1
|
Jiang L, Ding H, Ma Q, Gao S, Zhang X, Chun B. Comparing the effectiveness of different exercise interventions on quality of life in stroke patients: a randomized controlled network meta-analysis. BMC Neurol 2025; 25:24. [PMID: 39825230 PMCID: PMC11740353 DOI: 10.1186/s12883-025-04035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND This study evaluates the comprehensive impact of different exercise interventions on the quality of life in stroke patients through network meta-analysis, aiming to provide scientific evidence for developing more effective rehabilitation programs and improving patients' physical, psychological, and social functions. METHODS This systematic review, registered in PROSPERO (CRD42024541517) and following PRISMA guidelines, searched multiple databases (PubMed, Web of Science, EMbase, Cochrane, Ebsco) until November 1, 2024. Studies were selected based on the PICOS criteria, including RCTs on stroke and exercise. Methodological quality was assessed using RoB 2. Data analysis involved effect size calculations and network meta-analysis in Stata 17.0, with publication bias detected via funnel plots. RESULTS This meta-analysis included 41 studies (2,578 stroke patients) from 15 countries, published between 2002 and 2024. Participants aged 50-70 underwent interventions lasting 3 weeks to 6 months. DTOT (Dual-task oriented training)was most effective for Quality of Life, Mental Health, and Upper Limb Function; AQE (Aquatic Exercise) for Physical Health and Social Participation; ST(Strength Training) for Pain and Vitality; CIT(Constraint-Induced Therapy) for Mobility and Recovery; BCT for Memory and Thinking; ALCE(Aquatic and Land Combined Exercise) for Emotion and ADL; and ULT(Upper Limb Training) for Communication. No significant publication bias was found. CONCLUSION This study indicates that different training methods have a significant impact on various dimensions of quality of life in stroke patients. Future research should focus on personalized rehabilitation programs, considering individual differences among patients, and explore multimodal integrated interventions to optimize outcomes. Long-term follow-up and outcome assessments should be strengthened to ensure the sustainability of interventions. Additionally, integrating mental health and social participation is essential to enhance overall quality of life. Emerging technologies such as VR, AI, and wearable devices can help optimize rehabilitation training. Interdisciplinary collaboration combining neuroscience, rehabilitation science, and psychology can provide more comprehensive rehabilitation solutions.
Collapse
Affiliation(s)
- Liqun Jiang
- Graduate School of Physical Education, Myongji University, Mingzhi Road, Churen District, Yongin, 17058, Gyeonggi Province, Republic of Korea
| | - Huimin Ding
- Graduate School of Physical Education, Myongji University, Mingzhi Road, Churen District, Yongin, 17058, Gyeonggi Province, Republic of Korea
| | - Qishuai Ma
- Graduate School of Physical Education, Myongji University, Mingzhi Road, Churen District, Yongin, 17058, Gyeonggi Province, Republic of Korea
| | - Shang Gao
- Graduate School of Physical Education, Myongji University, Mingzhi Road, Churen District, Yongin, 17058, Gyeonggi Province, Republic of Korea
| | - Xinxin Zhang
- Graduate School of Physical Education, Myongji University, Mingzhi Road, Churen District, Yongin, 17058, Gyeonggi Province, Republic of Korea
| | - Buongo Chun
- Graduate School of Physical Education, Myongji University, Mingzhi Road, Churen District, Yongin, 17058, Gyeonggi Province, Republic of Korea.
| |
Collapse
|
2
|
Quattrocelli S, Russo EF, Gatta MT, Filoni S, Pellegrino R, Cangelmi L, Cardone D, Merla A, Perpetuini D. Integrating Machine Learning with Robotic Rehabilitation May Support Prediction of Recovery of the Upper Limb Motor Function in Stroke Survivors. Brain Sci 2024; 14:759. [PMID: 39199453 PMCID: PMC11352886 DOI: 10.3390/brainsci14080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Motor impairment is a common issue in stroke patients, often affecting the upper limbs. To this standpoint, robotic neurorehabilitation has shown to be highly effective for motor function recovery. Notably, Machine learning (ML) may be a powerful technique able to identify the optimal kind and intensity of rehabilitation treatments to maximize the outcomes. This retrospective observational research aims to assess the efficacy of robotic devices in facilitating the functional rehabilitation of upper limbs in stroke patients through ML models. Specifically, clinical scales, such as the Fugl-Meyer Assessment (A-D) (FMA), the Frenchay Arm Test (FAT), and the Barthel Index (BI), were used to assess the patients' condition before and after robotic therapy. The values of these scales were predicted based on the patients' clinical and demographic data obtained before the treatment. The findings showed that ML models have high accuracy in predicting the FMA, FAT, and BI, with R-squared (R2) values of 0.79, 0.57, and 0.74, respectively. The findings of this study suggest that integrating ML into robotic therapy may have the capacity to establish a personalized and streamlined clinical practice, leading to significant improvements in patients' quality of life and the long-term sustainability of the healthcare system.
Collapse
Affiliation(s)
- Sara Quattrocelli
- Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, 65127 Pescara, Italy; (S.Q.); (L.C.); (D.C.); (A.M.)
| | - Emanuele Francesco Russo
- Padre Pio Foundation and Rehabilitation Centers, 71013 San Giovanni Rotondo, Italy; (E.F.R.); (M.T.G.)
| | - Maria Teresa Gatta
- Padre Pio Foundation and Rehabilitation Centers, 71013 San Giovanni Rotondo, Italy; (E.F.R.); (M.T.G.)
| | - Serena Filoni
- I.R.R.C.S. Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Raffaello Pellegrino
- Department of Scientific Research, Campus Ludes, Off-Campus Semmelweis University, 6912 Lugano-Pazzallo, Switzerland;
- Santa Chiara Institute, 73100 Lecce, Italy
| | - Leonardo Cangelmi
- Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, 65127 Pescara, Italy; (S.Q.); (L.C.); (D.C.); (A.M.)
| | - Daniela Cardone
- Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, 65127 Pescara, Italy; (S.Q.); (L.C.); (D.C.); (A.M.)
| | - Arcangelo Merla
- Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, 65127 Pescara, Italy; (S.Q.); (L.C.); (D.C.); (A.M.)
| | - David Perpetuini
- Department of Engineering and Geology, University “G. d’Annunzio” of Chieti-Pescara, 65127 Pescara, Italy; (S.Q.); (L.C.); (D.C.); (A.M.)
| |
Collapse
|
3
|
Cinnera AM, Bonnì S, D'Acunto A, Maiella M, Ferraresi M, Casula EP, Pezzopane V, Tramontano M, Iosa M, Paolucci S, Morone G, Vannozzi G, Koch G. Cortico-cortical stimulation and robot-assisted therapy (CCS and RAT) for upper limb recovery after stroke: study protocol for a randomised controlled trial. Trials 2023; 24:823. [PMID: 38129910 PMCID: PMC10740274 DOI: 10.1186/s13063-023-07849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Since birth, during the exploration of the environment to interact with objects, we exploit both the motor and sensory components of the upper limb (UL). This ability to integrate sensory and motor information is often compromised following a stroke. However, to date, rehabilitation protocols are focused primarily on recovery of motor function through physical therapies. Therefore, we have planned a clinical trial to investigate the effect on functionality of UL after a sensorimotor transcranial stimulation (real vs sham) in add-on to robot-assisted therapy in the stroke population. METHODS A randomised double-blind controlled trial design involving 32 patients with a single chronic stroke (onset > 180 days) was planned. Each patient will undergo 15 consecutive sessions (5 days for 3 weeks) of paired associative stimulation (PAS) coupled with UL robot-assisted therapy. PAS stimulation will be administered using a bifocal transcranial magnetic stimulator (TMS) on the posterior-parietal cortex and the primary motor area (real or sham) of the lesioned hemisphere. Clinical, kinematics and neurophysiological changes will be evaluated at the end of protocol and at 1-month follow-up and compared with baseline. The Fugl-Meyer assessment scale will be the primary outcome. Secondly, kinematic variables will be recorded during the box-and-block test and reaching tasks using video analysis and inertial sensors. Single pulse TMS and electroencephalography will be used to investigate the changes in local cortical reactivity and in the interconnected areas. DISCUSSION The presented trial shall evaluate with a multimodal approach the effects of sensorimotor network stimulation applied before a robot-assisted therapy training on functional recovery of the upper extremity after stroke. The combination of neuromodulation and robot-assisted therapy can promote an increase of cortical plasticity of sensorimotor areas followed by a clinical benefit in the motor function of the upper limb. TRIAL REGISTRATION ClinicalTrials.gov NCT05478434. Registered on 28 Jul 2022.
Collapse
Affiliation(s)
- Alex Martino Cinnera
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Sonia Bonnì
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alessia D'Acunto
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Michele Maiella
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Matteo Ferraresi
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Elias Paolo Casula
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
- Department of System Medicine, University of Tor Vergata, Rome, Italy
| | - Valentina Pezzopane
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marco Tramontano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Bologna, Italy
- Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marco Iosa
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
| | - Stefano Paolucci
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giuseppe Vannozzi
- Scientific Institute for Research, Hospitalization and Health Care IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Scano A, Guanziroli E, Brambilla C, Amendola C, Pirovano I, Gasperini G, Molteni F, Spinelli L, Molinari Tosatti L, Rizzo G, Re R, Mastropietro A. A Narrative Review on Multi-Domain Instrumental Approaches to Evaluate Neuromotor Function in Rehabilitation. Healthcare (Basel) 2023; 11:2282. [PMID: 37628480 PMCID: PMC10454517 DOI: 10.3390/healthcare11162282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
In clinical scenarios, the use of biomedical sensors, devices and multi-parameter assessments is fundamental to provide a comprehensive portrait of patients' state, in order to adapt and personalize rehabilitation interventions and support clinical decision-making. However, there is a huge gap between the potential of the multidomain techniques available and the limited practical use that is made in the clinical scenario. This paper reviews the current state-of-the-art and provides insights into future directions of multi-domain instrumental approaches in the clinical assessment of patients involved in neuromotor rehabilitation. We also summarize the main achievements and challenges of using multi-domain approaches in the assessment of rehabilitation for various neurological disorders affecting motor functions. Our results showed that multi-domain approaches combine information and measurements from different tools and biological signals, such as kinematics, electromyography (EMG), electroencephalography (EEG), near-infrared spectroscopy (NIRS), and clinical scales, to provide a comprehensive and objective evaluation of patients' state and recovery. This multi-domain approach permits the progress of research in clinical and rehabilitative practice and the understanding of the pathophysiological changes occurring during and after rehabilitation. We discuss the potential benefits and limitations of multi-domain approaches for clinical decision-making, personalized therapy, and prognosis. We conclude by highlighting the need for more standardized methods, validation studies, and the integration of multi-domain approaches in clinical practice and research.
Collapse
Affiliation(s)
- Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Caterina Amendola
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
| | - Ileana Pirovano
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Giulio Gasperini
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Via N. Sauro 17, 23845 Costa Masnaga, Italy; (E.G.); (G.G.); (F.M.)
| | - Lorenzo Spinelli
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Via A. Corti 12, 20133 Milan, Italy; (C.B.); (L.M.T.)
| | - Giovanna Rizzo
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| | - Rebecca Re
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.A.); (R.R.)
- Institute for Photonics and Nanotechnology (IFN), Italian National Research Council (CNR), Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Alfonso Mastropietro
- Institute of Biomedical Technologies (ITB), Italian National Research Council (CNR), Via Fratelli Cervi 93, 20054 Segrate, Italy; (I.P.); (G.R.); (A.M.)
| |
Collapse
|
5
|
Moulaei K, Bahaadinbeigy K, Haghdoostd AA, Nezhad MS, Sheikhtaheri A. Overview of the role of robots in upper limb disabilities rehabilitation: a scoping review. Arch Public Health 2023; 81:84. [PMID: 37158979 PMCID: PMC10169358 DOI: 10.1186/s13690-023-01100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/29/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Neuromotor rehabilitation and improvement of upper limb functions are necessary to improve the life quality of patients who have experienced injuries or have pathological outcomes. Modern approaches, such as robotic-assisted rehabilitation can help to improve rehabilitation processes and thus improve upper limb functions. Therefore, the aim of this study was to investigate the role of robots in upper limb disability improvement and rehabilitation. METHODS This scoping review was conducted by search in PubMed, Web of Science, Scopus, and IEEE (January 2012- February 2022). Articles related to upper limb rehabilitation robots were selected. The methodological quality of all the included studies will be appraised using the Mixed Methods Appraisal Tool (MMAT). We used an 18-field data extraction form to extract data from articles and extracted the information such as study year, country, type of study, purpose, illness or accident leading to disability, level of disability, assistive technologies, number of participants in the study, sex, age, rehabilitated part of the upper limb using a robot, duration and frequency of treatment, methods of performing rehabilitation exercises, type of evaluation, number of participants in the evaluation process, duration of intervention, study outcomes, and study conclusions. The selection of articles and data extraction was made by three authors based on inclusion and exclusion criteria. Disagreements were resolved through consultation with the fifth author. Inclusion criteria were articles involving upper limb rehabilitation robots, articles about upper limb disability caused by any illness or injury, and articles published in English. Also, articles involving other than upper limb rehabilitation robots, robots related to rehabilitation of diseases other than upper limb, systematic reviews, reviews, and meta-analyses, books, book chapters, letters to the editor, and conference papers were also excluded. Descriptive statistics methods (frequency and percentage) were used to analyses the data. RESULTS We finally included 55 relevant articles. Most of the studies were done in Italy (33.82%). Most robots were used to rehabilitate stroke patients (80%). About 60.52% of the studies used games and virtual reality rehabilitate the upper limb disabilities using robots. Among the 14 types of applied evaluation methods, "evaluation and measurement of upper limb function and dexterity" was the most applied evaluation method. "Improvement in musculoskeletal functions", "no adverse effect on patients", and "Safe and reliable treatment" were the most cited outcomes, respectively. CONCLUSIONS Our findings show that robots can improve musculoskeletal functions (musculoskeletal strength, sensation, perception, vibration, muscle coordination, less spasticity, flexibility, and range of motion) and empower people by providing a variety of rehabilitation capabilities.
Collapse
Affiliation(s)
- Khadijeh Moulaei
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Kambiz Bahaadinbeigy
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Haghdoostd
- HIV/STI Surveillance Research Center, WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mansour Shahabi Nezhad
- Department of Physical Therapy, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Sheikhtaheri
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Rizvi A, Parveen S, Bazigha F, Noohu MM. Effect of transcranial direct current stimulation in combination with robotic therapy in upper limb impairments in people with stroke: a systematic review. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Stroke is a devastating condition, which not only affects patients’ activity, but also is a primary reason for the psychosocial impact on them, their caregivers, and the healthcare system. Transcranial direct current stimulation (tDCS) modulates cortical activity, encouraging neuro-modulation and motor recovery in stroke rehabilitation. Robotic therapy (RT) provides repetitive, high-intensity, interactive, task-specific intervention and can measure changes while providing feedback to people with stroke.
Objectives
This study aimed to evaluate and summarize the scientific literature systematically to investigate the combined effect of tDCS and RT in patients with stroke.
Methods
Four databases (MEDLINE, Web of Science, ScienceDirect, & PEDro) were searched for clinical trials investigating the effect of RT and tDCS in stroke patients with upper limb impairment. PEDro scale was used for the quality assessment of included studies.
Results
The search yielded 208 articles. A total of 213 patients with stroke who had upper limb impairment were studied. In the majority of the trials, RT combined with tDCS lead to positive improvement in various measures of upper limb function and spasticity.
Conclusions
RT along with tDCS is an effective mode of rehabilitation, although no additional effects of tDCS plus RT in comparison with RT alone were reported. Large, robust studies are needed, so that health care providers and researchers can make better decisions about merging tDCS and RT in stroke rehabilitation settings in the future.
Collapse
|
7
|
Germanotta M, Cortellini L, Insalaco S, Aprile I. Effects of Upper Limb Robot-Assisted Rehabilitation Compared with Conventional Therapy in Patients with Stroke: Preliminary Results on a Daily Task Assessed Using Motion Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:3089. [PMID: 36991799 PMCID: PMC10057550 DOI: 10.3390/s23063089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Robotic rehabilitation of the upper limb has demonstrated promising results in terms of the improvement of arm function in post-stroke patients. The current literature suggests that robot-assisted therapy (RAT) is comparable to traditional approaches when clinical scales are used as outcome measures. Instead, the effects of RAT on the capacity to execute a daily life task with the affected upper limb are unknown, as measured using kinematic indices. Through kinematic analysis of a drinking task, we examined the improvement in upper limb performance between patients following a robotic or conventional 30-session rehabilitation intervention. In particular, we analyzed data from nineteen patients with subacute stroke (less than six months following stroke), nine of whom treated with a set of four robotic and sensor-based devices and ten with a traditional approach. According to our findings, the patients increased their movement efficiency and smoothness regardless of the rehabilitative approach. After the treatment (either robotic or conventional), no differences were found in terms of movement accuracy, planning, speed, or spatial posture. This research seems to demonstrate that the two investigated approaches have a comparable impact and may give insight into the design of rehabilitation therapy.
Collapse
|
8
|
Application of Robotic Recovery Techniques to Stroke Survivors-Bibliometric Analysis. J Pers Med 2022; 12:jpm12122066. [PMID: 36556286 PMCID: PMC9788322 DOI: 10.3390/jpm12122066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Stroke is a significant disability and death cause worldwide and is conventionally defined as a neurological impairment relating to the intense focal harm of the central nervous system (CNS) by vascular causative components. Although the applicability of robotic rehabilitation is a topic with considerable practical significance because it has produced noticeably higher improvements in motor function than regular (physical and occupational) therapy and exempted the therapists, most of the existing bibliometric papers were not focused on stroke survivors. Additionally, a modular system is designed by joining several medical end-effector devices to a single limb segment, which addresses the issue of potentially dangerous pathological compensatory motions. Searching the Web of Science database, 31,930 papers were identified, and using the VOSviewer software and science mapping technology, data were extracted on the most prolific countries, the connections between them, the most valuable journals according to certain factors, their average year of publication, the most influential papers, and the most relevant topical issues (bubble map of term occurrence). The most prolific country in the analyzed field and over the entire period evaluated (1975-2022) is the United States, and the most prolific journal is Neurorehabilitation and Neural Repair, observing a marked increase in the three periods of scientific interest for this field. The present paper assesses numerous scientific publications to provide, through statistical interpretation of the data, a detailed description of the use of robotic rehabilitation in stroke survivors. The findings may aid scientists, academics, and clinicians in establishing precise goals in the optimization of the management of stroke survivors via robotic rehabilitation, but also through easier access to scientifically validated literature.
Collapse
|
9
|
Moulaei K, Sheikhtaheri A, Nezhad MS, Haghdoost A, Gheysari M, Bahaadinbeigy K. Telerehabilitation for upper limb disabilities: a scoping review on functions, outcomes, and evaluation methods. Arch Public Health 2022; 80:196. [PMID: 35999548 PMCID: PMC9400266 DOI: 10.1186/s13690-022-00952-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upper limb (UL) disabilities have attracted worldwide attention due to the high economic costs of health care and the negative effects on the quality of life of patients with these disabilities. Telerehabilitation technologies are one of the most important ways to reduce rehabilitation costs and increase the quality of life of patients. Therefore, the aim of this study was to investigate the role of telerehabilitation in improving the health status of patients with upper limb disabilities. METHODS This scoping review was conducted by searching the Web of Science, PubMed, and Scopus until July 30, 2021. We used a data extraction form with 18 fields to extract data from primary studies. The selection of articles and data extraction was made by four researchers using a data collection form based on inclusion and exclusion criteria. Disagreements were resolved through consultation with the fifth and sixth researchers.Inclusion criteria were studies published in English, studies on upper limb disability, and telerehabilitation based on any technology (synchronous telerehabilitation, asynchronous, or both). Exclusion criteria were articles that did not focus on telerehabilitation and upper limb disabilities. Also, books, book chapters, letters to the editor, and conference abstracts were also removed. RESULTS A total of 458 articles were retrieved, and after removing irrelevant and duplicate articles, 29 articles were finally included in this review. Most telerehabilitation was performed for patients with stroke (65%). Among the 15 different services provided with telerehabilitation technologies, "Evaluation of exercises and also a musculoskeletal function of patients by the therapist","Recording of patients' rehabilitation exercises and sending them to the therapist" and "Prescribing new rehabilitation exercises by the therapist" were the most widely used services, respectively. Virtual reality technologies, smart wearables, and robots were used to provide telerehabilitation services. Among the 13 types of evaluation used for telerehabilitation systems, "Evaluation and measurement of upper limb function" was the most used evaluation in the studies. "Improvement in musculoskeletal functions", "Increasing patients' interest and motivation to perform rehabilitation exercises", and "Increasing adherence to rehabilitation exercises and greater participation in treatment processes" were the most important outcomes, respectively. CONCLUSION Our findings indicate that telerehabilitation provides individuals with equitable access to rehabilitation services, improves musculoskeletal function, and empowers individuals by providing a variety of rehabilitation capabilities.
Collapse
Affiliation(s)
- Khadijeh Moulaei
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Sheikhtaheri
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Shahabi Nezhad
- Department of Physical Therapy, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - AliAkbar Haghdoost
- HIV/STI Surveillance Research Center and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Gheysari
- Business Administration Management (Digital Transformation), Faculty of Management, Tehran University, Tehran, Iran
| | - Kambiz Bahaadinbeigy
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Abstract
Large-scale clinical trials have shown that rehabilitation robots are as affective as conventional therapy, but the cost-effectiveness is preventing their uptake. This study investigated whether a low-cost rehabilitation robot could be deployed in a home setting for rehabilitation of people recovering from stroke (n = 16) and whether clinical outcome measures correlated well with kinematic measures gathered by the robot. The results support the feasibility of patients independently using the robot with improvement in both clinical measures and kinematic data. We recommend using kinematic data early in an intervention to detect improvement while using a robotic device. The kinematic measures in the assessment task (hits/minute and normalised jerk) adequately pick up changes within a four-week period, thus allowing the rehabilitation regime to be adapted to suit the user’s needs. Estimating the long-term clinical benefit must be explored in future research.
Collapse
|
11
|
Saes M, Mohamed Refai MI, van Beijnum BJF, Bussmann JBJ, Jansma EP, Veltink PH, Buurke JH, van Wegen EEH, Meskers CGM, Krakauer JW, Kwakkel G. Quantifying Quality of Reaching Movements Longitudinally Post-Stroke: A Systematic Review. Neurorehabil Neural Repair 2022; 36:183-207. [PMID: 35100897 PMCID: PMC8902693 DOI: 10.1177/15459683211062890] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Disambiguation of behavioral restitution from compensation is important to better understand recovery of upper limb motor control post-stroke and subsequently design better interventions. Measuring quality of movement (QoM) during standardized performance assays and functional tasks using kinematic and kinetic metrics potentially allows for this disambiguation. Objectives To identify longitudinal studies that used kinematic and/or kinetic metrics to investigate post-stroke recovery of reaching and assess whether these studies distinguish behavioral restitution from compensation. Methods A systematic literature search was conducted using the databases PubMed, Embase, Scopus, and Wiley/Cochrane Library up to July 1st, 2020. Studies were identified if they performed longitudinal kinematic and/or kinetic measurements during reaching, starting within the first 6 months post-stroke. Results Thirty-two longitudinal studies were identified, which reported a total of forty-six different kinematic metrics. Although the majority investigated improvements in kinetics or kinematics to quantify recovery of QoM, none of these studies explicitly addressed the distinction between behavioral restitution and compensation. One study obtained kinematic metrics for both performance assays and a functional task. Conclusions Despite the growing number of kinematic and kinetic studies on post-stroke recovery, longitudinal studies that explicitly seek to delineate between behavioral restitution and compensation are still lacking in the literature. To rectify this situation, future studies should measure kinematics and/or kinetics during performance assays to isolate restitution and during a standardized functional task to determine the contributions of restitution and compensation.
Collapse
Affiliation(s)
- M Saes
- Department of Rehabilitation Medicine, 1209Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - M I Mohamed Refai
- Department of Biomedical Signals & Systems, Technical Medical Centre, 214825University of Twente, Enschede, Netherlands
| | - B J F van Beijnum
- Department of Biomedical Signals & Systems, Technical Medical Centre, 214825University of Twente, Enschede, Netherlands
| | - J B J Bussmann
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - E P Jansma
- Medical Library, 1190Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC, Location VUmcAmsterdam, The Netherlands
| | - P H Veltink
- Department of Biomedical Signals & Systems, Technical Medical Centre, 214825University of Twente, Enschede, Netherlands
| | - J H Buurke
- Department of Biomedical Signals & Systems, Technical Medical Centre, 214825University of Twente, Enschede, Netherlands.,Rehabilitation Technology, Roessingh Research and Development, Enschede, Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, 12244Northwestern University, Chicago, Il, USA
| | - E E H van Wegen
- Department of Rehabilitation Medicine, 1209Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - C G M Meskers
- Department of Rehabilitation Medicine, 1209Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam, Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, 12244Northwestern University, Chicago, Il, USA
| | - J W Krakauer
- Departments of Neurology, Neuroscience and Physical Medicine and Rehabilitation, 1500Johns Hopkins University, Baltimore, MD, United States
| | - G Kwakkel
- Department of Rehabilitation Medicine, 1209Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam Neuroscience, Amsterdam, Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, 12244Northwestern University, Chicago, Il, USA.,Department of Neurorehabilitation, 522567Amsterdam Rehabilitation Research Centre, Amsterdam, Netherlands
| |
Collapse
|
12
|
Goffredo M, Pournajaf S, Proietti S, Gison A, Posteraro F, Franceschini M. Retrospective Robot-Measured Upper Limb Kinematic Data From Stroke Patients Are Novel Biomarkers. Front Neurol 2022; 12:803901. [PMID: 34992576 PMCID: PMC8725786 DOI: 10.3389/fneur.2021.803901] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background: The efficacy of upper-limb Robot-assisted Therapy (ulRT) in stroke subjects is well-established. The robot-measured kinematic data can assess the biomechanical changes induced by ulRT and the progress of patient over time. However, literature on the analysis of pre-treatment kinematic parameters as predictive biomarkers of upper limb recovery is limited. Objective: The aim of this study was to calculate pre-treatment kinematic parameters from point-to-point reaching movements in different directions and to identify biomarkers of upper-limb motor recovery in subacute stroke subjects after ulRT. Methods: An observational retrospective study was conducted on 66 subacute stroke subjects who underwent ulRT with an end-effector robot. Kinematic parameters were calculated from the robot-measured trajectories during movements in different directions. A Generalized Linear Model (GLM) was applied considering the post-treatment Upper Limb Motricity Index and the kinematic parameters (from demanding directions of movement) as dependent variables, and the pre-treatment kinematic parameters as independent variables. Results: A subset of kinematic parameters significantly predicted the motor impairment after ulRT: the accuracy in adduction and internal rotation movements of the shoulder was the major predictor of post-treatment Upper Limb Motricity Index. The post-treatment kinematic parameters of the most demanding directions of movement significantly depended on the ability to execute elbow flexion-extension and abduction and external rotation movements of the shoulder at baseline. Conclusions: The multidirectional analysis of robot-measured kinematic data predicts motor recovery in subacute stroke survivors and paves the way in identifying subjects who may benefit more from ulRT.
Collapse
Affiliation(s)
- Michela Goffredo
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Sanaz Pournajaf
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Stefania Proietti
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Annalisa Gison
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy
| | - Federico Posteraro
- Rehabilitation Department, Versilia Hospital, Azienda Unità Sanitaria Locale (AUSL) Northwest Tuscany, Camaiore, Italy
| | - Marco Franceschini
- Department of Neurological and Rehabilitation Sciences, IRCCS San Raffaele Roma, Rome, Italy.,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele University, Rome, Italy
| |
Collapse
|
13
|
Koroleva ES, Kazakov SD, Tolmachev IV, Loonen AJM, Ivanova SA, Alifirova VM. Clinical Evaluation of Different Treatment Strategies for Motor Recovery in Poststroke Rehabilitation during the First 90 Days. J Clin Med 2021; 10:jcm10163718. [PMID: 34442014 PMCID: PMC8396898 DOI: 10.3390/jcm10163718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Motor recovery after stroke is based on neuronal plasticity and the structural reorganization of the brain. Questions are debated about the proper moment to start rehabilitation in the acute period of stroke, the significance of rehabilitation interventions during the so-called “plastic window”, and the advantages of modern and traditional programs. The aims of this study were to evaluate the role of different rehabilitation strategies and their combinations for motor recovery and the impact on functional disability by way of neurological and functional outcomes 3 months after ischemic stroke. Methods: We used three rehabilitation approaches: early rehabilitation from the first day of stroke (Phase I), traditional exercise programs (Phase II), and an author’s new method of biofeedback rehabilitation using motion sensors and augmented reality (AR) rehabilitation (Phase III). Clinical and functional outcomes were measured on the 90th day after stroke. We developed algorithms for quantifying the quality of movements during the execution of tasks in the motor domains of the AR rehabilitation program. Results: Phase I of rehabilitation led to an improvement in functional independence, and the recovery of motor functions of the extremities with an absence of mortality and clinical deterioration. AR rehabilitation led to significant improvement both with respect to clinical and functional scores on scales and to variables reflecting the quality of movements. Patients who were actively treated during Phases II and III achieved the same final level of motor recovery and functional outcomes as that of participants who had only received AR rehabilitation during Phase III. Patients who underwent outpatient observation after Phase I showed a deficit of spontaneous motor recovery on the 90th day after stroke. Conclusions: Early rehabilitation was successful but was not enough; rehabilitation programs should be carried out throughout the entire “sensitive period” of poststroke plasticity. The newly developed AR biofeedback motion training is effective and safe as a separate rehabilitation method in the early recovery period of moderately severe, hemiparalytic, and ischemic stroke. These two rehabilitation approaches must be applied together or after each other, not instead of each other, as shown in clinical practice.
Collapse
Affiliation(s)
- Ekaterina S. Koroleva
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovsky Trakt, 634050 Tomsk, Russia; (E.S.K.); (S.A.I.); (V.M.A.)
| | - Stanislav D. Kazakov
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovsky Trakt, 634050 Tomsk, Russia; (E.S.K.); (S.A.I.); (V.M.A.)
- Correspondence: ; Tel.: +7-961-890-06-77
| | - Ivan V. Tolmachev
- Department of Medical and Biological Cybernetics, Siberian State Medical University, 2 Moskovsky Trakt, 634050 Tomsk, Russia;
| | - Anton J. M. Loonen
- Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands;
| | - Svetlana A. Ivanova
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovsky Trakt, 634050 Tomsk, Russia; (E.S.K.); (S.A.I.); (V.M.A.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, 2 Moskovsky Trakt, 634050 Tomsk, Russia
| | - Valentina M. Alifirova
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovsky Trakt, 634050 Tomsk, Russia; (E.S.K.); (S.A.I.); (V.M.A.)
| |
Collapse
|
14
|
Rong J, Ding L, Xiong L, Zhang W, Wang W, Deng M, Wang Y, Chen Z, Jia J. Mirror Visual Feedback Prior to Robot-Assisted Training Facilitates Rehabilitation After Stroke: A Randomized Controlled Study. Front Neurol 2021; 12:683703. [PMID: 34305792 PMCID: PMC8297738 DOI: 10.3389/fneur.2021.683703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Robot-assisted training has been widely used in neurorehabilitation, but its effect on facilitating recovery after stroke remains controversial. One possible reason might be lacking consideration of the role of embodiment in robotic systems. Mirror visual feedback is an ideal method to approach embodiment. Thus, we hypothesized that mirror visual feedback priming with subsequent robot-assisted training might provide additional treatment benefits in rehabilitation. Method: This is a prospective, assessor-blinded, randomized, controlled study. Forty subacute stroke patients were randomly assigned into an experimental group (N = 20) or a control group (N = 20). They received either mirror visual feedback or sham-mirror visual feedback prior to robot-assisted training for 1.5 h/day, 5 days/week for 4 weeks. Before and after intervention, the Fugl-Meyer Assessment Upper Limb subscale, the Functional Independence Measure, the modified Barthel Index, and grip strength were measured. Scores of four specified games were recorded pre and post one-time mirror visual feedback priming before intervention in the experimental group. Results: All measurements improved significantly in both groups following interventions. Moreover, the Fugl-Meyer Assessment Upper Limb subscale, self-care subscale of the Functional Independence Measure, and the grip strength were improved significantly in the experimental group after a 4-week intervention, compared with the control group. Significantly higher scores of two games were revealed after one-time priming. Conclusions: Mirror visual feedback prior to robot-assisted training could prompt motor recovery, increase ability of self-care, and potentially enhance grip strength in stroke patients, compared to control treatment. Moreover, mirror visual feedback priming might have the capability to improve the patient's performance and engagement during robot-assisted training, which could prompt the design and development of robotic systems. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: ChiCTR1900023356.
Collapse
Affiliation(s)
- Jifeng Rong
- The Center of Rehabilitation Therapy, The First Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Li Ding
- The Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Xiong
- The Center of Rehabilitation Therapy, The First Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Wen Zhang
- The Center of Rehabilitation Therapy, The First Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Weining Wang
- The Center of Rehabilitation Therapy, The First Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Meikui Deng
- The Center of Rehabilitation Therapy, The First Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Yana Wang
- The Center of Rehabilitation Therapy, The First Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Zhen Chen
- The Neurorehabilitation Centre, The First Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Jie Jia
- The Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.,The National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial. J Neurol Phys Ther 2021; 44:3-14. [PMID: 31834217 DOI: 10.1097/npt.0000000000000295] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE After stroke, only 12% of survivors obtain complete upper limb (UL) functional recovery, while in 30% to 60% UL deficits persist. Despite the complexity of the UL, prior robot-mediated therapy research has used only one robot in comparisons to conventional therapy. We evaluated the efficacy of robotic UL treatment using a set of 4 devices, compared with conventional therapy. METHODS In a multicenter, randomized controlled trial, 247 subjects with subacute stroke were assigned either to robotic (using a set of 4 devices) or to conventional treatment, each consisting of 30 sessions. Subjects were evaluated before and after treatment, with follow-up assessment after 3 months. The primary outcome measure was change from baseline in the Fugl-Meyer Assessment (FMA) score. Secondary outcome measures were selected to assess motor function, activities, and participation. RESULTS One hundred ninety subjects completed the posttreatment assessment, with a subset (n = 122) returning for follow-up evaluation. Mean FMA score improvement in the robotic group was 8.50 (confidence interval: 6.82 to 10.17), versus 8.57 (confidence interval: 6.97 to 10.18) in the conventional group, with no significant between-groups difference (adjusted mean difference -0.08, P = 0.948). Both groups also had similar change in secondary measures, except for the Motricity Index, with better results for the robotic group (adjusted mean difference 4.42, P = 0.037). At follow-up, subjects continued to improve with no between-groups differences. DISCUSSION AND CONCLUSIONS Robotic treatment using a set of 4 devices significantly improved UL motor function, activities, and participation in subjects with subacute stroke to the same extent as a similar amount of conventional therapy. Video Abstract is available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A291).
Collapse
|
16
|
Adans-Dester C, Fasoli SE, Fabara E, Menard N, Fox AB, Severini G, Bonato P. Can kinematic parameters of 3D reach-to-target movements be used as a proxy for clinical outcome measures in chronic stroke rehabilitation? An exploratory study. J Neuroeng Rehabil 2020; 17:106. [PMID: 32771020 PMCID: PMC7414659 DOI: 10.1186/s12984-020-00730-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite numerous trials investigating robot-assisted therapy (RT) effects on upper-extremity (UE) function after stroke, few have explored the relationship between three-dimensional (3D) reach-to-target kinematics and clinical outcomes. The objectives of this study were to 1) investigate the correlation between kinematic parameters of 3D reach-to-target movements and UE clinical outcome measures, and 2) examine the degree to which differences in kinematic parameters across individuals can account for differences in clinical outcomes in response to RT. METHODS Ten chronic stroke survivors participated in a pilot RT intervention (eighteen 1-h sessions) integrating cognitive skills training and a home-action program. Clinical outcome measures and kinematic parameters of 3D reach-to-target movements were collected pre- and post-intervention. The correlation between clinical outcomes and kinematic parameters was investigated both cross-sectionally and longitudinally (i.e., changes in response to the intervention). Changes in clinical outcomes and kinematic parameters were tested for significance in both group and subject-by-subject analyses. Potential associations between individual differences in kinematic parameters and differences in clinical outcomes were examined. RESULTS Moderate-to-strong correlation was found between clinical measures and specific kinematic parameters when examined cross-sectionally. Weaker correlation coefficients were found longitudinally. Group analyses revealed significant changes in clinical outcome measures in response to the intervention; no significant group changes were observed in kinematic parameters. Subject-by-subject analyses revealed changes with moderate-to-large effect size in the kinematics of 3D reach-to-target movements pre- vs. post-intervention. Changes in clinical outcomes and kinematic parameters varied widely across participants. CONCLUSIONS Large variability was observed across subjects in response to the intervention. The correlation between changes in kinematic parameters and clinical outcomes in response to the intervention was variable and not strong across parameters, suggesting no consistent change in UE motor strategies across participants. These results highlight the need to investigate the response to interventions at the individual level. This would enable the identification of clusters of individuals with common patterns of change in response to an intervention, providing an opportunity to use cluster-specific kinematic parameters as a proxy of clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov, NCT02747433 . Registered on April 21st, 2016.
Collapse
Affiliation(s)
- Catherine Adans-Dester
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, Boston, MA, 02129, USA
- School of Health & Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, USA
| | - Susan E Fasoli
- School of Health & Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, USA
| | - Eric Fabara
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, Boston, MA, 02129, USA
| | - Nicolas Menard
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Annie B Fox
- School of Health & Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, USA
| | - Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
- Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| | - Paolo Bonato
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, 300 First Ave, Charlestown, Boston, MA, 02129, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
17
|
Martino Cinnera A, Pucello A, Lupo A, Gimigliano F, Mammucari E, Cicero DL, Iosa M, Paolucci S, Morone G. Upper limb motor improvement in chronic stroke after combining botulinum toxin A injection and multi-joints robot-assisted therapy: a case report. Oxf Med Case Reports 2019; 2019:omz097. [PMID: 31772737 PMCID: PMC6822606 DOI: 10.1093/omcr/omz097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/12/2019] [Accepted: 08/13/2019] [Indexed: 11/27/2022] Open
Abstract
Spasticity is one of the major complications after stroke. Botulinum toxin type A (BoNT-A) injection is commonly used to manage focal spasticity. However, it is uncertain whether BoNT-A can improve activities of daily living function of paretic arm. The recovery of functions of the affected arm is also the aim of robotic upper limb (UL) therapy. The motorized exoskeleton assists the patient in a large 3D work environment by promoting movement for the UL (shoulder, elbow, wrist, hand). The combination of the BoNT-A injection and the robotic therapy might enhance functional recovery after stroke. We reported the case of a chronic stroke patient in which the injection of BoNT-A was combined with multi-joint exoskeleton training. The patient showed improvement in the motor control of the UL, supporting the feasibility of this approach.
Collapse
Affiliation(s)
- Alex Martino Cinnera
- Laboratory of Experimental Neurorehabilitation, Scientific Institute for Research, Hospitalisation and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Alessandra Pucello
- Laboratory of Experimental Neurorehabilitation, Scientific Institute for Research, Hospitalisation and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Alessandro Lupo
- Local Health Department Gaetano Pini, Rehabilitation Unit Fanny Finzi Ottolenghi, Milan, Italy
| | - Francesca Gimigliano
- Department of Mental and Physical health and Preventive Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Elisa Mammucari
- Laboratory of Experimental Neurorehabilitation, Scientific Institute for Research, Hospitalisation and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Dario Lo Cicero
- Laboratory of Experimental Neurorehabilitation, Scientific Institute for Research, Hospitalisation and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Marco Iosa
- Laboratory of Experimental Neurorehabilitation, Scientific Institute for Research, Hospitalisation and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Stefano Paolucci
- Laboratory of Experimental Neurorehabilitation, Scientific Institute for Research, Hospitalisation and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Giovanni Morone
- Laboratory of Experimental Neurorehabilitation, Scientific Institute for Research, Hospitalisation and Health Care (IRCCS) Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
18
|
Goffredo M, Mazzoleni S, Gison A, Infarinato F, Pournajaf S, Galafate D, Agosti M, Posteraro F, Franceschini M. Kinematic Parameters for Tracking Patient Progress during Upper Limb Robot-Assisted Rehabilitation: An Observational Study on Subacute Stroke Subjects. Appl Bionics Biomech 2019; 2019:4251089. [PMID: 31772604 PMCID: PMC6854217 DOI: 10.1155/2019/4251089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Upper limb robot-assisted therapy (RT) provides intensive, repetitive, and task-specific treatment, and its efficacy for stroke survivors is well established in literature. Biomechanical data from robotic devices has been widely employed for patient's assessment, but rarely it has been analysed for tracking patient progress during RT. The goal of this retrospective study is to analyse built-in kinematic data registered by a planar end-effector robot for assessing the time course of motor recovery and patient's workspace exploration skills. A comparison of subjects having mild and severe motor impairment has been also conducted. For that purpose, kinematic data recorded by a planar end-effector robot have been processed for investigating how motor performance in executing point-to-point trajectories with different directions changes during RT. METHODS Observational retrospective study of 68 subacute stroke patients who conducted 20 daily sessions of upper limb RT with the InMotion 2.0 (Bionik Laboratories, USA): planar point-to-point reaching tasks with an "assist as needed" strategy. The following kinematic parameters (KPs) were computed for each subject and for each point-to-point trajectory executed during RT: movement accuracy, movement speed, number of peak speed, and task completion time. The Wilcoxon signed-rank tests were used with clinical outcomes. the Friedman test and post hoc Conover's test (Bonferroni's correction) were applied to KPs. A secondary data analysis has been conducted by comparing patients having different severities of motor impairment. The level of significance was set at p value < 0.05. RESULTS At the RT onset, the movements were less accurate and smoothed, and showed higher times of execution than those executed at the end of treatment. The analysis of the time course of KPs highlighted that RT seems to improve the motor function mainly in the first sessions of treatment: most KPs show significant intersession differences during the first 5/10 sessions. Afterwards, no further significant variations occurred. The ability to perform movements away from the body and from the hemiparetic side remains more challenging. The results obtained from the data stratification show significant differences between subjects with mild and severe motor impairment. CONCLUSION Significant improvements in motor performance were registered during the time course of upper limb RT in subacute stroke patients. The outcomes depend on movement direction and motor impairment and pave the way to optimize healthcare resources and to design patient-tailored rehabilitative protocols.
Collapse
Affiliation(s)
- Michela Goffredo
- Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefano Mazzoleni
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Rehabilitation Bioengineering Laboratory, Volterra, Italy
| | - Annalisa Gison
- Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | | | - Sanaz Pournajaf
- Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Daniele Galafate
- Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | - Maurizio Agosti
- Rehabilitation Medicine Service, NHS-University Hospital of Parma, Parma, Italy
| | - Federico Posteraro
- Rehabilitation Department, Versilia Hospital, AUSL Tuscany North West, Camaiore, Italy
| | - Marco Franceschini
- Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
- San Raffaele University, Rome, Italy
| |
Collapse
|
19
|
Chew E, Turner DA. Can a Robot Bring Your Life Back? A Systematic Review for Robotics in Rehabilitation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1170:1-35. [PMID: 32067201 DOI: 10.1007/978-3-030-24230-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Stroke is a leading cause of disability in the world and the use of robots in rehabilitation has become increasingly common. The Fourth Industrial Revolutions has created a novel and wide range of options for the involvement of computer-guided and artificially intelligent machines to be used in rehabilitation. In this chapter we critically review some of the literature on the use of robots in rehabilitation, and emphasize the diversity of approaches in this burgeoning field. We argue that there is a need to consolidate interdisciplinary evidence on robotics and rehabilitation in a systematic way, as the alternative is to have a literature that continues to grow, following the interests of various specialists, but without offering a synoptic assessment of what is available to medical specialists and patients. A literature review using Scopus and Web of Science, coupled with the Briggs Institute's Critical Appraisal Tool: Checklist for Case Reports was conducted. The two databases were systematically searched using inter-disciplinary keywords in Feb 2019. An initial search of the databases produced 9894 articles. After rigorous reviews, 35 articles were screened and selected for further interpretation. We examined the current studies on the efficiency and effectiveness of the robot interventions and produced a taxonomy of the review. An original finding of the current robotics in rehabilitation landscaping are critical presented with recommendations and concluding remarks concerning interdisciplinary impact.
Collapse
Affiliation(s)
- Esyin Chew
- EUREKA Robotics Lab, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK.
| | - David A Turner
- Institute for International and Comparative Education, Beijing Normal University, Beijing, China
- South Wales University, Wales, UK
| |
Collapse
|