1
|
Idrees S, Paudel KR, Sadaf T, Hansbro PM. Uncovering domain motif interactions using high-throughput protein-protein interaction detection methods. FEBS Lett 2024; 598:725-742. [PMID: 38439692 DOI: 10.1002/1873-3468.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
Protein-protein interactions (PPIs) are often mediated by short linear motifs (SLiMs) in one protein and domain in another, known as domain-motif interactions (DMIs). During the past decade, SLiMs have been studied to find their role in cellular functions such as post-translational modifications, regulatory processes, protein scaffolding, cell cycle progression, cell adhesion, cell signalling and substrate selection for proteasomal degradation. This review provides a comprehensive overview of the current PPI detection techniques and resources, focusing on their relevance to capturing interactions mediated by SLiMs. We also address the challenges associated with capturing DMIs. Moreover, a case study analysing the BioGrid database as a source of DMI prediction revealed significant known DMI enrichment in different PPI detection methods. Overall, it can be said that current high-throughput PPI detection methods can be a reliable source for predicting DMIs.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Centre for Inflammation, Centenary Institute and Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| | - Tayyaba Sadaf
- Centre for Inflammation, Centenary Institute and Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and Faculty of Science, School of Life Sciences, University of Technology Sydney, Australia
| |
Collapse
|
2
|
Banik M, Paudel KR, Majumder R, Idrees S. Prediction of virus-host interactions and identification of hot spot residues of DENV-2 and SH3 domain interactions. Arch Microbiol 2024; 206:162. [PMID: 38483579 PMCID: PMC10940428 DOI: 10.1007/s00203-024-03892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Dengue virus, particularly serotype 2 (DENV-2), poses a significant global health threat, and understanding the molecular basis of its interactions with host cell proteins is imperative for developing targeted therapeutic strategies. This study elucidated the interactions between proline-enriched motifs and Src homology 3 (SH3) domain. The SH3 domain is pivotal in mediating protein-protein interactions, particularly by recognizing and binding to proline-rich regions in partner proteins. Through a computational pipeline, we analyzed the interactions and binding modes of proline-enriched motifs with SH3 domains, identified new potential DENV-2 interactions with the SH3 domain, and revealed potential hot spot residues, underscoring their significance in the viral life cycle. This comprehensive analysis provides crucial insights into the molecular basis of DENV-2 infection, highlighting conserved and serotype-specific interactions. The identified hot spot residues offer potential targets for therapeutic intervention, laying the foundation for developing antiviral strategies against Dengue virus infection. These findings contribute to the broader understanding of viral-host interactions and provide a roadmap for future research on Dengue virus pathogenesis and treatment.
Collapse
Affiliation(s)
- Mithila Banik
- Department of Bioinformatics and Biotechnology, Asian University for Women, Chattogram, Bangladesh
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Rajib Majumder
- Applied Bioscience, Macquarie University, Sydney, NSW, Australia
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Idrees S, Paudel KR. Proteome-wide assessment of human interactome as a source of capturing domain-motif and domain-domain interactions. J Cell Commun Signal 2024; 18:e12014. [PMID: 38545252 PMCID: PMC10964934 DOI: 10.1002/ccs3.12014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 06/29/2024] Open
Abstract
Protein-protein interactions (PPIs) play a crucial role in various biological processes by establishing domain-motif (DMI) and domain-domain interactions (DDIs). While the existence of real DMIs/DDIs is generally assumed, it is rarely tested; therefore, this study extensively compared high-throughput methods and public PPI repositories as sources for DMI and DDI prediction based on the assumption that the human interactome provides sufficient data for the reliable identification of DMIs and DDIs. Different datasets from leading high-throughput methods (Yeast two-hybrid [Y2H], Affinity Purification coupled Mass Spectrometry [AP-MS], and Co-fractionation-coupled Mass Spectrometry) were assessed for their ability to capture DMIs and DDIs using known DMI/DDI information. High-throughput methods were not notably worse than PPI databases and, in some cases, appeared better. In conclusion, all PPI datasets demonstrated significant enrichment in DMIs and DDIs (p-value <0.001), establishing Y2H and AP-MS as reliable methods for predicting these interactions. This study provides valuable insights for biologists in selecting appropriate methods for predicting DMIs, ultimately aiding in SLiM discovery.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Centre for InflammationCentenary Institute and the University of Technology SydneySchool of Life SciencesFaculty of ScienceSydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for InflammationCentenary Institute and the University of Technology SydneySchool of Life SciencesFaculty of ScienceSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Idrees S, Paudel KR, Hansbro PM. Prediction of motif-mediated viral mimicry through the integration of host-pathogen interactions. Arch Microbiol 2024; 206:94. [PMID: 38334822 PMCID: PMC10858152 DOI: 10.1007/s00203-024-03832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
One of the mechanisms viruses use in hijacking host cellular machinery is mimicking Short Linear Motifs (SLiMs) in host proteins to maintain their life cycle inside host cells. In the face of the escalating volume of virus-host protein-protein interactions (vhPPIs) documented in databases; the accurate prediction of molecular mimicry remains a formidable challenge due to the inherent degeneracy of SLiMs. Consequently, there is a pressing need for computational methodologies to predict new instances of viral mimicry. Our present study introduces a DMI-de-novo pipeline, revealing that vhPPIs catalogued in the VirHostNet3.0 database effectively capture domain-motif interactions (DMIs). Notably, both affinity purification coupled mass spectrometry and yeast two-hybrid assays emerged as good approaches for delineating DMIs. Furthermore, we have identified new vhPPIs mediated by SLiMs across different viruses. Importantly, the de-novo prediction strategy facilitated the recognition of several potential mimicry candidates implicated in the subversion of host cellular proteins. The insights gleaned from this research not only enhance our comprehension of the mechanisms by which viruses co-opt host cellular machinery but also pave the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, NSW, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Idrees S, Paudel KR. Bioinformatics prediction and screening of viral mimicry candidates through integrating known and predicted DMI data. Arch Microbiol 2023; 206:30. [PMID: 38117335 DOI: 10.1007/s00203-023-03764-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Domain-motif interactions (DMIs) represent transient bonds formed when a Short Linear Motif (SLiM) engages a globular domain via a compact contact interface. Understanding the mechanics of DMIs is critical for maintaining diverse regulatory processes and deciphering how various viruses hijack host cellular machinery. However, identifying DMIs through traditional in vitro and in vivo experiments is challenging due to their degenerate nature and small contact areas. Predictions often carry a high rate of false positives, necessitating rigorous in-silico validation before embarking on experimental work. This study assessed the binding energy changes in predicted SLiM instances through in-silico peptide exchange experiment, elucidating how they interact with known 3D DMI complexes. We identified a subset of potential mimicry candidates that exhibited effective binding affinities with native DMI structures, suggesting their potential to be true mimicry candidates. The identified viral SLiMs can be potential targets in developing therapeutics, opening new opportunities for innovative treatments that can be finely tuned to address the complex molecular underpinnings of various diseases. To gain a comprehensive understanding of identified DMIs, it is imperative to conduct further validation through experimental approaches.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and the University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| |
Collapse
|
6
|
Duan H, Zhang X, Figeys D. An emerging field: Post-translational modification in microbiome. Proteomics 2023; 23:e2100389. [PMID: 36239139 DOI: 10.1002/pmic.202100389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Post-translational modifications (PTMs) play an essential role in most biological processes. PTMs on human proteins have been extensively studied. Studies on bacterial PTMs are emerging, which demonstrate that bacterial PTMs are different from human PTMs in their types, mechanisms and functions. Few PTM studies have been done on the microbiome. Here, we reviewed several studied PTMs in bacteria including phosphorylation, acetylation, succinylation, glycosylation, and proteases. We discussed the enzymes responsible for each PTM and their functions. We also summarized the current methods used to study microbiome PTMs and the observations demonstrating the roles of PTM in the microbe-microbe interactions within the microbiome and their interactions with the environment or host. Although new methods and tools for PTM studies are still needed, the existing technologies have made great progress enabling a deeper understanding of the functional regulation of the microbiome. Large-scale application of these microbiome-wide PTM studies will provide a better understanding of the microbiome and its roles in the development of human diseases.
Collapse
Affiliation(s)
- Haonan Duan
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xu Zhang
- Center for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Wadie B, Kleshchevnikov V, Sandaltzopoulou E, Benz C, Petsalaki E. Use of viral motif mimicry improves the proteome-wide discovery of human linear motifs. Cell Rep 2022; 39:110764. [PMID: 35508127 DOI: 10.1016/j.celrep.2022.110764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/09/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Linear motifs have an integral role in dynamic cell functions, including cell signaling. However, due to their small size, low complexity, and frequent mutations, identifying novel functional motifs poses a challenge. Viruses rely extensively on the molecular mimicry of cellular linear motifs. In this study, we apply systematic motif prediction combined with functional filters to identify human linear motifs convergently evolved also in viral proteins. We observe an increase in the sensitivity of motif prediction and improved enrichment in known instances. We identify >7,300 non-redundant motif instances at various confidence levels, 99 of which are supported by all functional and structural filters. Overall, we provide a pipeline to improve the identification of functional linear motifs from interactomics datasets and a comprehensive catalog of putative human motifs that can contribute to our understanding of the human domain-linear motif code and the associated mechanisms of viral interference.
Collapse
Affiliation(s)
- Bishoy Wadie
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Vitalii Kleshchevnikov
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Elissavet Sandaltzopoulou
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Caroline Benz
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK.
| |
Collapse
|
8
|
Sudhakar P, Machiels K, Verstockt B, Korcsmaros T, Vermeire S. Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions. Front Microbiol 2021; 12:618856. [PMID: 34046017 PMCID: PMC8148342 DOI: 10.3389/fmicb.2021.618856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiome, by virtue of its interactions with the host, is implicated in various host functions including its influence on nutrition and homeostasis. Many chronic diseases such as diabetes, cancer, inflammatory bowel diseases are characterized by a disruption of microbial communities in at least one biological niche/organ system. Various molecular mechanisms between microbial and host components such as proteins, RNAs, metabolites have recently been identified, thus filling many gaps in our understanding of how the microbiome modulates host processes. Concurrently, high-throughput technologies have enabled the profiling of heterogeneous datasets capturing community level changes in the microbiome as well as the host responses. However, due to limitations in parallel sampling and analytical procedures, big gaps still exist in terms of how the microbiome mechanistically influences host functions at a system and community level. In the past decade, computational biology and machine learning methodologies have been developed with the aim of filling the existing gaps. Due to the agnostic nature of the tools, they have been applied in diverse disease contexts to analyze and infer the interactions between the microbiome and host molecular components. Some of these approaches allow the identification and analysis of affected downstream host processes. Most of the tools statistically or mechanistically integrate different types of -omic and meta -omic datasets followed by functional/biological interpretation. In this review, we provide an overview of the landscape of computational approaches for investigating mechanistic interactions between individual microbes/microbiome and the host and the opportunities for basic and clinical research. These could include but are not limited to the development of activity- and mechanism-based biomarkers, uncovering mechanisms for therapeutic interventions and generating integrated signatures to stratify patients.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Kathleen Machiels
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Tamas Korcsmaros
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|