1
|
Hu Y, Khan S, Yin L, Tang H, Huang J. Investigating aluminum toxicity effects on callose deposition, oxidative stress, and nutrient homeostasis in banana genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31287-31303. [PMID: 38632199 DOI: 10.1007/s11356-024-33071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Aluminum (Al) toxicity poses a significant challenge to agricultural productivity, particularly in acidic soils. The banana crop, predominantly cultivated in tropical and subtropical climates, often grapples with low pH and Al toxicity. This study seeks to explore the differential responses of two banana genotypes with varying Al tolerance (Baodao and Baxi) to Al exposure (100 and 500 µM) for 24 h. Microscopic analysis uncovered distinctive structural modifications in root cells, with Baodao displaying more severe alterations in response to Al stress. There was higher superoxide (O2-.) and hydrogen peroxide (H2O2) production and lipid peroxidation in Baodao indicating enhanced oxidative stress and membrane damage. Al accumulation in root tips was higher in Baxi than Baodao, while the roots of Baodao had a higher accumulation of callose. Nutrient content analysis revealed alterations in ion levels, highlighting the impact of Al exposure on nutrient uptake and homeostasis. In summary, Al differentially affects callose deposition, which, in turn, leads to Al uptake and nutrient homeostasis alteration in two contrasting banana genotypes. This intricate interplay is a key factor in understanding plant responses to aluminum toxicity and can inform strategies for crop improvement and soil management in aluminum-stressed environments.
Collapse
Affiliation(s)
- Yue Hu
- College of Breeding and Multiplication, Hainan University (Sanya Institute of Breeding and Multiplication), Sanya, 572022, China
| | - Shahbaz Khan
- College of Breeding and Multiplication, Hainan University (Sanya Institute of Breeding and Multiplication), Sanya, 572022, China
| | - Liyan Yin
- School of Life Sciences, Hainan University, Haikou, 570228, China
- One Health Institute, Hainan University, Haikou, 570228, China
| | - Hua Tang
- College of Breeding and Multiplication, Hainan University (Sanya Institute of Breeding and Multiplication), Sanya, 572022, China
| | - Jiaquan Huang
- College of Breeding and Multiplication, Hainan University (Sanya Institute of Breeding and Multiplication), Sanya, 572022, China.
| |
Collapse
|
2
|
Tabatabaeipour SN, Shiran B, Ravash R, Niazi A, Ebrahimie E. Comprehensive transcriptomic meta-analysis unveils new responsive genes to methyl jasmonate and ethylene in Catharanthusroseus. Heliyon 2024; 10:e27132. [PMID: 38449649 PMCID: PMC10915408 DOI: 10.1016/j.heliyon.2024.e27132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
In Catharanthus roseus, vital plant hormones, namely methyl jasmonate (MeJA) and ethylene, serve as abiotic triggers, playing a crucial role in stimulating the production of specific secondary compounds with anticancer properties. Understanding how plants react to various stresses, stimuli, and the pathways involved in biosynthesis holds significant promise. The application of stressors like ethylene and MeJA induces the plant's defense mechanisms, leading to increased secondary metabolite production. To delve into the essential transcriptomic processes linked to hormonal responses, this study employed an integrated approach combining RNA-Seq data meta-analysis and system biology methodologies. Furthermore, the validity of the meta-analysis findings was confirmed using RT-qPCR. Within the meta-analysis, 903 genes exhibited differential expression (DEGs) when comparing normal conditions to those of the treatment. Subsequent analysis, encompassing gene ontology, KEGG, TF, and motifs, revealed that these DEGs were actively engaged in multiple biological processes, particularly in responding to various stresses and stimuli. Additionally, these genes were notably enriched in diverse biosynthetic pathways, including those related to TIAs, housing valuable medicinal compounds found in this plant. Furthermore, by conducting co-expression network analysis, we identified hub genes within modules associated with stress response and the production of TIAs. Most genes linked to the biosynthesis pathway of TIAs clustered within three specific modules. Noteworthy hub genes, including Helicase ATP-binding domain, hbdA, and ALP1 genes within the blue, turquoise, and green module networks, are presumed to play a role in the TIAs pathway. These identified candidate genes hold potential for forthcoming genetic and metabolic engineering initiatives aimed at augmenting the production of secondary metabolites and medicinal compounds within C. roseus.
Collapse
Affiliation(s)
- Seyede Nasim Tabatabaeipour
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
- Institute of Biotechnology, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | - Rudabeh Ravash
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Ali Niazi
- Department of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Esmaeil Ebrahimie
- Department of Biotechnology, Faculty of Agriculture, Shiraz University, Shiraz, Iran
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
| |
Collapse
|
3
|
Ormancey M, Guillotin B, Ribeyre C, Medina C, Jariais N, San Clemente H, Thuleau P, Plaza S, Beck M, Combier J. Immune-enhancing miPEPs reduce plant diseases and offer new solutions in agriculture. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:13-15. [PMID: 37864306 PMCID: PMC10753997 DOI: 10.1111/pbi.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/22/2023]
Affiliation(s)
- Mélanie Ormancey
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
- Present address:
Epigenetics and Plant Development, Centre for Research in Agricultural Genomics (CRAG)UABBarcelonaSpain
| | - Bruno Guillotin
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
- Micropep TechnologiesAuzeville‐TolosaneFrance
- Present address:
The Department of Biology, The Center for Genomics and Systems BiologyNew York UniversityNew YorkUSA
| | | | | | - Nathanael Jariais
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
| | - Patrice Thuleau
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
| | - Serge Plaza
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
| | | | - Jean‐Philippe Combier
- Laboratoire de Recherche en Sciences VégétalesCNRS/UPSAuzeville‐TolosaneFrance
- Micropep TechnologiesAuzeville‐TolosaneFrance
| |
Collapse
|
4
|
Rego ECS, Pinheiro TDM, Fonseca FCDA, Gomes TG, Costa EDC, Bastos LS, Alves GSC, Cotta MG, Amorim EP, Ferreira CF, Togawa RC, Costa MMDC, Grynberg P, Miller RNG. Characterization of microRNAs and Target Genes in Musa acuminata subsp. burmannicoides, var. Calcutta 4 during Interaction with Pseudocercospora musae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1473. [PMID: 37050099 PMCID: PMC10097032 DOI: 10.3390/plants12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Endogenous microRNAs (miRNAs) are small non-coding RNAs that perform post-transcriptional regulatory roles across diverse cellular processes, including defence responses to biotic stresses. Pseudocercospora musae, the causal agent of Sigatoka leaf spot disease in banana (Musa spp.), is an important fungal pathogen of the plant. Illumina HiSeq 2500 sequencing of small RNA libraries derived from leaf material in Musa acuminata subsp. burmannicoides, var. Calcutta 4 (resistant) after inoculation with fungal conidiospores and equivalent non-inoculated controls revealed 202 conserved miRNAs from 30 miR-families together with 24 predicted novel miRNAs. Conserved members included those from families miRNA156, miRNA166, miRNA171, miRNA396, miRNA167, miRNA172, miRNA160, miRNA164, miRNA168, miRNA159, miRNA169, miRNA393, miRNA535, miRNA482, miRNA2118, and miRNA397, all known to be involved in plant immune responses. Gene ontology (GO) analysis of gene targets indicated molecular activity terms related to defence responses that included nucleotide binding, oxidoreductase activity, and protein kinase activity. Biological process terms associated with defence included response to hormone and response to oxidative stress. DNA binding and transcription factor activity also indicated the involvement of miRNA target genes in the regulation of gene expression during defence responses. sRNA-seq expression data for miRNAs and RNAseq data for target genes were validated using stem-loop quantitative real-time PCR (qRT-PCR). For the 11 conserved miRNAs selected based on family abundance and known involvement in plant defence responses, the data revealed a frequent negative correlation of expression between miRNAs and target host genes. This examination provides novel information on miRNA-mediated host defence responses, applicable in genetic engineering for the control of Sigatoka leaf spot disease.
Collapse
Affiliation(s)
| | | | | | - Taísa Godoy Gomes
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Erica de Castro Costa
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | - Lucas Santos Bastos
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | | | - Michelle Guitton Cotta
- Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, DF, Brazil
| | | | | | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | - Marcos Mota Do Carmo Costa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, CP 02372, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|
5
|
Zhu Y, Peng S, Zhao L, Feng W, Dong C. Genome-wide identification and characterization of the HD-Zip gene family and expression analysis in response to stress in Rehmannia glutinosa Libosch. PLANT SIGNALING & BEHAVIOR 2022; 17:2096787. [PMID: 35899840 PMCID: PMC9336491 DOI: 10.1080/15592324.2022.2096787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The HD-Zip family of transcription factors is unique to the plant kingdom, and play roles in modulation of plant growth and response to environmental stresses. R. glutinosa is an important Chinese medicinal material. Its yield and quality are susceptible to various stresses. The HD-Zip transcription factors is unique to the plant, and roles in modulation of plant growth and response to environmental stresses. However, there is no relevant research on the HD-ZIP of R. glutinosa. In this study, 92 HD-Zip transcription factors were identified in R. glutinosa, and denominated as RgHDZ1-RgHDZ92. Members of RgHDZ were classified into four groups (HD-ZipI-IV) based on the phylogenetic relationship of Arabidopsis HD-Zip proteins, and each group contains 38, 18, 17, and 19 members, respectively. Expression analyses of RgHDZ genes based on transcriptome data showed that the expression of these genes could be induced by the endophytic fungus of R. glutinosa. Additionally, we showed that RgHDZ genes were differentially expressed in response to drought, waterlogging, temperature, and salinity treatments. This study provides important information for different expression patterns of stress-responsive HD-Zip and may contribute to the better understanding of the different responses of plants to biotic and abiotic stresses, and provide a molecular basis for the cultivation of resistant varieties of R. glutinosa.
Collapse
Affiliation(s)
- Yunhao Zhu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R.China, Zhengzhou, Henan, China
| | - Shuping Peng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Le Zhao
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R.China, Zhengzhou, Henan, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Chengming Dong
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R.China, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Chaudhary V, Jangra S, Yadav NR. In silico Identification of miRNAs and Their Targets in Cluster Bean for Their Role in Development and Physiological Responses. Front Genet 2022; 13:930113. [PMID: 35846150 PMCID: PMC9280363 DOI: 10.3389/fgene.2022.930113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cluster bean popularly known as “guar” is a drought-tolerant, annual legume that has recently emerged as an economically important crop, owing to its high protein and gum content. The guar gum has wide range of applications in food, pharma, and mining industries. India is the leading exporter of various cluster bean-based products all across the globe. Non-coding RNAs (miRNAs) are involved in regulating the expression of the target genes leading to variations in the associated pathways or final protein concentrations. The understanding of miRNAs and their associated targets in cluster bean is yet to be used to its full potential. In the present study, cluster bean EST (Expressed Sequence Tags) database was exploited to identify the miRNA and their predicted targets associated with metabolic and biological processes especially response to diverse biotic and abiotic stimuli using in silico approach. Computational analysis based on cluster bean ESTs led to the identification of 57 miRNAs along with their targets. To the best of our knowledge, this is the first report on identification of miRNAs and their targets using ESTs in cluster bean. The miRNA related to gum metabolism was also identified. Most abundant miRNA families predicted in our study were miR156, miR172, and miR2606. The length of most of the mature miRNAs was found to be 21nt long and the range of minimal folding energy (MFE) was 5.8–177.3 (−kcal/mol) with an average value of 25.4 (−kcal/mol). The identification of cluster bean miRNAs and their targets is predicted to hasten the miRNA discovery, resulting in better knowledge of the role of miRNAs in cluster bean development, physiology, and stress responses.
Collapse
|
7
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
8
|
Bhakta S, Tak H, Ganapathi TR. Exploring diverse roles of micro RNAs in banana: Current status and future prospective. PHYSIOLOGIA PLANTARUM 2021; 173:1323-1334. [PMID: 33305854 DOI: 10.1111/ppl.13311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Micro RNAs (miRNAs) are 20-24 nucleotides long non-coding RNA sequences identified and characterized in multiple plant and animal systems. miRNAs play multifarious roles ranging from plant development to stress tolerance by synchronizing physiological processes at the level of transcription and translation. Banana is a major horticultural crop with colossal production worldwide. Despite the recent encouraging developments, the information on functions of miRNAs in banana plants is still in its infancy. The available literature pertaining to miRNAs in banana plants hints towards their contribution as master regulators in crucial physiological processes for instance abiotic stress responses, pathogenic defence response, fruit ripening and so on. This review is focused on biogenesis of miRNAs, their identification and deciphering their respective roles in banana plants with special emphasis on abiotic stress responses, plant immune responses, fruit ripening and storage. Based on the prior reports, we identified a few miRNAs with prospective roles in stress tolerance and illustrated the potential applications of miRNAs in banana crop improvement utilizing recent biotechnological tools such as CRISPR cas9, RNAi and the nano particle based foliar spray of miRNAs. The review briefly explained the future directions in banana research with a special emphasis on miRNA regulatory networks and agronomic traits improvement. Finally, future domains in miRNA research in plants and their possible applications towards crop improvement in agriculture are described briefly.
Collapse
Affiliation(s)
- Subham Bhakta
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Thumballi R Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
9
|
Shu HY, Zhou H, Mu HL, Wu SH, Jiang YL, Yang Z, Hao YY, Zhu J, Bao WL, Cheng SH, Zhu GP, Wang ZW. Integrated Analysis of mRNA and Non-coding RNA Transcriptome in Pepper ( Capsicum chinense) Hybrid at Seedling and Flowering Stages. Front Genet 2021; 12:685788. [PMID: 34490032 PMCID: PMC8417703 DOI: 10.3389/fgene.2021.685788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Pepper is an important vegetable in the world. In this work, mRNA and ncRNA transcriptome profiles were applied to understand the heterosis effect on the alteration in the gene expression at the seedling and flowering stages between the hybrid and its parents in Capsicum chinense. Our phenotypic data indicated that the hybrid has dominance in leaf area, plant scope, plant height, and fruit-related traits. Kyoto Encyclopedia of Genes and Genomes analysis showed that nine members of the plant hormone signal transduction pathway were upregulated in the seedling and flowering stages of the hybrid, which was supported by weighted gene coexpression network analysis and that BC332_23046 (auxin response factor 8), BC332_18317 (auxin-responsive protein IAA20), BC332_13398 (ethylene-responsive transcription factor), and BC332_27606 (ethylene-responsive transcription factor WIN1) were candidate hub genes, suggesting the important potential role of the plant hormone signal transduction in pepper heterosis. Furthermore, some transcription factor families, including bHLH, MYB, and HSF were greatly over-dominant. We also identified 2,525 long ncRNAs (lncRNAs), 47 micro RNAs (miRNAs), and 71 circle RNAs (circRNAs) in the hybrid. In particular, downregulation of miR156, miR169, and miR369 in the hybrid suggested their relationship with pepper growth vigor. Moreover, we constructed some lncRNA–miRNA–mRNA regulatory networks that showed a multi-dimension to understand the ncRNA relationship with heterosis. These results will provide guidance for a better understanding of the molecular mechanism involved in pepper heterosis.
Collapse
Affiliation(s)
- Huang-Ying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - He Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Hai-Ling Mu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Shu-Hua Wu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Yi-Li Jiang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Zhuang Yang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Yuan-Yuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Jie Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Wen-Long Bao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Shan-Han Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Guo-Peng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| | - Zhi-Wei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
10
|
Kumar A, Sharma M, Chaubey SN, Kumar A. Homology modeling and molecular dynamics based insights into Chalcone synthase and Chalcone isomerase in Phyllanthus emblica L. 3 Biotech 2020; 10:373. [PMID: 32832333 DOI: 10.1007/s13205-020-02367-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chalcone synthase (CHS) and chalcone isomerase (CHI) plays a major role in the biosynthesis of flavonoid in plants. In this study, we made extensive bioinformatics analysis to gain functional and structural insight into PeCHS and PeCHI proteins. The phylogenetic distribution of PeCHS and PeCHI genes encoding proteins demonstrated the close evolutionary relationship with different CHS and CHI proteins of other dicot plants. MicroRNA target analysis showed miR169n and 3p miR5053 targeting PeCHS gene while miR169c-3p and miR4248 are targeting PeCHI gene, respectively. Three-dimensional structural models of PeCHS and PeCHI proteins were elucidated by homology modeling with Ramachandran plots showing the excellent geometry of the proteins structure. Molecular docking revealed that cinnamoyl-coa and naringenin chalcone substrates are strongly bound to PeCHS and PeCHI proteins, respectively. Finally, molecular dynamics (MD) simulation for 30 ns, further yielded stability checks of ligands in the binding pocket and behavior of protein complexes. Thus MD simulation and interaction fraction analysis showed the stable conformation of PeCHS and PeCHI proteins with their respective substrates during theee simulation. Our study provides first-hand structural prospective of PeCHS and PeCHI proteins towards understanding the mechanism of flavonoid biosynthetic pathway in P. emblica.
Collapse
Affiliation(s)
- Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, 248007 India
| | - Mansi Sharma
- Bioclues.Org, Kukatpally, Hyderabad, 500072 India
| | - Swaroopa Nand Chaubey
- Department of Bioinformatics, Biotech Park, Sector G, Jankipuram, Lucknow, UP 226021 India
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, 151302 India
| |
Collapse
|
11
|
Sinha P, Singh VK, Saxena RK, Kale SM, Li Y, Garg V, Meifang T, Khan AW, Kim KD, Chitikineni A, Saxena KB, Sameer Kumar CV, Liu X, Xu X, Jackson S, Powell W, Nevo E, Searle IR, Lodha M, Varshney RK. Genome-wide analysis of epigenetic and transcriptional changes associated with heterosis in pigeonpea. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1697-1710. [PMID: 31925873 PMCID: PMC7336283 DOI: 10.1111/pbi.13333] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 12/26/2019] [Indexed: 05/20/2023]
Abstract
Hybrids are extensively used in agriculture to deliver an increase in yield, yet the molecular basis of heterosis is not well understood. Global DNA methylation analysis, transcriptome analysis and small RNA profiling were aimed to understand the epigenetic effect of the changes in gene expression level in the two hybrids and their parental lines. Increased DNA methylation was observed in both the hybrids as compared to their parents. This increased DNA methylation in hybrids showed that majority of the 24-nt siRNA clusters had higher expression in hybrids than the parents. Transcriptome analysis revealed that various phytohormones (auxin and salicylic acid) responsive hybrid-MPV DEGs were significantly altered in both the hybrids in comparison to MPV. DEGs associated with plant immunity and growth were overexpressed whereas DEGs associated with basal defence level were repressed. This antagonistic patterns of gene expression might contribute to the greater growth of the hybrids. It was also noticed that some common as well as unique changes in the regulatory pathways were associated with heterotic growth in both the hybrids. Approximately 70% and 67% of down-regulated hybrid-MPV DEGs were found to be differentially methylated in ICPH 2671 and ICPH 2740 hybrid, respectively. This reflected the association of epigenetic regulation in altered gene expressions. Our findings also revealed that miRNAs might play important roles in hybrid vigour in both the hybrids by regulating their target genes, especially in controlling plant growth and development, defence and stress response pathways. The above finding provides an insight into the molecular mechanism of pigeonpea heterosis.
Collapse
Affiliation(s)
- Pallavi Sinha
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Vikas K. Singh
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
- International Rice Research Institute, South‐Asia HubPatancheruIndia
| | - Rachit K. Saxena
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Sandip M. Kale
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
- The Leibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | | | - Vanika Garg
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | | | - Aamir W. Khan
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - Kyung Do Kim
- University of GeorgiaAthensUSA
- Myongji UniversityYonginRepublic of Korea
| | - Annapurna Chitikineni
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - K. B. Saxena
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | - C. V. Sameer Kumar
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| | | | - Xun Xu
- BGI‐ShenzhenShenzhenChina
| | | | | | | | | | - Mukesh Lodha
- Centre for Cellular and Molecular Biology (CSIR)HyderabadIndia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)PatancheruIndia
| |
Collapse
|
12
|
Leitão AL, Costa MC, Gabriel AF, Enguita FJ. Interspecies Communication in Holobionts by Non-Coding RNA Exchange. Int J Mol Sci 2020; 21:ijms21072333. [PMID: 32230931 PMCID: PMC7177868 DOI: 10.3390/ijms21072333] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
- Correspondence: ; Tel.: +351-217999480
| |
Collapse
|
13
|
Rao S, Balyan S, Jha S, Mathur S. Novel insights into expansion and functional diversification of MIR169 family in tomato. PLANTA 2020; 251:55. [PMID: 31974682 DOI: 10.1007/s00425-020-03346-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION Expansion of MIR169 members by duplication and new mature forms, acquisition of new promoters, differential precursor-miRNA processivity and engaging novel targets increase the functional diversification of MIR169 in tomato. MIR169 family is an evolutionarily conserved miRNA family in plants. A systematic in-depth analysis of MIR169 family in tomato is lacking. We report 18 miR169 precursors, annotating new loci for MIR169a, b and d, as well as 3 novel mature isoforms (MIR169f/g/h). The family has expanded by both tandem- and segmental-duplication events during evolution. A tandem-pair MIR169b/b-1 and MIR169b-2/h is polycistronic in nature coding for three MIR169b isoforms and a new variant miR169h, that is evidently absent in the wild relatives S. pennellii and S. pimpinellifolium. Seven novel miR169 targets including RNA-binding protein, protein-phosphatase, aminotransferase, chaperone, tetratricopeptide-repeat-protein, and transcription factors ARF-9B and SEPELLATA-3 were established by efficient target cleavage in the presence of specific precursors as well as increased target abundance upon miR169 chelation by short-tandem-target-mimic construct in transient assays. Comparative antagonistic expression profiles of MIR169:target pairs suggest MIR169 family as ubiquitous regulator of various abiotic stresses (heat, cold, dehydration and salt) and developmental pathways. This regulation is partly brought about by acquisition of new promoters as demonstrated by promoter MIR169:GUS reporter assays as well as differential processivity of different precursors and miRNA cleavage efficiencies. Thus, the current study augments the functional horizon of MIR169 family with applications for stress tolerance in crops.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Sonia Balyan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Sarita Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India.
| |
Collapse
|
14
|
Identification of miRNAs Involved in Bacillus velezensis FZB42-Activated Induced Systemic Resistance in Maize. Int J Mol Sci 2019; 20:ijms20205057. [PMID: 31614702 PMCID: PMC6829523 DOI: 10.3390/ijms20205057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacillus velezensis FZB42 is able to activate induced systemic resistance (ISR) to enhance plant defense response against pathogen infections. Though the roles of microRNAs (miRNAs) in Bacillus-triggered ISR have been reported in Arabidopsis, the maize miRNAs responsible for the Bacillus-activated ISR process have not been discovered. To explore the maize miRNAs involved in ISR, maize miRNAs in response to FZB42 (ISR activating), FZB42△sfp△alss (deficient in triggering ISR), and a control for 12 h were sequenced. A total of 146 known miRNAs belonging to 30 miRNA families and 217 novel miRNAs were identified. Four miRNAs specifically repressed in FZB42-treatment were selected as candidate ISR-associated miRNAs. All of them contained at least one defense response-related cis-element, suggesting their potential roles in activating the ISR process. Interestingly, three of the four candidate ISR-associated miRNAs belong to the conserved miR169 family, which has previously been confirmed to play roles in abiotic stress response. Moreover, 52 mRNAs were predicted as potential targets of these candidate ISR-associated miRNAs through TargetFinder software and degradome sequencing. Gene Ontology (GO) and network analyses of target genes showed that these differentially expressed miRNA might participate in the ISR process by regulating nuclear factor Y transcription factor. This study is helpful in better understanding the regulatory roles of maize miRNAs in the Bacillus-activated ISR process.
Collapse
|
15
|
Yu Y, Ni Z, Wang Y, Wan H, Hu Z, Jiang Q, Sun X, Zhang H. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:68-78. [PMID: 31203895 DOI: 10.1016/j.plantsci.2019.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 05/03/2023]
Abstract
The miR169 family, a large-scale microRNA gene family conserved in plants, is involved in stress responses, although how soybean miR169 functions in response to drought stress remains unclear. We show that gma-miR169c exerts a negative regulatory role in the response to drought stress by inhibiting the expression of its target gene, nuclear factor Y-A (NF-YA). A real-time RT-PCR analysis indicated that gma-miR169c is widely expressed in soybean tissues and induced by polyethylene glycol (PEG), high salt, cold stress and abscisic acid (ABA). Histochemical ß-glucuronidase (GUS) staining showed that the gma-miR169c promoter drives GUS reporter gene expression in various transgenic Arabidopsis tissues, and the stress-induced pattern was confirmed in transgenic Arabidopsis and transgenic soybean hairy roots. Arabidopsis overexpressing gma-miR169c is more sensitive to drought stress, with reduced survival, accelerated leaf water loss, and shorter root length than wild-type plants. We identified a precise cleavage site for 10 gma-miR169c targets and found reduced transcript levels of the AtNFYA1 and AtNFYA5 transcription factors in gma-miR169c-overexpressing Arabidopsis and reduced expression of the stress response genes AtRD29A, AtRD22, AtGSTU25 and AtCOR15A. These results indicate that gma-miR169c plays a negative regulatory role in drought stress and is a candidate miRNA for improving plant drought adaptation.
Collapse
Affiliation(s)
- Yuehua Yu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, PR China
| | - Zhiyong Ni
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, PR China.
| | - Yi Wang
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, PR China
| | - Huina Wan
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, PR China
| | - Zheng Hu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qiyan Jiang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xianjun Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hui Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
16
|
Santos LS, Maximiano MR, Megias E, Pappas M, Ribeiro SG, Mehta A. Quantitative expression of microRNAs in Brassica oleracea infected with Xanthomonas campestris pv. campestris. Mol Biol Rep 2019; 46:3523-3529. [PMID: 30945070 DOI: 10.1007/s11033-019-04779-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Brassica oleracea var. capitata (cabbage) is an economically important crop affected by black rot disease caused by Xanthomonas campestris pv. campestris (Xcc). MicroRNAs (miRNAs) play an important role in plant defense modulation and therefore the analysis of these molecules can help better understand plant-pathogen interactions. In this study, we report the differential expression of four miRNAs that seem to participate in the plant response to Xcc infection. Northern Blot and RT-qPCR techniques were used to measure miRNA expression in resistant (União) and susceptible (Kenzan) cultivars. From 6 miRNAs analyzed, 4 were detected and differentially expressed, showing a down- and upregulated expression profile in susceptible and resistant cultivars, respectively. These results suggest that miR156, miR167, miR169, and miR390 could play a role in B. oleracea resistance enhancement against Xcc and could be explored as potential resistance markers in B. oleracea-Xcc interaction.
Collapse
Affiliation(s)
- Lucas Souza Santos
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5, Norte (final), Brasília, DF, CEP 70770-917, Brazil
- Centro Universitário do Distrito Federal, SEP/SUL EQ 704/904 Conj.A, Brasília, DF, CEP 70390-045, Brazil
| | - Mariana Rocha Maximiano
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5, Norte (final), Brasília, DF, CEP 70770-917, Brazil
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n - Campus Universitário, Bairro São Pedro, Juiz de Fora, MG, CEP 36036-900, Brazil
| | - Esaú Megias
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5, Norte (final), Brasília, DF, CEP 70770-917, Brazil
- Universidad de Cádiz, Calle Ancha, 16, 11001, Cádiz, Spain
| | - Marília Pappas
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5, Norte (final), Brasília, DF, CEP 70770-917, Brazil
| | - Simone Graça Ribeiro
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5, Norte (final), Brasília, DF, CEP 70770-917, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Av. W5, Norte (final), Brasília, DF, CEP 70770-917, Brazil.
| |
Collapse
|