1
|
Naughton I, Tsutsui ND, Ward PS, Holway DA. An assemblage-level comparison of genetic diversity and population genetic structure between island and mainland ant populations. Evolution 2024; 78:1685-1698. [PMID: 38981009 DOI: 10.1093/evolut/qpae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/11/2024]
Abstract
Island biotas provide unparalleled opportunities to examine evolutionary processes. Founder effects and bottlenecks, e.g., typically decrease genetic diversity in island populations, while selection for reduced dispersal can increase population structure. Given that support for these generalities mostly comes from single-species analyses, assemblage-level comparisons are needed to clarify how (i) colonization affects the gene pools of interacting insular organisms, and (ii) patterns of genetic differentiation vary within assemblages of organisms. Here, we use genome-wide sequence data from ultraconserved elements (UCEs) to compare the genetic diversity and population structure of mainland and island populations of nine ant species in coastal southern California. As expected, island populations (from Santa Cruz Island) had lower expected heterozygosity and Watterson's theta compared to mainland populations (from the Lompoc Valley). Island populations, however, exhibited smaller genetic distances among samples, indicating less population subdivision. Within the focal assemblage, pairwise Fst values revealed pronounced interspecific variation in mainland-island differentiation, which increases with gyne body size. Our results reveal population differences across an assemblage of interacting species and illuminate general patterns of insularization in ants. Compared to single-species studies, our analysis of nine conspecific population pairs from the same island-mainland system offers a powerful approach to studying fundamental evolutionary processes.
Collapse
Affiliation(s)
- Ida Naughton
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Neil D Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Philip S Ward
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - David A Holway
- Department of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Ge X, Peng L, Morse JC, Wang J, Zang H, Yang L, Sun C, Wang B. Phylogenomics resolves a 100-year-old debate regarding the evolutionary history of caddisflies (Insecta: Trichoptera). Mol Phylogenet Evol 2024; 201:108196. [PMID: 39278385 DOI: 10.1016/j.ympev.2024.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/11/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Trichoptera (caddisfly) phylogeny provides an interesting example of aquatic insect evolution, with rich ecological diversification, especially for underwater architecture. Trichoptera provide numerous critical ecosystem services and are also one of the most important groups of aquatic insects for assessing water quality. The phylogenetic relationships of Trichoptera have been debated for nearly a century. In particular, the phylogenetic position of the "cocoon-makers" within Trichoptera has long been contested. Here, we designed a universal single-copy orthologue and sets of ultraconserved element markers specific for Trichoptera for the first time. Simultaneously, we reconstructed the phylogenetic relationship of Trichoptera based on genome data from 111 species, representing 29 families and 71 genera. Our phylogenetic inference clarifies the probable phylogenetic relationships of "cocoon-makers" within Integripalpia. Hydroptilidae is considered as the basal lineage within Integripalpia, and the families Glossosomatidae, Hydrobiosidae, and Rhyacophilidae formed a monophyletic clade, sister to the integripalpian subterorder Phryganides. The resulting divergence time and ancestral state reconstruction suggest that the most recent common ancestor of Trichoptera appeared in the early Permian and that diversification was strongly correlated with habitat change.
Collapse
Affiliation(s)
- Xinyu Ge
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lang Peng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - John C Morse
- Department of Plant & Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Jingyuan Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Haoming Zang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianfang Yang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhai Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Beixin Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Winker K, Withrow JJ, Gibson DD, Pruett CL. Beringia as a high-latitude engine of avian speciation. Biol Rev Camb Philos Soc 2023; 98:1081-1099. [PMID: 36879465 DOI: 10.1111/brv.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Beringia is a biogeographically dynamic region that extends from northeastern Asia into northwestern North America. This region has affected avian divergence and speciation in three important ways: (i) by serving as a route for intercontinental colonisation between Asia and the Americas; (ii) by cyclically splitting (and often reuniting) populations, subspecies, and species between these continents; and (iii) by providing isolated refugia through glacial cycles. The effects of these processes can be seen in taxonomic splits of shallow to increasing depths and in the presence of regional endemics. We review the taxa involved in the latter two processes (splitting-reuniting and isolation), with a focus on three research topics: avian diversity, time estimates of the generation of that diversity, and the regions within Beringia that might have been especially important. We find that these processes have generated substantial amounts of avian diversity, including 49 pairs of avian subspecies or species whose breeding distributions largely replace one another across the divide between the Old World and the New World in Beringia, and 103 avian species and subspecies endemic to this region. Among endemics, about one in three is recognised as a full biological species. Endemic taxa in the orders Charadriiformes (shorebirds, alcids, gulls, and terns) and Passeriformes (perching birds) are particularly well represented, although they show very different levels of diversity through evolutionary time. Endemic Beringian Charadriiformes have a 1.31:1 ratio of species to subspecies. In Passeriformes, endemic taxa have a 0.09:1 species-to-subspecies ratio, suggesting that passerine (and thus terrestrial) endemism might be more prone to long-term extinction in this region, although such 'losses' could occur through their being reconnected with wider continental populations during favourable climatic cycles (e.g. subspecies reintegration with other populations). Genetic evidence suggests that most Beringian avian taxa originated over the past 3 million years, confirming the importance of Quaternary processes. There seems to be no obvious clustering in their formation through time, although there might be temporal gaps with lower rates of diversity generation. For at least 62 species, taxonomically undifferentiated populations occupy this region, providing ample potential for future evolutionary diversification.
Collapse
Affiliation(s)
- Kevin Winker
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Jack J Withrow
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Daniel D Gibson
- University of Alaska Museum, 907 Yukon Drive, Fairbanks, AK, 99775-6960, USA
| | - Christin L Pruett
- Department of Biology, Ouachita Baptist University, 410 Ouachita St, Arkadelphia, AR, 71998, USA
| |
Collapse
|
4
|
Spaulding F, McLaughlin JF, Cheek RG, McCracken KG, Glenn TC, Winker K. Population genomics indicate three different modes of divergence and speciation with gene flow in the green-winged teal duck complex. Mol Phylogenet Evol 2023; 182:107733. [PMID: 36801373 PMCID: PMC10092703 DOI: 10.1016/j.ympev.2023.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
The processes leading to divergence and speciation can differ broadly among taxa with different life histories. We examine these processes in a small clade of ducks with historically uncertain relationships and species limits. The green-winged teal (Anas crecca) complex is a Holarctic species of dabbling duck currently categorized as three subspecies (Anas crecca crecca, A. c. nimia, and A. c. carolinensis) with a close relative, the yellow-billed teal (Anas flavirostris) from South America. A. c. crecca and A. c. carolinensis are seasonal migrants, while the other taxa are sedentary. We examined divergence and speciation patterns in this group, determining their phylogenetic relationships and the presence and levels of gene flow among lineages using both mitochondrial and genome-wide nuclear DNA obtained from 1,393 ultraconserved element (UCE) loci. Phylogenetic relationships using nuclear DNA among these taxa showed A. c. crecca, A. c. nimia, and A. c. carolinensis clustering together to form one polytomous clade, with A. flavirostris sister to this clade. This relationship can be summarized as (crecca, nimia, carolinensis)(flavirostris). However, whole mitogenomes revealed a different phylogeny: (crecca, nimia)(carolinensis, flavirostris). The best demographic model for key pairwise comparisons supported divergence with gene flow as the probable speciation mechanism in all three contrasts (crecca-nimia, crecca-carolinensis, and carolinensis-flavirostris). Given prior work, gene flow was expected among the Holarctic taxa, but gene flow between North American carolinensis and South American flavirostris (M ∼0.1-0.4 individuals/generation), albeit low, was not expected. Three geographically oriented modes of divergence are likely involved in the diversification of this complex: heteropatric (crecca-nimia), parapatric (crecca-carolinensis), and (mostly) allopatric (carolinensis-flavirostris). Our study shows that ultraconserved elements are a powerful tool for simultaneously studying systematics and population genomics in systems with historically uncertain relationships and species limits.
Collapse
Affiliation(s)
- Fern Spaulding
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - Jessica F McLaughlin
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Rebecca G Cheek
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Kevin G McCracken
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, USA
| | - Kevin Winker
- University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
5
|
Conservation genomics reveals low connectivity among populations of threatened roseate terns (Sterna dougallii) in the Atlantic Basin. CONSERV GENET 2023. [DOI: 10.1007/s10592-023-01505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Petersen HC, Hansen BW, Knott KE, Banta GT. Species and genetic diversity relationships in benthic macroinvertebrate communities along a salinity gradient. BMC Ecol Evol 2022; 22:125. [PMID: 36324063 PMCID: PMC9632067 DOI: 10.1186/s12862-022-02087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Species- and genetic diversity can change in parallel, resulting in a species-genetic diversity correlation (SGDC) and raising the question if the same drivers influence both biological levels of diversity. The SGDC can be either positive or negative, depending on whether the species diversity and the genetic diversity of the measured species respond in the same or opposite way to drivers. Using a traditional species diversity approach together with ultra-conserved elements and high throughput sequencing, we evaluated the SGDCs in benthic macrofauna communities in the Baltic Sea, a geologically young brackish water sea characterised by its steep salinity gradient and low species richness. Assessing SGDCs from six focal marine invertebrate species from different taxonomic groups and with differing life histories and ecological functions on both a spatial and temporal scale gives a more comprehensive insight into the community dynamics of this young ecosystem and the extrinsic factors that might drive the SGDCs. RESULTS No significant correlations between species diversity and genetic diversity were found for any of the focal species. However, both negative and positive trends of SGDCs for the individual focal species were observed. When examining the environmental drivers, no common trends between the species were found, even when restricting the analysis to specific taxonomic classes. Additionally, there were no common environmental factors driving the diversity relationships for species sharing the same SGDC trend (positive or negative). Local population dynamics, together with the invasion history of the individual species and their unique adaptation to the distinctive environment of the Baltic Sea, are expected to be of major influence on the outcome of the SGDCs. CONCLUSIONS The present results highlight the importance of assessing SGDCs using multiple species, not just a single indicator species. This emphasises a need to pay attention to the ecology and life history of the focal species. This study also provides insight into the large differences in both patterns and drivers of genetic diversity, which is important when including genetic biodiversity in conservation plans. We conclude that the effects of environmental and biological factors and processes that affects diversity patterns at both the community and genetic levels are likely species dependent, even in an environment such as the Baltic Sea with strong environmental gradients.
Collapse
Affiliation(s)
- H. Cecilie Petersen
- grid.11702.350000 0001 0672 1325Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark ,grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Benni W. Hansen
- grid.11702.350000 0001 0672 1325Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - K. Emily Knott
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Gary T. Banta
- grid.10825.3e0000 0001 0728 0170Department of Biology, University of Southern Denmark, 5238 Odense M, Denmark
| |
Collapse
|
7
|
Liu D, Niu M, Lu Y, Wei J, Zhang H. Taxon-specific ultraconserved element probe design for phylogenetic analyses of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.984396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scale insects (Coccoidea) are morphologically specialized members of the order Hemiptera, with 56 families recognized to date. However, the phylogenetic relationships within and among families are poorly resolved. In this study, to further characterize the phylogenetic relationships among scale insects, an ultraconserved element (UCE) probe set was designed specifically for Coccoidea based on three low-coverage whole genome sequences along with three publicly available genomes. An in silico test including eight additional genomes was performed to evaluate the effectiveness of the probe set. Most scale insect lineages were recovered by the phylogenetic analysis. This study recovered the monophyly of neococcoids. The newly developed UCE probe set has the potential to reshape and improve our understanding of the phylogenetic relationships within and among families of scale insects at the genome level.
Collapse
|
8
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
9
|
Silva SM, Ribas CC, Aleixo A. Recent population differentiation in the habitat specialist Glossy Antshrike (Aves: Thamnophilidae) across Amazonian seasonally flooded forests. Ecol Evol 2021; 11:11826-11838. [PMID: 34522344 PMCID: PMC8427616 DOI: 10.1002/ece3.7951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
We assessed population structure and the spatio-temporal pattern of diversification in the Glossy Antshrike Sakesphorus luctuosus (Aves, Thamnophilidae) to understand the processes shaping the evolutionary history of Amazonian floodplains and address unresolved taxonomic controversies surrounding its species limits. By targeting ultraconserved elements (UCEs) from 32 specimens of S. luctuosus, we identified independent lineages and estimated their differentiation, divergence times, and migration rates. We also estimated current and past demographic histories for each recovered lineage. We found evidence confirming that S. luctuosus consists of a single species, comprising at least four populations, with some highly admixed individuals and overall similar levels of migration between populations. We confirmed the differentiation of the Araguaia River basin population (S. l. araguayae) and gathered circumstantial evidence indicating that the taxon S. hagmanni may represent a highly introgressed population between three distinct phylogroups of S. luctuosus. Divergences between populations occurred during the last 1.2 mya. Signs of population expansions were detected for populations attributed to subspecies S. l. luctuosus, but not for the S. l. araguayae population. Our results support that S. luctuosus has had a complex population history, resulting from a high dependence on southeastern "clear water" seasonally flooded habitats and their availability through time. Spatial and demographic expansions toward the western "white water" flooded forests might be related to recent changes in connectivity and availability of these habitats. Our study reinforces the view that isolation due to absence of suitable habitat has been an important driver of population differentiation within Amazonian flooded forests, but also that differences between várzeas ("white water" floodplains, mostly in southwestern Amazonia) and igapós ("clear water" floodplains, especially located in the east) should be further explored as drivers of micro-evolution for terrestrial species.
Collapse
Affiliation(s)
- Sofia Marques Silva
- Research Centre in Biodiversity and Genetic ResourcesCIBIO/InBIOVairãoPortugal
- Department of ZoologyMuseu Paraense Emílio GoeldiBelémBrazil
| | | | - Alexandre Aleixo
- Department of ZoologyMuseu Paraense Emílio GoeldiBelémBrazil
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
10
|
Gene flow in phylogenomics: Sequence capture resolves species limits and biogeography of Afromontane forest endemic frogs from the Cameroon Highlands. Mol Phylogenet Evol 2021; 163:107258. [PMID: 34252546 DOI: 10.1016/j.ympev.2021.107258] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Puddle frogs of the Phrynobatrachus steindachneri species complex are a useful group for investigating speciation and phylogeography in Afromontane forests of the Cameroon Volcanic Line, western Central Africa. The species complex is represented by six morphologically relatively cryptic mitochondrial DNA lineages, only two of which are distinguished at the species level - southern P. jimzimkusi and Lake Oku endemic P. njiomock, leaving the remaining four lineages identified as 'P. steindachneri'. In this study, the six mtDNA lineages are subjected to genomic sequence capture analyses and morphological examination to delimit species and to study biogeography. The nuclear DNA data (387 loci; 571,936 aligned base pairs) distinguished all six mtDNA lineages, but the topological pattern and divergence depths supported only four main clades: P. jimzimkusi, P. njiomock, and only two divergent evolutionary lineages within the four 'P. steindachneri' mtDNA lineages. One of the two lineages is herein described as a new species, P. amieti sp. nov. Reticulate evolution (hybridization) was detected within the species complex with morphologically intermediate hybrid individuals placed between the parental species in phylogenomic analyses, forming a ladder-like phylogenetic pattern. The presence of hybrids is undesirable in standard phylogenetic analyses but is essential and beneficial in the network multispecies coalescent. This latter approach provided insight into the reticulate evolutionary history of these endemic frogs. Introgressions likely occurred during the Middle and Late Pleistocene climatic oscillations, due to the cyclic connections (likely dominating during cold glacials) and separations (during warm interglacials) of montane forests. The genomic phylogeographic pattern supports the separation of the southern (Mt. Manengouba to Mt. Oku) and northern mountains at the onset of the Pleistocene. Further subdivisions occurred in the Early Pleistocene, separating populations from the northernmost (Tchabal Mbabo, Gotel Mts.) and middle mountains (Mt. Mbam, Mt. Oku, Mambilla Plateau), as well as the microendemic lineage restricted to Lake Oku (Mt. Oku). This unique model system is highly threatened as all the species within the complex have exhibited severe population declines in the past decade, placing them on the brink of extinction. In addition, Mount Oku is identified to be of particular conservation importance because it harbors three species of this complex. We, therefore, urge for conservation actions in the Cameroon Highlands to preserve their diversity before it is too late.
Collapse
|
11
|
Considerations for Initiating a Wildlife Genomics Research Project in South and South-East Asia. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00243-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Andersen MJ, McCullough JM, Gyllenhaal EF, Mapel XM, Haryoko T, Jønsson KA, Joseph L. Complex histories of gene flow and a mitochondrial capture event in a nonsister pair of birds. Mol Ecol 2021; 30:2087-2103. [PMID: 33615597 PMCID: PMC8252742 DOI: 10.1111/mec.15856] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
Hybridization, introgression, and reciprocal gene flow during speciation, specifically the generation of mitonuclear discordance, are increasingly observed as parts of the speciation process. Genomic approaches provide insight into where, when, and how adaptation operates during and after speciation and can measure historical and modern introgression. Whether adaptive or neutral in origin, hybridization can cause mitonuclear discordance by placing the mitochondrial genome of one species (or population) in the nuclear background of another species. The latter, introgressed species may eventually have its own mtDNA replaced or “captured” by other species across its entire geographical range. Intermediate stages in the capture process should be observable. Two nonsister species of Australasian monarch‐flycatchers, Spectacled Monarch (Symposiachrus trivirgatus) mostly of Australia and Indonesia and Spot‐winged Monarch (S. guttula) of New Guinea, present an opportunity to observe this process. We analysed thousands of single nucleotide polymorphisms (SNPs) derived from ultraconserved elements of all subspecies of both species. Mitochondrial DNA sequences of Australian populations of S. trivirgatus form two paraphyletic clades, one being sister to and presumably introgressed by S. guttula despite little nuclear signal of introgression. Population genetic analyses (e.g., tests for modern and historical gene flow and selection) support at least one historical gene flow event between S. guttula and Australian S. trivirgatus. We also uncovered introgression from the Maluku Islands subspecies of S. trivirgatus into an island population of S. guttula, resulting in apparent nuclear paraphyly. We find that neutral demographic processes, not adaptive introgression, are the most likely cause of these complex population histories. We suggest that a Pleistocene extinction of S. guttula from mainland Australia resulted from range expansion by S. trivirgatus.
Collapse
Affiliation(s)
- Michael J Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jenna M McCullough
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Ethan F Gyllenhaal
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Xena M Mapel
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA.,Animal Genomics, ETH Zürich, Lindau, Switzerland
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
13
|
Gueuning M, Frey JE, Praz C. Ultraconserved yet informative for species delimitation: Ultraconserved elements resolve long-standing systematic enigma in Central European bees. Mol Ecol 2020; 29:4203-4220. [PMID: 32916006 DOI: 10.1111/mec.15629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Accurate and testable species hypotheses are essential for measuring, surveying and managing biodiversity. Taxonomists often rely on mitochondrial DNA barcoding to complement morphological species delimitations. Although COI-barcoding has largely proven successful in assisting identifications for most animal taxa, there are nevertheless numerous cases where mitochondrial barcodes do not reflect species hypotheses. For instance, what is regarded as a single species can be associated with two distinct DNA barcodes, which can point either to cryptic diversity or to within-species mitochondrial divergences without reproductive isolation. In contrast, two or more species can share barcodes, for instance due to mitochondrial introgression. These intrinsic limitations of DNA barcoding are commonly addressed with nuclear genomic markers, which are expensive, may have low repeatability and often require high-quality DNA. To overcome these limitations, we examined the use of ultraconserved elements (UCEs) as a quick and robust genomic approach to address such problematic cases of species delimitation in bees. This genomic method was assessed using six different species complexes suspected to harbour cryptic diversity, mitochondrial introgression or mitochondrial paraphyly. The sequencing of UCEs recovered between 686 and 1,860 homologous nuclear loci and provided explicit species delimitation in all investigated species complexes. These results provide strong evidence for the suitability of UCEs as a fast method for species delimitation even in recently diverged lineages. Furthermore, we provide the first evidence for both mitochondrial introgression among distinct bee species, and mitochondrial paraphyly within a single bee species.
Collapse
Affiliation(s)
- Morgan Gueuning
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland.,Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Juerg E Frey
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Wädenswil, Switzerland
| | - Christophe Praz
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
14
|
Parker LD, Hawkins MTR, Camacho-Sanchez M, Campana MG, West-Roberts JA, Wilbert TR, Lim HC, Rockwood LL, Leonard JA, Maldonado JE. Little genetic structure in a Bornean endemic small mammal across a steep ecological gradient. Mol Ecol 2020; 29:4074-4090. [PMID: 32911576 DOI: 10.1111/mec.15626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/02/2023]
Abstract
Janzen's influential "mountain passes are higher in the tropics" hypothesis predicts restricted gene flow and genetic isolation among populations spanning elevational gradients in the tropics. Few studies have tested this prediction, and studies that focus on population genetic structure in Southeast Asia are particularly underrepresented in the literature. Here, we test the hypothesis that mountain treeshrews (Tupaia montana) exhibit limited dispersal across their broad elevational range which spans ~2,300 m on two peaks in Kinabalu National Park (KNP) in Borneo: Mt Tambuyukon (MT) and Mt Kinabalu (MK). We sampled 83 individuals across elevations on both peaks and performed population genomics analyses on mitogenomes and single nucleotide polymorphisms from 4,106 ultraconserved element loci. We detected weak genetic structure and infer gene flow both across elevations and between peaks. We found higher genetic differentiation on MT than MK despite its lower elevation and associated environmental variation. This implies that, contrary to our hypothesis, genetic structure in this system is not primarily shaped by elevation. We propose that this pattern may instead be the result of historical processes and limited upslope gene flow on MT. Importantly, our results serve as a foundational estimate of genetic diversity and population structure from which to track potential future effects of climate change on mountain treeshrews in KNP, an important conservation stronghold for the mountain treeshrew and other montane species.
Collapse
Affiliation(s)
- Lillian D Parker
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute and National Zoological Park, Washington, DC, USA.,School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Melissa T R Hawkins
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute and National Zoological Park, Washington, DC, USA.,Division of Mammals, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Miguel Camacho-Sanchez
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute and National Zoological Park, Washington, DC, USA.,School of Systems Biology, George Mason University, Fairfax, VA, USA.,Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Jacob A West-Roberts
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute and National Zoological Park, Washington, DC, USA.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tammy R Wilbert
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute and National Zoological Park, Washington, DC, USA
| | - Haw Chuan Lim
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute and National Zoological Park, Washington, DC, USA.,School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Larry L Rockwood
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute and National Zoological Park, Washington, DC, USA.,School of Systems Biology, George Mason University, Fairfax, VA, USA.,Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| |
Collapse
|
15
|
Erickson KL, Pentico A, Quattrini AM, McFadden CS. New approaches to species delimitation and population structure of anthozoans: Two case studies of octocorals using ultraconserved elements and exons. Mol Ecol Resour 2020; 21:78-92. [PMID: 32786110 DOI: 10.1111/1755-0998.13241] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023]
Abstract
As coral populations decline worldwide in the face of ongoing environmental change, documenting their distribution, diversity and conservation status is now more imperative than ever. Accurate delimitation and identification of species is a critical first step. This task, however, is not trivial as morphological variation and slowly evolving molecular markers confound species identification. New approaches to species delimitation in corals are needed to overcome these challenges. Here, we test whether target enrichment of ultraconserved elements (UCEs) and exons can be used for delimiting species boundaries and population structure within species of corals by focusing on two octocoral genera, Alcyonium and Sinularia, as exemplary case studies. We designed an updated bait set (29,181 baits) to target-capture 3,023 UCE and exon loci, recovering a mean of 1,910 ± 168 SD per sample with a mean length of 1,055 ± 208 bp. Similar numbers of loci were recovered from Sinularia (1,946 ± 227 SD) and Alcyonium (1,863 ± 177 SD). Species-level phylogenies were highly supported for both genera. Clustering methods based on filtered single nucleotide polymorphisms delimited species and populations that are congruent with previous allozyme, DNA barcoding, reproductive and ecological data for Alcyonium, and offered further evidence of hybridization among species. For Sinularia, results were congruent with those obtained from a previous study using restriction site associated DNA sequencing. Both case studies demonstrate the utility of target-enrichment of UCEs and exons to address a wide range of evolutionary and taxonomic questions across deep to shallow timescales in corals.
Collapse
Affiliation(s)
| | - Alicia Pentico
- Department of Biology, Harvey Mudd College, Claremont, CA, USA
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, Claremont, CA, USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | |
Collapse
|
16
|
McLaughlin JF, Faircloth BC, Glenn TC, Winker K. Divergence, gene flow, and speciation in eight lineages of trans-Beringian birds. Mol Ecol 2020; 29:3526-3542. [PMID: 32745340 DOI: 10.1111/mec.15574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Determining how genetic diversity is structured between populations that span the divergence continuum from populations to biological species is key to understanding the generation and maintenance of biodiversity. We investigated genetic divergence and gene flow in eight lineages of birds with a trans-Beringian distribution, where Asian and North American populations have likely been split and reunited through multiple Pleistocene glacial cycles. Our study transects the speciation process, including eight pairwise comparisons in three orders (ducks, shorebirds and passerines) at population, subspecies and species levels. Using ultraconserved elements (UCEs), we found that these lineages represent conditions from slightly differentiated populations to full biological species. Although allopatric speciation is considered the predominant mode of divergence in birds, all of our best divergence models included gene flow, supporting speciation with gene flow as the predominant mode in Beringia. In our eight lineages, three were best described by a split-migration model (divergence with gene flow), three best fit a secondary contact scenario (isolation followed by gene flow), and two showed support for both models. The lineages were not evenly distributed across a divergence space defined by gene flow (M) and differentiation (FST ), instead forming two discontinuous groups: one with relatively shallow divergence, no fixed single nucleotide polymorphisms (SNPs), and high rates of gene flow between populations; and the second with relatively deeply divergent lineages, multiple fixed SNPs, and low gene flow. Our results highlight the important role that gene flow plays in avian divergence in Beringia.
Collapse
Affiliation(s)
- Jessica F McLaughlin
- University of Alaska Museum, Fairbanks, AK, USA.,Sam Noble Oklahoma Museum of Natural History, Norman, OK, USA
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Travis C Glenn
- Department of Environmental Health Science and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
17
|
Van Dam MH, Henderson JB, Esposito L, Trautwein M. Genomic Characterization and Curation of UCEs Improves Species Tree Reconstruction. Syst Biol 2020; 70:307-321. [PMID: 32750133 PMCID: PMC7875437 DOI: 10.1093/sysbio/syaa063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ultraconserved genomic elements (UCEs) are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes does not require prior knowledge of genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here, we characterized UCEs from 11 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated four different sets of UCE markers by genomic category from five different studies including: birds, mammals, fish, Hymenoptera (ants, wasps, and bees), and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by two or more UCEs, corresponding to nonoverlapping segments of a single gene. We considered these UCEs to be nonindependent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging cogenic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees was significantly improved across all data sets apparently driven by the increase in loci length. Additionally, we conducted simulations and found that gene trees generated from merged UCEs were more accurate than those generated by unmerged UCEs. As loci length improves gene tree accuracy, this modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses. [Anchored hybrid enrichment; ants; ASTRAL; bait capture; carangimorph; Coleoptera; conserved nonexonic elements; exon capture; gene tree; Hymenoptera; mammal; phylogenomic markers; songbird; species tree; ultraconserved elements; weevils.]
Collapse
Affiliation(s)
- Matthew H Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - James B Henderson
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - Lauren Esposito
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - Michelle Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| |
Collapse
|
18
|
Lim HC, Shakya SB, Harvey MG, Moyle RG, Fleischer RC, Braun MJ, Sheldon FH. Opening the door to greater phylogeographic inference in Southeast Asia: Comparative genomic study of five codistributed rainforest bird species using target capture and historical DNA. Ecol Evol 2020; 10:3222-3247. [PMID: 32273983 PMCID: PMC7141000 DOI: 10.1002/ece3.5964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022] Open
Abstract
Indochina and Sundaland are biologically diverse, interconnected regions of Southeast Asia with complex geographic histories. Few studies have examined phylogeography of bird species that span the two regions because of inadequate population sampling. To determine how geographic barriers/events and disparate dispersal potential have influenced the population structure, gene flow, and demographics of species that occupy the entire area, we studied five largely codistributed rainforest bird species: Arachnothera longirostra, Irena puella, Brachypodius atriceps, Niltava grandis, and Stachyris nigriceps. We accomplished relatively thorough sampling and data collection by sequencing ultraconserved elements (UCEs) using DNA extracted from modern and older (historical) specimens. We obtained a genome-wide set of 753-4,501 variable loci and 3,919-18,472 single nucleotide polymorphisms. The formation of major within-species lineages occurred within a similar span of time (0.5-1.5 mya). Major patterns in population genetic structure are largely consistent with the dispersal potential and habitat requirements of the study species. A population break across the Isthmus of Kra was shared only by the two hill/submontane insectivores (N. grandis and S. nigriceps). Across Sundaland, there is little structure in B. atriceps, which is a eurytopic and partially frugivorous species that often utilizes forest edges. Two other eurytopic species, A. longirostra and I. puella, possess highly divergent populations in peripheral Sunda Islands (Java and/or Palawan) and India. These species probably possess intermediate dispersal abilities that allowed them to colonize new areas, and then remained largely isolated subsequently. We also observed an east-west break in Indochina that was shared by B. atriceps and S. nigriceps, species with very different habitat requirements and dispersal potential. By analyzing high-throughput DNA data, our study provides an unprecedented comparative perspective on the process of avian population divergence across Southeast Asia, a process that is determined by geography, species characteristics, and the stochastic nature of dispersal and vicariance events.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of BiologyGeorge Mason UniversityFairfaxVirginia
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of Columbia
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDistrict of Columbia
| | - Subir B. Shakya
- Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Michael G. Harvey
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee
| | - Robert G. Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas
| | - Robert C. Fleischer
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteWashingtonDistrict of Columbia
| | - Michael J. Braun
- Department of Vertebrate ZoologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDistrict of Columbia
| | - Frederick H. Sheldon
- Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| |
Collapse
|
19
|
Sun X, Ding Y, Orr MC, Zhang F. Streamlining universal single-copy orthologue and ultraconserved element design: A case study in Collembola. Mol Ecol Resour 2020; 20. [PMID: 32065730 DOI: 10.1111/1755-0998.13146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Abstract
Genomic data sets are increasingly central to ecological and evolutionary biology, but far fewer resources are available for invertebrates. Powerful new computational tools and the rapidly decreasing cost of Illumina sequencing are beginning to change this, enabling rapid genome assembly and reference marker extraction. We have developed and tested a practical workflow for developing genomic resources in nonmodel groups with real-world data on Collembola (springtails), one of the most dominant soil animals on Earth. We designed universal molecular marker sets, single-copy orthologues (BUSCOs) and ultraconserved elements (UCEs), using three existing and 11 newly generated genomes. Both marker types were tested in silico via marker capture success and phylogenetic performance. The new genomes were assembled with Illumina short reads and 9,585-14,743 protein-coding genes were predicted with ab initio and protein homology evidence. We identified 1,997 benchmarking universal single-copy orthologues (BUSCOs) across 14 genomes and created and assessed a custom BUSCO data set for extracting single-copy genes. We also developed a new UCE probe set containing 46,087 baits targeting 1,885 loci. We successfully captured 1,437-1,865 BUSCOs and 975-1,186 UCEs across 14 genomes. Phylogenomic reconstructions using these markers proved robust, giving new insight on deep-time collembolan relationships. Our study demonstrates the feasibility of generating thousands of universal markers from highly efficient whole-genome sequencing, providing a valuable resource for genome-scale investigations in evolutionary biology and ecology.
Collapse
Affiliation(s)
- Xin Sun
- J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany.,Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Michael C Orr
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Guillory WX, French CM, Twomey EM, Chávez G, Prates I, von May R, De la Riva I, Lötters S, Reichle S, Serrano-Rojas SJ, Whitworth A, Brown JL. Phylogenetic relationships and systematics of the Amazonian poison frog genus Ameerega using ultraconserved genomic elements. Mol Phylogenet Evol 2019; 142:106638. [PMID: 31586688 DOI: 10.1016/j.ympev.2019.106638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022]
Abstract
The Amazonian poison frog genus Ameerega is one of the largest yet most understudied of the brightly colored genera in the anuran family Dendrobatidae, with 30 described species ranging throughout tropical South America. Phylogenetic analyses of Ameerega are highly discordant, lacking consistency due to variation in data types and methods, and often with limited coverage of species diversity in the genus. Here, we present a comprehensive phylogenomic reconstruction of Ameerega, utilizing state-of-the-art sequence capture techniques and phylogenetic methods. We sequenced thousands of ultraconserved elements from over 100 tissue samples, representing almost every described Ameerega species, as well as undescribed cryptic diversity. We generated topologies using maximum likelihood and coalescent methods and compared the use of maximum likelihood and Bayesian methods for estimating divergence times. Our phylogenetic inference diverged strongly from those of previous studies, and we recommend steps to bring Ameerega taxonomy in line with the new phylogeny. We place several species in a phylogeny for the first time, as well as provide evidence for six potential candidate species. We estimate that Ameerega experienced a rapid radiation approximately 7-11 million years ago and that the ancestor of all Ameerega was likely an aposematic, montane species. This study underscores the utility of phylogenomic data in improving our understanding of the phylogeny of understudied clades and making novel inferences about their evolution.
Collapse
Affiliation(s)
- Wilson X Guillory
- Department of Zoology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL 62901, USA.
| | - Connor M French
- Department of Zoology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL 62901, USA; Department of Biology, Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Evan M Twomey
- Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Germán Chávez
- División de Herpetología, Centro de Ornitología y Biodiversidad (CORBIDI), Santa Rita N°105 36 Of. 202, Urb. Huertos de San Antonio, Santiago de Surco, Lima, Peru
| | - Ivan Prates
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave, NW, Washington, DC 20560-0162, USA
| | - Rudolf von May
- Biology Program, California State University Channel Islands, 1 University Drive, Camarillo, CA 93012, USA
| | - Ignacio De la Riva
- Museo Nacional de Ciencias Naturales (MNCN), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Stefan Lötters
- Department of Biogeography, Universität Trier, Universitätsring 15, 54296, Trier, Germany
| | | | - Shirley J Serrano-Rojas
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru; Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Whitworth
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jason L Brown
- Department of Zoology, Southern Illinois University, 1125 Lincoln Drive, Carbondale, IL 62901, USA
| |
Collapse
|
21
|
Phylogenomic Reconstruction of the Neotropical Poison Frogs (Dendrobatidae) and Their Conservation. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11080126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The evolutionary history of the Dendrobatidae, the charismatic Neotropical poison frog family, remains in flux, even after a half-century of intensive research. Understanding the evolutionary relationships between dendrobatid genera and the larger-order groups within Dendrobatidae is critical for making accurate assessments of all aspects of their biology and evolution. In this study, we provide the first phylogenomic reconstruction of Dendrobatidae with genome-wide nuclear markers known as ultraconserved elements. We performed sequence capture on 61 samples representing 33 species across 13 of the 16 dendrobatid genera, aiming for a broadly representative taxon sample. We compare topologies generated using maximum likelihood and coalescent methods and estimate divergence times using Bayesian methods. We find most of our dendrobatid tree to be consistent with previously published results based on mitochondrial and low-count nuclear data, with notable exceptions regarding the placement of Hyloxalinae and certain genera within Dendrobatinae. We also characterize how the evolutionary history and geographic distributions of the 285 poison frog species impact their conservation status. We hope that our phylogeny will serve as a backbone for future evolutionary studies and that our characterizations of conservation status inform conservation practices while highlighting taxa in need of further study.
Collapse
|
22
|
Speciation, gene flow, and seasonal migration in Catharus thrushes (Aves:Turdidae). Mol Phylogenet Evol 2019; 139:106564. [PMID: 31330265 DOI: 10.1016/j.ympev.2019.106564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
New World thrushes in the genus Catharus are small, insectivorous or omnivorous birds that have been used to explore several important questions in avian evolution, including the evolution of seasonal migration and plumage variation. Within Catharus, members of a clade of obligate long-distance migrants (C. fuscescens, C. minimus, and C. bicknelli) have also been used in the development of heteropatric speciation theory, a divergence process in which migratory lineages (which might occur in allopatry or sympatry during portions of their annual cycle) diverge despite low levels of gene flow. However, research on Catharus relationships has thus far been restricted to the use of small genetic datasets, which provide limited resolution of both phylogenetic and demographic histories. We used a large, multi-locus dataset from loci containing ultraconserved elements (UCEs) to study the demographic histories of the migratory C. fuscescens-minimus-bicknelli clade and to resolve the phylogeny of the migratory species of Catharus. Our dataset included more than 2000 loci and over 1700 variable genotyped sites, and analyses supported our prediction of divergence with gene flow in the fully migratory clade, with significant gene flow among all three species. Our phylogeny of the genus differs from past work in its placement of C. ustulatus, and further analyses suggest historic gene flow throughout the genus, producing genetically reticulate (or network) phylogenies. This raises questions about trait origins and suggests that seasonal migration and the resulting migratory condition of heteropatry is likely to promote hybridization not only during pairwise divergence and speciation, but also among non-sisters.
Collapse
|