMCID: PMC7795295 DOI: 10.3390/s21010267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/20/2020] [Accepted: 12/25/2020] [Indexed: 01/25/2023]
Abstract
Wind as a clean and renewable energy source has been used by humans for centuries. However, in recent years with the increase in the number and size of wind turbines, their impact on avifauna has become worrisome. Researchers estimated that in the U.S. up to 500,000 birds die annually due to collisions with wind turbines. This article proposes a system for mitigating bird mortality around wind farms. The solution is based on a stereo-vision system embedded in distributed computing and IoT paradigms. After a bird’s detection in a defined zone, the decision-making system activates a collision avoidance routine composed of light and sound deterrents and the turbine stopping procedure. The development process applies a User-Driven Design approach along with the process of component selection and heuristic adjustment. This proposal includes a bird detection method and localization procedure. The bird identification is carried out using artificial intelligence algorithms. Validation tests with a fixed-wing drone and verifying observations by ornithologists proved the system’s desired reliability of detecting a bird with wingspan over 1.5 m from at least 300 m. Moreover, the suitability of the system to classify the size of the detected bird into one of three wingspan categories, small, medium and large, was confirmed.
Collapse
Affiliation(s)
- Dawid Gradolewski
- Bioseco Sp. z. o. o., Budowlanych 68, 80-298 Gdansk, Poland; (D.D.); (M.M.); (D.K.); (A.J.)
- Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden;
- Correspondence:
| | - Damian Dziak
- Bioseco Sp. z. o. o., Budowlanych 68, 80-298 Gdansk, Poland; (D.D.); (M.M.); (D.K.); (A.J.)
- Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden;
| | - Milosz Martynow
- Bioseco Sp. z. o. o., Budowlanych 68, 80-298 Gdansk, Poland; (D.D.); (M.M.); (D.K.); (A.J.)
| | - Damian Kaniecki
- Bioseco Sp. z. o. o., Budowlanych 68, 80-298 Gdansk, Poland; (D.D.); (M.M.); (D.K.); (A.J.)
| | | | - Adam Jaworski
- Bioseco Sp. z. o. o., Budowlanych 68, 80-298 Gdansk, Poland; (D.D.); (M.M.); (D.K.); (A.J.)
| | - Wlodek J. Kulesza
- Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden;
| |
Collapse
|
14
|
Chock RY, Clucas B, Peterson EK, Blackwell BF, Blumstein DT, Church K, Fernández‐Juricic E, Francescoli G, Greggor AL, Kemp P, Pinho GM, Sanzenbacher PM, Schulte BA, Toni P. Evaluating potential effects of solar power facilities on wildlife from an animal behavior perspective. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Rachel Y. Chock
- Recovery Ecology San Diego Zoo Institute for Conservation Research Escondido California USA
| | - Barbara Clucas
- Department of Wildlife Humboldt State University Arcata California USA
| | - Elizabeth K. Peterson
- Communities to Build Active STEM Engagement Colorado State University‐Pueblo Pueblo Colorado USA
- Department of Biology Colorado State University‐Pueblo Pueblo Colorado USA
| | - Bradley F. Blackwell
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center Sandusky Ohio USA
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California USA
| | - Kathleen Church
- Great Lakes Institute for Environmental Research University of Windsor Windsor Ontario Canada
| | | | - Gabriel Francescoli
- Sección Etología, Facultad de Ciencias Universidad de la República Montevideo Uruguay
| | - Alison L. Greggor
- Recovery Ecology San Diego Zoo Institute for Conservation Research Escondido California USA
| | - Paul Kemp
- International Centre for Ecohydraulics Research, Faculty of Engineering and Physical Sciences, Department of Civil, Maritime and Environmental Engineering University of Southampton Southampton UK
| | - Gabriela M. Pinho
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California USA
| | | | - Bruce A. Schulte
- Department of Biology Western Kentucky University Bowling Green Kentucky USA
| | - Pauline Toni
- Department of Biology Université de Sherbrooke Québec Canada
| |
Collapse
|
15
|
DeVault TL, Seamans TW, Blackwell BF. Frontal vehicle illumination via rear‐facing lighting reduces potential for collisions with white‐tailed deer. Ecosphere 2020. [DOI: 10.1002/ecs2.3187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Travis L. DeVault
- United States Department of Agriculture, Animal and Plant Health Inspection Service Wildlife Services National Wildlife Research Center Sandusky Ohio44870USA
| | - Thomas W. Seamans
- United States Department of Agriculture, Animal and Plant Health Inspection Service Wildlife Services National Wildlife Research Center Sandusky Ohio44870USA
| | - Bradley F. Blackwell
- United States Department of Agriculture, Animal and Plant Health Inspection Service Wildlife Services National Wildlife Research Center Sandusky Ohio44870USA
| |
Collapse
|
16
|
Abstract
Collisions between birds and aircraft pose a severe threat to aviation and avian safety. To understand and prevent these bird strikes, knowledge about the factors leading to these bird strikes is vital. However, even though it is a global issue, data availability strongly varies and is difficult to put into a global picture. This paper aims to close this gap by providing an in-depth review of studies and statistics to obtain a concise overview of the bird strike problem in commercial aviation on an international level. The paper illustrates the factors contributing to the occurrence and the potential consequences in terms of effect on flight and damage. This is followed by a presentation of the risk-reducing measures currently in place as well as their limitations. The paper closes with an insight into current research investigating novel methods to prevent bird strikes.
Collapse
|
17
|
Huzzen BE, Hale AM, Bennett VJ. An effective survey method for studying volant species activity and behavior at tall structures. PeerJ 2020; 8:e8438. [PMID: 32095329 PMCID: PMC7023825 DOI: 10.7717/peerj.8438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/19/2019] [Indexed: 01/15/2023] Open
Abstract
The effects of anthropogenic modification of air space on wildlife, particularly volant species, is not fully understood. Thus, it is essential to understand wildlife-interactions with tall structures to implement effective mitigation strategies. Yet, we are currently lacking standard protocols for visual surveys of wildlife behavior at such heights. Our study sought to determine an effective, repeatable method using readily available night vision and thermal technology to survey wildlife at tall structures. Using bats as the taxonomic group of interest, we (1) created a key to identify bats and their behavior, (2) compared the effectiveness of 2 different technologies, and (3) assessed optimal equipment placement to visually capture bat activity and behavior in proximity to wind turbine towers. For the latter, we tested thermal cameras at four distances from the base of the tower. The results of our study revealed that thermal cameras captured ∼34% more flying animals than night vision at a 2 m distance. However, due to the heat signature of the turbine towers themselves, it was challenging to identify behaviors and interactions that occurred in close proximity to the towers. In contrast, it was difficult to identify bats approaching the towers using night vision, yet we were able to clearly observe interactions with the towers themselves. With regards to equipment placement, we visually captured more bats with the thermal cameras placed 2 m from the tower base compared to farther distances. From our findings, we recommend that when using either thermal or night vision technology at tall structures, they be placed 2 m from the base to effectively observe interactions along the length of these structures. In addition, we further recommend that consideration be given to the use of these two technology types together to effectively conduct such surveys. If these survey techniques are incorporated into standard protocols, future surveys at a variety of tall structures are likely to become comparable and repeatable, thereby more effectively informing any mitigation strategies that may be required.
Collapse
Affiliation(s)
- Brynn E Huzzen
- Department of Environmental Sciences, Texas Christian University, Fort Worth, TX, United States of America
| | - Amanda M Hale
- Department of Biology, Texas Christian University, Fort Worth, TX, United States of America
| | - Victoria J Bennett
- Department of Environmental Sciences, Texas Christian University, Fort Worth, TX, United States of America
| |
Collapse
|
18
|
Blackwell BF, Seamans TW, DeVault TL, Lima SL, Pfeiffer MB, Fernández-Juricic E. Social information affects Canada goose alert and escape responses to vehicle approach: implications for animal-vehicle collisions. PeerJ 2019; 7:e8164. [PMID: 31871837 PMCID: PMC6924344 DOI: 10.7717/peerj.8164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Animal-vehicle collisions represent substantial sources of mortality for a variety of taxa and can pose hazards to property and human health. But there is comparatively little information available on escape responses by free-ranging animals to vehicle approach versus predators/humans. METHODS We examined responses (alert distance and flight-initiation distance) of focal Canada geese (Branta canadensis maxima) to vehicle approach (15.6 m·s-1) in a semi-natural setting and given full opportunity to escape. We manipulated the direction of the vehicle approach (direct versus tangential) and availability of social information about the vehicle approach (companion group visually exposed or not to the vehicle). RESULTS We found that both categorical factors interacted to affect alert and escape behaviors. Focal geese used mostly personal information to become alert to the vehicle under high risk scenarios (direct approach), but they combined personal and social information to become alert in low risk scenarios (tangential approach). Additionally, when social information was not available from the companion group, focal birds escaped at greater distances under direct compared to tangential approaches. However, when the companion group could see the vehicle approaching, focal birds escaped at similar distances irrespective of vehicle direction. Finally, geese showed a greater tendency to take flight when the vehicle approached directly, as opposed to a side step or walking away from the vehicle. CONCLUSIONS We suggest that the perception of risk to vehicle approach (likely versus unlikely collision) is weighted by the availability of social information in the group; a phenomenon not described before in the context of animal-vehicle interactions. Notably, when social information is available, the effects of heightened risk associated with a direct approach might be reduced, leading to the animal delaying the escape, which could ultimately increase the chances of a collision. Also, information on a priori escape distances required for surviving a vehicle approach (based on species behavior and vehicle approach speeds) can inform planning, such as location of designated cover or safe areas. Future studies should assess how information from vehicle approach flows within a flock, including aspects of vehicle speed and size, metrics that affect escape decision-making.
Collapse
Affiliation(s)
- Bradley F. Blackwell
- National Widlife Research Center, Wildlife Services, U.S. Department of Agriculture, Sandusky, OH, USA
| | - Thomas W. Seamans
- National Widlife Research Center, Wildlife Services, U.S. Department of Agriculture, Sandusky, OH, USA
| | - Travis L. DeVault
- National Widlife Research Center, Wildlife Services, U.S. Department of Agriculture, Sandusky, OH, USA
| | - Steven L. Lima
- Department of Biology, Indiana State University, Terre Haute, IN, USA
| | - Morgan B. Pfeiffer
- National Widlife Research Center, Wildlife Services, U.S. Department of Agriculture, Sandusky, OH, USA
| | | |
Collapse
|