1
|
Kocher TD, Meisel RP, Gamble T, Behrens KA, Gammerdinger WJ. Yes, polygenic sex determination is a thing! Trends Genet 2024; 40:1001-1017. [PMID: 39505660 DOI: 10.1016/j.tig.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
The process of sexual development in animals is modulated by a variety of mechanisms. Some species respond to environmental cues, while, in others, sex determination is thought to be controlled by a single 'master regulator' gene. However, many animals respond to a combination of environmental cues (e.g., temperature) and genetic factors (e.g., sex chromosomes). Even among species in which genetic factors predominate, there is a continuum between monofactorial and polygenic systems. The perception that polygenic systems are rare may result from experiments that lack the statistical power to detect multiple loci. Intellectual biases against the existence of polygenic sex determination (PSD) may further arise from misconceptions about the regulation of developmental processes and a misreading of theoretical results on the stability of polygenic systems of sex determination.
Collapse
Affiliation(s)
- Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Kristen A Behrens
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
2
|
Breitmeyer SE, Walsh HL, Blazer VS, Bunnell JF, Burritt PM, Dragon J, Hladik ML, Bradley PM, Romanok KM, Smalling KL. Potential health effects of contaminant mixtures from point and nonpoint sources on fish and frogs in the New Jersey Pinelands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158205. [PMID: 36028019 DOI: 10.1016/j.scitotenv.2022.158205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Aquatic ecosystems convey complex contaminant mixtures from anthropogenic pollution on a global scale. Point (e.g., municipal wastewater) and nonpoint sources (e.g., stormwater runoff) are both drivers of contaminant mixtures in aquatic habitats. The objectives of this study were to identify the contaminant mixtures present in surface waters impacted by both point and nonpoint sources, to determine if aquatic biota (amphibian and fish) health effects (testicular oocytes and parasites) occurred at these sites, and to understand if differences in biological and chemical measures existed between point (on-stream) and nonpoint sources (off-stream). To accomplish this, water chemistry, fishes, and frogs were collected from 21 sites in the New Jersey Pinelands, United States. Off-stream sites consisted of 3 reference and 10 degraded wetlands. On-stream sites consisted of two reference lakes and six degraded streams/lakes (four sites above and two sites below wastewater outfalls). Surface water was collected four times at each site and analyzed for 133 organic and inorganic contaminants. One native and five non-native fish species were collected from streams/lakes and native green frogs from wetlands (ponds and stormwater basins). Limited differences in contaminant concentrations were observed in reference and degraded wetlands but for streams/lakes, results indicated that landscape alteration, (upland agricultural and developed land) was the primary driver of contaminant concentrations rather than municipal wastewater. Incidence of estrogenic endocrine disruption (intersex) was species dependent with the highest prevalence observed in largemouth bass and black crappie and the lowest prevalence observed in green frogs and tessellated darters. Parasite prevalence was site and species dependent. Prevalence of eye parasites increased with increasing concentrations of industrial, mycotoxin, and cumulative inorganic contaminants. These findings are critical to support the conservation, protection, and management of a wide range of aquatic species in the Pinelands and elsewhere as habitat loss, alteration, and fragmentation increase with increasing development.
Collapse
Affiliation(s)
- Sara E Breitmeyer
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648, USA.
| | - Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - John F Bunnell
- New Jersey Pinelands Commission, PO Box 359, 15 Springfield Road, New Lisbon, NJ 08064, USA
| | - Patrick M Burritt
- New Jersey Pinelands Commission, PO Box 359, 15 Springfield Road, New Lisbon, NJ 08064, USA
| | - Jeff Dragon
- New Jersey Pinelands Commission, PO Box 359, 15 Springfield Road, New Lisbon, NJ 08064, USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, 6000 J St, Placer Hall, Sacramento, CA 95819, USA
| | - Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, 720 Gracern Rd, Suite 129, Columbia, SC 29210, USA
| | - Kristin M Romanok
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648, USA
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648, USA
| |
Collapse
|
3
|
Smaga CR, Bock SL, Johnson JM, Parrott BB. Sex Determination and Ovarian Development in Reptiles and Amphibians: From Genetic Pathways to Environmental Influences. Sex Dev 2022; 17:99-119. [PMID: 36380624 DOI: 10.1159/000526009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Reptiles and amphibians provide untapped potential for discovering how a diversity of genetic pathways and environmental conditions are incorporated into developmental processes that can lead to similar functional outcomes. These groups display a multitude of reproductive strategies, and whereas many attributes are conserved within groups and even across vertebrates, several aspects of sexual development show considerable variation. SUMMARY In this review, we focus our attention on the development of the reptilian and amphibian ovary. First, we review and describe the events leading to ovarian development, including sex determination and ovarian maturation, through a comparative lens. We then describe how these events are influenced by environmental factors, focusing on temperature and exposure to anthropogenic chemicals. Lastly, we identify critical knowledge gaps and future research directions that will be crucial to moving forward in our understanding of ovarian development and the influences of the environment in reptiles and amphibians. KEY MESSAGES Reptiles and amphibians provide excellent models for understanding the diversity of sex determination strategies and reproductive development. However, a greater understanding of the basic biology of these systems is necessary for deciphering the adaptive and potentially disruptive implications of embryo-by-environment interactions in a rapidly changing world.
Collapse
Affiliation(s)
- Christopher R Smaga
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Samantha L Bock
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Josiah M Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
4
|
Ujszegi J, Bertalan R, Ujhegyi N, Verebélyi V, Nemesházi E, Mikó Z, Kásler A, Herczeg D, Szederkényi M, Vili N, Gál Z, Hoffmann OI, Bókony V, Hettyey A. "Heat waves" experienced during larval life have species-specific consequences on life-history traits and sexual development in anuran amphibians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155297. [PMID: 35439501 DOI: 10.1016/j.scitotenv.2022.155297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Extreme temperatures during heat waves can induce mass-mortality events, but can also exert sublethal negative effects by compromising life-history traits and derailing sexual development. Ectothermic animals may, however, also benefit from increased temperatures via enhanced physiological performance and the suppression of cold-adapted pathogens. Therefore, it is crucial to address how the intensity and timing of naturally occurring or human-induced heat waves affect life-history traits and sexual development in amphibians, to predict future effects of climate change and to minimize risks arising from the application of elevated temperature in disease mitigation. We raised agile frog (Rana dalmatina) and common toad (Bufo bufo) tadpoles at 19 °C and exposed them to a simulated heat wave of 28 or 30 °C for six days during one of three ontogenetic periods (early, mid or late larval development). In agile frogs, exposure to 30 °C during early larval development increased mortality. Regardless of timing, all heat-treatments delayed metamorphosis, and exposure to 30 °C decreased body mass at metamorphosis. Furthermore, exposure to 30 °C during any period and to 28 °C late in development caused female-to-male sex reversal, skewing sex ratios strongly towards males. In common toads, high temperature only slightly decreased survival and did not influence phenotypic sex ratio, while it reduced metamorph mass and length of larval development. Juvenile body mass measured 2 months after metamorphosis was not adversely affected by temperature treatments in either species. Our results indicate that heat waves may have devastating effects on amphibian populations, and the severity of these negative consequences, and sensitivity can vary greatly between species and with the timing and intensity of heat. Finally, thermal treatments against cold-adapted pathogens have to be executed with caution, taking into account the thermo-sensitivity of the species and the life stage of animals to be treated.
Collapse
Affiliation(s)
- János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary.
| | - Réka Bertalan
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Department of Ecology, Institute for Biology, University of Veterinary Medicine, Budapest, Hungary; Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Herczeg
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Márk Szederkényi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nóra Vili
- Department of Ecology, Institute for Biology, University of Veterinary Medicine, Budapest, Hungary
| | - Zoltán Gál
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Orsolya I Hoffmann
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Gödöllő, Hungary
| | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Department of Ecology, Institute for Biology, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary; Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary; Department of Ecology, Institute for Biology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Smirnov AF, Leoke DY, Trukhina AV. Natural and Experimental Sex Reversal in Birds and Other Groups of Vertebrates, with the Exception of Mammals. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nemesházi E, Bókony V. Asymmetrical sex reversal: Does the type of heterogamety predict propensity for sex reversal? Bioessays 2022; 44:e2200039. [PMID: 35543235 DOI: 10.1002/bies.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Sex reversal, a mismatch between phenotypic and genetic sex, can be induced by chemical and thermal insults in ectotherms. Therefore, climate change and environmental pollution may increase sex-reversal frequency in wild populations, with wide-ranging implications for sex ratios, population dynamics, and the evolution of sex determination. We propose that reconsidering the half-century old theory "Witschi's rule" should facilitate understanding the differences between species in sex-reversal propensity and thereby predicting their vulnerability to anthropogenic environmental change. The idea is that sex reversal should be asymmetrical: more likely to occur in the homogametic sex, assuming that sex-reversed heterogametic individuals would produce new genotypes with reduced fitness. A review of the existing evidence shows that while sex reversal can be induced in both homogametic and heterogametic individuals, the latter seem to require stronger stimuli in several cases. We provide guidelines for future studies on sex reversal to facilitate data comparability and reliability.
Collapse
Affiliation(s)
- Edina Nemesházi
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Veronika Bókony
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
7
|
Packer M, Lambert DM. What’s Gender Got to Do With It? Dismantling the Human Hierarchies in Evolutionary Biology and Environmental Toxicology for Scientific and Social Progress. Am Nat 2022; 200:114-128. [DOI: 10.1086/720131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Nemesházi E, Sramkó G, Laczkó L, Balogh E, Szatmári L, Vili N, Ujhegyi N, Üveges B, Bókony V. Novel genetic sex markers reveal unexpected lack of, and similar susceptibility to, sex reversal in free-living common toads in both natural and anthropogenic habitats. Mol Ecol 2022; 31:2032-2043. [PMID: 35146823 PMCID: PMC9544883 DOI: 10.1111/mec.16388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
Anthropogenic environmental changes are affecting biodiversity and microevolution worldwide. Ectothermic vertebrates are especially vulnerable, since environmental changes can disrupt their sexual development and cause sex reversal, a mismatch between genetic and phenotypic sex. This can potentially lead to sex-ratio distortion and population decline. Despite these implications, we have scarce empirical knowledge on the incidence of sex reversal in nature. Populations in anthropogenic environments may be exposed to sex-reversing stimuli more frequently, which may lead to higher sex-reversal rate, or alternatively, these populations may adapt to resist sex reversal. We developed PCR-based genetic sex markers for the common toad (Bufo bufo) to assess the prevalence of sex reversal in wild populations living in natural, agricultural and urban habitats, and the susceptibility of the same populations to two ubiquitous estrogenic pollutants in a common-garden experiment. We found negligible sex-reversal frequency in free-living adults despite the presence of various endocrine-disrupting pollutants in their breeding ponds. Individuals from different habitat types showed similar susceptibility to sex reversal in the laboratory: all genetic males developed female phenotype when exposed to 1 µg/L 17α-ethinylestradiol (EE2) during larval development, whereas no sex reversal occurred in response to 1 ng/L EE2 and a glyphosate-based herbicide with 3 µg/L or 3 mg/L glyphosate. The latter results do not support that populations in anthropogenic habitats would have either increased propensity for or higher tolerance to chemically induced sex reversal. Thus, the extremely low sex-reversal frequency in wild toads compared to other ectothermic vertebrates studied before might indicate idiosyncratic, potentially species-specific resistance to sex reversal.
Collapse
Affiliation(s)
- Edina Nemesházi
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, István u. 2, 1078, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, 1022, Budapest, Hungary
| | - Gábor Sramkó
- MTA-DE Lendület Evolutionary Phylogenomics Research Group, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Levente Laczkó
- MTA-DE Lendület Evolutionary Phylogenomics Research Group, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Emese Balogh
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, István u. 2, 1078, Budapest, Hungary
| | - Lajos Szatmári
- MTA-DE Lendület Evolutionary Phylogenomics Research Group, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Nóra Vili
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, István u. 2, 1078, Budapest, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, 1022, Budapest, Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, 1022, Budapest, Hungary.,Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor LL57 2UW, Wales, United Kingdom
| | - Veronika Bókony
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, István u. 2, 1078, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, 1022, Budapest, Hungary
| |
Collapse
|
9
|
Cayuela H, Lemaître JF, Léna JP, Ronget V, Martínez-Solano I, Muths E, Pilliod DS, Schmidt BR, Sánchez-Montes G, Gutiérrez-Rodríguez J, Pyke G, Grossenbacher K, Lenzi O, Bosch J, Beard KH, Woolbright LL, Lambert BA, Green DM, Jreidini N, Garwood JM, Fisher RN, Matthews K, Dudgeon D, Lau A, Speybroeck J, Homan R, Jehle R, Başkale E, Mori E, Arntzen JW, Joly P, Stiles RM, Lannoo MJ, Maerz JC, Lowe WH, Valenzuela-Sánchez A, Christiansen DG, Angelini C, Thirion JM, Merilä J, Colli GR, Vasconcellos MM, Boas TCV, Arantes ÍDC, Levionnois P, Reinke BA, Vieira C, Marais GAB, Gaillard JM, Miller DAW. Sex-related differences in aging rate are associated with sex chromosome system in amphibians. Evolution 2021; 76:346-356. [PMID: 34878663 PMCID: PMC9304222 DOI: 10.1111/evo.14410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/03/2022]
Abstract
Sex‐related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture–recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex‐specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the “unguarded X/Z effect”) or repeat‐rich Y/W chromosome (the “toxic Y/W effect”) could accelerate aging in the heterogametic sex in some vertebrate clades.
Collapse
Affiliation(s)
- Hugo Cayuela
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jean-François Lemaître
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-769622, France
| | - Jean-Paul Léna
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - Victor Ronget
- Unité Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, Paris, F-75016, France
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, Madrid, 28006, Spain
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, 80526, USA
| | - David S Pilliod
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 Lusk Street, Boise, ID, 83706, USA
| | - Benedikt R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, 8057, Switzerland.,Info fauna karch, Neuchâtel, 2000, Switzerland
| | - Gregorio Sánchez-Montes
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, Madrid, 28006, Spain
| | - Jorge Gutiérrez-Rodríguez
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, Madrid, 28006, Spain.,Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Graham Pyke
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.,Department of Biological Sciences, Macquarie University, Ryde, NSW, 2109, Australia
| | - Kurt Grossenbacher
- Abteilung Wirbeltiere, Naturhistorisches Museum, Bernastrasse 15, Bern, 3005, Switzerland
| | - Omar Lenzi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, 8057, Switzerland
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, Madrid, 28006, Spain.,UMIB-Research Unit of Biodiversity (CSIC, UO, PA), Universidad de Oviedo, Campus de Mieres, Mieres, 33600, Spain.,Centro de Investigación, Seguimiento y Evaluación, Sierra de Guadarrama National Park, Cta. M-604, Km 27.6, Rascafría, 28740, Spain
| | - Karen H Beard
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, Utah, 84322, USA
| | - Lawrence L Woolbright
- Biology Department, Siena College, 515 Loudon Road, Loudonville, New York, 12211, USA
| | - Brad A Lambert
- Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado, 80523-1475, USA
| | - David M Green
- Redpath Museum, McGill University, Montreal, QC, H3A 0C4, Canada
| | | | - Justin M Garwood
- California Department of Fish and Wildlife, 5341 Ericson Way, Arcata, CA, 95521, USA
| | - Robert N Fisher
- Western Ecological Research Center, U.S. Geological Survey, San Diego, CA, 92101, USA
| | - Kathleen Matthews
- USDA Forest Service, Pacific Southwest Research Station, Albany, California, USA
| | - David Dudgeon
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Anthony Lau
- Science Unit, Lingnan University, Hong Kong, China
| | - Jeroen Speybroeck
- Research Institute for Nature and Forest, Havenlaan 88 bus 73, Brussel, 1000, Belgium
| | - Rebecca Homan
- Biology Department, Denison University, Granville, Ohio, USA
| | - Robert Jehle
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Eyup Başkale
- Department of Biology, Faculty of Science and Arts, Pamukkale University, Denizli, Turkey
| | - Emiliano Mori
- Consiglio Nazionale delle Ricerche, Istituto di Ricerca sugli Ecosistemi Terrestri, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Pierre Joly
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - Rochelle M Stiles
- San Francisco Zoological Society, 1 Zoo Road, San Francisco, California, 94132, USA
| | - Michael J Lannoo
- Indiana University School of Medicine-TH, 620 Chestnut Street, Terre Haute, Indiana, 47809, USA
| | - John C Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
| | - Andrés Valenzuela-Sánchez
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile.,ONG Ranita de Darwin, Valdivia, 5112144, Chile
| | - Ditte G Christiansen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, 8057, Switzerland
| | - Claudio Angelini
- Salamandrina Sezzese Search Society, via G. Marconi 30, Sezze, 04018, Italy
| | - Jean-Marc Thirion
- Objectifs Biodiversité, 22 rue du Dr. Gilbert, Pont-l'Abbé-d'Arnoult, 17250, France
| | - Juha Merilä
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR.,Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Mariana M Vasconcellos
- Department of Biology, City College of New York, The City University of New York, New York, NY, 10031, USA
| | - Taissa C V Boas
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal, 70910-900, Brazil
| | - Ísis da C Arantes
- Department of Biology, University of Mississippi, Oxford, MS, 38677, USA
| | - Pauline Levionnois
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, F-69622, France
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL, 60625, USA
| | - Cristina Vieira
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-769622, France
| | - Gabriel A B Marais
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-769622, France.,LEAF- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Portugal
| | - Jean-Michel Gaillard
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, F-769622, France
| | - David A W Miller
- Department of Ecosystem Sciences and Management, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
10
|
Bókony V, Ujhegyi N, Mikó Z, Erös R, Hettyey A, Vili N, Gál Z, Hoffmann OI, Nemesházi E. Sex Reversal and Performance in Fitness-Related Traits During Early Life in Agile Frogs. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.745752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sex reversal is a mismatch between genetic sex (sex chromosomes) and phenotypic sex (reproductive organs and secondary sexual traits). It can be induced in various ectothermic vertebrates by environmental perturbations, such as extreme temperatures or chemical pollution, experienced during embryonic or larval development. Theoretical studies and recent empirical evidence suggest that sex reversal may be widespread in nature and may impact individual fitness and population dynamics. So far, however, little is known about the performance of sex-reversed individuals in fitness-related traits compared to conspecifics whose phenotypic sex is concordant with their genetic sex. Using a novel molecular marker set for diagnosing genetic sex in agile frogs (Rana dalmatina), we investigated fitness-related traits in larvae and juveniles that underwent spontaneous female-to-male sex reversal in the laboratory. We found only a few differences in early life growth, development, and larval behavior between sex-reversed and sex-concordant individuals, and altogether these differences did not clearly support either higher or lower fitness prospects for sex-reversed individuals. Putting these results together with earlier findings suggesting that sex reversal triggered by heat stress may be associated with low fitness in agile frogs, we propose the hypothesis that the fitness consequences of sex reversal may depend on its etiology.
Collapse
|
11
|
Lambert MR, Ezaz T, Skelly DK. Sex-Biased Mortality and Sex Reversal Shape Wild Frog Sex Ratios. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.756476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Population sex ratio is a key demographic factor that influences population dynamics and persistence. Sex ratios can vary across ontogeny from embryogenesis to death and yet the conditions that shape changes in sex ratio across ontogeny are poorly understood. Here, we address this issue in amphibians, a clade for which sex ratios are generally understudied in wild populations. Ontogenetic sex ratio variation in amphibians is additionally complicated by the ability of individual tadpoles to develop a phenotypic (gonadal) sex opposite their genotypic sex. Because of sex reversal, the genotypic and phenotypic sex ratios of entire cohorts and populations may also contrast. Understanding proximate mechanisms underlying phenotypic sex ratio variation in amphibians is important given the role they play in population biology research and as model species in eco-toxicological research addressing toxicant impacts on sex ratios. While researchers have presumed that departures from a 50:50 sex ratio are due to sex reversal, sex-biased mortality is an alternative explanation that deserves consideration. Here, we use a molecular sexing approach to track genotypic sex ratio changes from egg mass to metamorphosis in two independent green frog (Rana clamitans) populations by assessing the genotypic sex ratios of multiple developmental stages at each breeding pond. Our findings imply that genotypic sex-biased mortality during tadpole development affects phenotypic sex ratio variation at metamorphosis. We also identified sex reversal in metamorphosing cohorts. However, sex reversal plays a relatively minor and inconsistent role in shaping phenotypic sex ratios across the populations we studied. Although we found that sex-biased mortality influences sex ratios within a population, our study cannot say at this time whether sex-biased mortality is responsible for sex ratio variation across populations. Our results illustrate how multiple processes shape sex ratio variation in wild populations and the value of testing assumptions underlying how we understand sex in wild animal populations.
Collapse
|
12
|
Mikó Z, Nemesházi E, Ujhegyi N, Verebélyi V, Ujszegi J, Kásler A, Bertalan R, Vili N, Gál Z, Hoffmann OI, Hettyey A, Bókony V. Sex reversal and ontogeny under climate change and chemical pollution: are there interactions between the effects of elevated temperature and a xenoestrogen on early development in agile frogs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117464. [PMID: 34380212 DOI: 10.1016/j.envpol.2021.117464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic environmental change poses a special threat to species in which genetic sex determination can be overwritten by the thermal and chemical environment. Endocrine disrupting chemicals as well as extreme temperatures can induce sex reversal in such species, with potentially wide-ranging consequences for fitness, demography, population viability and evolution. Despite accumulating evidence suggesting that chemical and thermal effects may interact in ecological contexts, little is known about their combined effects on sex reversal. Here we assessed the simultaneous effects of high temperature (female-to-male sex-reversing agent) and 17α-ethinylestradiol (EE2), a widespread xenoestrogen (male-to-female sex-reversing agent), on sexual development and fitness-related traits in agile frogs (Rana dalmatina). We exposed tadpoles to a six-days heat wave (30 °C) and/or an ecologically relevant concentration of EE2 (30 ng/L) in one of three consecutive larval periods, and diagnosed sex reversals two months after metamorphosis using species-specific markers for genetic sexing. We found that high temperature induced female-to-male sex reversal, decreased survival, delayed metamorphosis, decreased body mass at metamorphosis, and increased the proportion of animals that had no fat bodies, while EE2 had no effect on these traits. Simultaneous exposure to heat and EE2 had non-additive effects on juvenile body mass, which were dependent on treatment timing and further complicated by a negative effect of sex reversal on body mass. These results show that environmentally relevant exposure to EE2 does not diminish the female-to-male sex-reversing effects of high temperature. Instead, our findings on growth suggest that climate change and chemical pollution may have complex consequences for individual fitness and population persistence in species with environment-sensitive sex determination.
Collapse
Affiliation(s)
- Zsanett Mikó
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| | - Edina Nemesházi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary; Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Savoyenstr. 1a, A-1160, Vienna, Austria
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Fish Parasitology Research Team, Veterinary Medical Research Institute, Eötvös Loránd Research Network, Hungária körút 21, H-1143, Budapest, Hungary
| | - János Ujszegi
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Andrea Kásler
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| | - Réka Bertalan
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Nóra Vili
- Conservation Genetics Research Group, Department of Ecology Institute for Biology, University of Veterinary Medicine, Budapest, István utca 2, H-1078, Budapest, Hungary
| | - Zoltán Gál
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Orsolya I Hoffmann
- Animal Biotechnology Department, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Science, Szent-Györgyi Albert u. 4, H-2100, Gödöllő, Hungary
| | - Attila Hettyey
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary; Department of Systematic Zoology and Ecology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/c, H-1117, Budapest, Hungary
| |
Collapse
|
13
|
Perrin N. Sex-chromosome evolution in frogs: what role for sex-antagonistic genes? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200094. [PMID: 34247502 PMCID: PMC8273499 DOI: 10.1098/rstb.2020.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sex-antagonistic (SA) genes are widely considered to be crucial players in the evolution of sex chromosomes, being instrumental in the arrest of recombination and degeneration of Y chromosomes, as well as important drivers of sex-chromosome turnovers. To test such claims, one needs to focus on systems at the early stages of differentiation, ideally with a high turnover rate. Here, I review recent work on two families of amphibians, Ranidae (true frogs) and Hylidae (tree frogs), to show that results gathered so far from these groups provide no support for a significant role of SA genes in the evolutionary dynamics of their sex chromosomes. The findings support instead a central role for neutral processes and deleterious mutations. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Zeitler EF, Cecala KK, McGrath DA. Carryover effects minimized the positive effects of treated wastewater on anuran development. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112571. [PMID: 33866133 DOI: 10.1016/j.jenvman.2021.112571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetlands (CWs) are a potential solution for wastewater treatment due to their capacity to support native species and provide tertiary wastewater treatment. However, CWs can expose wildlife communities to excess nutrients and harmful contaminants, affecting their development, morphology, and behavior. To examine how wastewater CWs may affect wildlife, we raised Southern leopard frogs, Lithobates sphenocephalus, in wastewater from conventional secondary lagoon and tertiary CW treatments for comparison with pondwater along with the presence and absence of a common plant invader to these systems - common duckweed (Lemna minor) - and monitored their juvenile development for potential carryover effects into the terrestrial environment. The tertiary CW treatment did not change demographic or morphological outcomes relative to conventional wastewater treatment in our study. Individuals emerging from both wastewater treatments demonstrated lower terrestrial survival rates than those emerging from pondwater throughout the experiment though experiment-wide survival rates were equivalent among treatments. Individuals from wastewater treatments transformed at larger sizes relative to those in pondwater, but this advantage was minimized in the terrestrial environment. Individuals that developed with duckweed had consistent but marginally better performance in both environments. Our results suggest a potential trade-off between short-term benefits of development in treated effluent and long-term consequences on overall fitness. Overall, we demonstrate that CWs for the purpose of wastewater treatment may not be suitable replicates for wildlife habitat and could have consequences for local population dynamics.
Collapse
Affiliation(s)
- Emma F Zeitler
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| | - Kristen K Cecala
- Department of Biology, University of the South, Sewanee, TN, 37383, USA.
| | - Deborah A McGrath
- Department of Biology, University of the South, Sewanee, TN, 37383, USA
| |
Collapse
|
15
|
High elevation increases the risk of Y chromosome loss in Alpine skink populations with sex reversal. Heredity (Edinb) 2021; 126:805-816. [PMID: 33526811 PMCID: PMC8102603 DOI: 10.1038/s41437-021-00406-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
The view that has genotypic sex determination and environmental sex determination as mutually exclusive states in fishes and reptiles has been contradicted by the discovery that chromosomal sex and environmental influences can co-exist within the same species, hinting at a continuum of intermediate states. Systems where genes and the environment interact to determine sex present the opportunity for sex reversal to occur, where the phenotypic sex is the opposite of that predicted by their sex chromosome complement. The skink Bassiana duperreyi has XX/XY sex chromosomes with sex reversal of the XX genotype to a male phenotype, in laboratory experiments, and in field nests, in response to exposure to cold incubation temperatures. Here we studied the frequency of sex reversal in adult populations of B. duperreyi in response to climatic variation, using elevation as a surrogate for environmental temperatures. We demonstrate sex reversal in the wild for the first time in adults of a reptile species with XX/XY sex determination. The highest frequency of sex reversal occurred at the highest coolest elevation location, Mt Ginini (18.46%) and decreased in frequency to zero with decreasing elevation. We model the impact of this under Fisher's frequency-dependent selection to show that, at the highest elevations, populations risk the loss of the Y chromosome and a transition to temperature-dependent sex determination. This study contributes to our understanding of the risks of extinction from climate change in species subject to sex reversal by temperature, and will provide focus for future research to test on-the-ground management strategies to mitigate the effects of climate in local populations.
Collapse
|
16
|
Roco ÁS, Ruiz-García A, Bullejos M. Testis Development and Differentiation in Amphibians. Genes (Basel) 2021; 12:578. [PMID: 33923451 PMCID: PMC8072878 DOI: 10.3390/genes12040578] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Sex is determined genetically in amphibians; however, little is known about the sex chromosomes, testis-determining genes, and the genes involved in testis differentiation in this class. Certain inherent characteristics of the species of this group, like the homomorphic sex chromosomes, the high diversity of the sex-determining mechanisms, or the existence of polyploids, may hinder the design of experiments when studying how the gonads can differentiate. Even so, other features, like their external development or the possibility of inducing sex reversal by external treatments, can be helpful. This review summarizes the current knowledge on amphibian sex determination, gonadal development, and testis differentiation. The analysis of this information, compared with the information available for other vertebrate groups, allows us to identify the evolutionarily conserved and divergent pathways involved in testis differentiation. Overall, the data confirm the previous observations in other vertebrates-the morphology of the adult testis is similar across different groups; however, the male-determining signal and the genetic networks involved in testis differentiation are not evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Mónica Bullejos
- Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Campus Las Lagunillas S/N, Universidad de Jaén, 23071 Jaén, Spain; (Á.S.R.); (A.R.-G.)
| |
Collapse
|
17
|
Ehl J, Altmanová M, Kratochvíl L. With or Without W? Molecular and Cytogenetic Markers are Not Sufficient for Identification of Environmentally-Induced Sex Reversal in the Bearded Dragon. Sex Dev 2021; 15:272-281. [PMID: 33756476 DOI: 10.1159/000514195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022] Open
Abstract
Transitions from environmental sex determination (ESD) to genotypic sex determination (GSD) require an intermediate step of sex reversal, i.e., the production of individuals with a mismatch between the ancestral genotypic and the phenotypic sex. Among amniotes, the sole well-documented transition in this direction was shown in the laboratory in the central bearded dragon, Pogona vitticeps, where very high incubation temperatures led to the production of females with the male-typical (ZZ) genotype. These sex-reversed females then produced offspring whose sex depended on the incubation temperature. Sex-reversed animals identified by molecular and cytogenetic markers were also reported in the field, and their increasing incidence was speculated as a climate warming-driven transition in sex determination. We show that the molecular and cytogenetic markers normally sex-linked in P. vitticeps are also sex-linked in P. henrylawsoni and P. minor, which points to quite ancient sex chromosomes in this lineage. Nevertheless, we demonstrate, based on a crossing experiment with a male bearded dragon who possesses a mismatch between phenotypic sex and genotype, that the used cytogenetic and molecular markers might not be reliable for the identification of sex reversal. Sex reversal should not be considered as the only mechanism causing a mismatch between genetic sex-linked markers and phenotypic sex, which can emerge also by other processes, here most likely by a rare recombination between regions of sex chromosomes which are normally sex-linked. We warn that sex-linked, even apparently for a long evolutionary time, and sex-specific molecular and cytogenetic markers are not a reliable tool for the identification of sex-reversed individuals in a population and that sex reversal has to be verified by other approaches, particularly by observation of the sex ratio of the progeny.
Collapse
Affiliation(s)
- Jan Ehl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia.,Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, Czechia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia,
| |
Collapse
|
18
|
Evolutionary and demographic consequences of temperature-induced masculinization under climate warming: the effects of mate choice. BMC Ecol Evol 2021; 21:16. [PMID: 33541263 PMCID: PMC7860201 DOI: 10.1186/s12862-021-01747-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background One of the dangers of global climate change to wildlife is distorting sex ratios by temperature-induced sex reversals in populations where sex determination is not exclusively genetic, potentially leading to population collapse and/or sex-determination system transformation. Here we introduce a new concept on how these outcomes may be altered by mate choice if sex-chromosome-linked phenotypic traits allow females to choose between normal and sex-reversed (genetically female) males. Results We developed a theoretical model to investigate if an already existing autosomal allele encoding preference for sex-reversed males would spread and affect demographic and evolutionary processes under climate warming. We found that preference for sex-reversed males (1) more likely spread in ZW/ZZ than in XX/XY sex-determination systems, (2) in populations starting with ZW/ZZ system, it significantly hastened the transitions between different sex-determination systems and maintained more balanced adult sex ratio for longer compared to populations where all females preferred normal males; and (3) in ZW/ZZ systems with low but non-zero viability of WW individuals, a widespread preference for sex-reversed males saved the populations from early extinction. Conclusions Our results suggest that climate change may affect the evolution of mate choice, which in turn may influence the evolution of sex-determination systems, sex ratios, and thereby adaptive potential and population persistence. These findings show that preferences for sex-linked traits have special implications in species with sex reversal, highlighting the need for empirical research on the role of sex reversal in mate choice.
Collapse
|
19
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
20
|
Nemesházi E, Gál Z, Ujhegyi N, Verebélyi V, Mikó Z, Üveges B, Lefler KK, Jeffries DL, Hoffmann OI, Bókony V. Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog (Rana dalmatina) associated with anthropogenic land use. Mol Ecol 2020; 29:3607-3621. [PMID: 32799395 DOI: 10.1111/mec.15596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
Populations of ectothermic vertebrates are vulnerable to environmental pollution and climate change because certain chemicals and extreme temperatures can cause sex reversal during early ontogeny (i.e. genetically female individuals develop male phenotype or vice versa), which may distort population sex ratios. However, we have troublingly little information on sex reversals in natural populations, due to unavailability of genetic sex markers. Here, we developed a genetic sexing method based on sex-linked single nucleotide polymorphism loci to study the prevalence and fitness consequences of sex reversal in agile frogs (Rana dalmatina). Out of 125 juveniles raised in laboratory without exposure to sex-reversing stimuli, 6 showed male phenotype but female genotype according to our markers. These individuals exhibited several signs of poor physiological condition, suggesting stress-induced sex reversal and inferior fitness prospects. Among 162 adults from 11 wild populations in North-Central Hungary, 20% of phenotypic males had female genotype according to our markers. These individuals occurred more frequently in areas of anthropogenic land use; this association was attributable to agriculture and less strongly to urban land use. Female-to-male sex-reversed adults had similar body mass as normal males. We recorded no events of male-to-female sex reversal either in the laboratory or in the wild. These results support recent suspicions that sex reversal is widespread in nature, and suggest that human-induced environmental changes may contribute to its pervasiveness. Furthermore, our findings indicate that sex reversal is associated with stress and poor health in early life, but sex-reversed individuals surviving to adulthood may participate in breeding.
Collapse
Affiliation(s)
- Edina Nemesházi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Gál
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Katalin Lefler
- Department of Aquaculture, Faculty of Agricultural and Environmental Sciences, Institute for Conservation of Natural Resources, Szent István University, Gödöllő, Hungary
| | - Daniel Lee Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
21
|
Trudeau VL, Thomson P, Zhang WS, Reynaud S, Navarro-Martin L, Langlois VS. Agrochemicals disrupt multiple endocrine axes in amphibians. Mol Cell Endocrinol 2020; 513:110861. [PMID: 32450283 DOI: 10.1016/j.mce.2020.110861] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/17/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Concern over global amphibian declines and possible links to agrochemical use has led to research on the endocrine disrupting actions of agrochemicals, such as fertilizers, fungicides, insecticides, acaricides, herbicides, metals, and mixtures. Amphibians, like other species, have to partition resources for body maintenance, growth, and reproduction. Recent studies suggest that metabolic impairments induced by endocrine disrupting chemicals, and more particularly agrichemicals, may disrupt physiological constraints associated with these limited resources and could cause deleterious effects on growth and reproduction. Metabolic disruption has hardly been considered for amphibian species following agrichemical exposure. As for metamorphosis, the key thyroid hormone-dependent developmental phase for amphibians, it can either be advanced or delayed by agrichemicals with consequences for juvenile and adult health and survival. While numerous agrichemicals affect anuran sexual development, including sex reversal and intersex in several species, little is known about the mechanisms involved in dysregulation of the sex differentiation processes. Adult anurans display stereotypical male mating calls and female phonotaxis responses leading to successful amplexus and spawning. These are hormone-dependent behaviours at the foundation of reproductive success. Therefore, male vocalizations are highly ecologically-relevant and may be a non-invasive low-cost method for the assessment of endocrine disruption at the population level. While it is clear that agrochemicals disrupt multiple endocrine systems in frogs, very little has been uncovered regarding the molecular and cellular mechanisms at the basis of these actions. This is surprising, given the importance of the frog models to our deep understanding of developmental biology and thyroid hormone action to understand human health. Several agrochemicals were found to have multiple endocrine effects at once (e.g., targeting both the thyroid and gonadal axes); therefore, the assessment of agrochemicals that alter cross-talk between hormonal systems must be further addressed. Given the diversity of life-history traits in Anura, Caudata, and the Gymnophiona, it is essential that studies on endocrine disruption expand to include the lesser known taxa. Research under ecologically-relevant conditions will also be paramount. Closer collaboration between molecular and cellular endocrinologists and ecotoxicologists and ecologists is thus recommended.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada.
| | - Paisley Thomson
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec), G1K 9A9, Canada.
| | - Wo Su Zhang
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada.
| | - Stéphane Reynaud
- Laboratoire d'Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, CS 40700, 38058, Grenoble cedex 9, France.
| | - Laia Navarro-Martin
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain.
| | - Valérie S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec (Québec), G1K 9A9, Canada.
| |
Collapse
|
22
|
Clulow J, Upton R, Trudeau VL, Clulow S. Amphibian Assisted Reproductive Technologies: Moving from Technology to Application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:413-463. [PMID: 31471805 DOI: 10.1007/978-3-030-23633-5_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amphibians have experienced a catastrophic decline since the 1980s driven by disease, habitat loss, and impacts of invasive species and face ongoing threats from climate change. About 40% of extant amphibians are under threat of extinction and about 200 species have disappeared completely. Reproductive technologies and biobanking of cryopreserved materials offer technologies that could increase the efficiency and effectiveness of conservation programs involving management of captive breeding and wild populations through reduced costs, better genetic management and reduced risk of species extinctions. However, there are relatively few examples of applications of these technologies in practice in on-the-ground conservation programs, and no example that we know of where genetic diversity has been restored to a threatened amphibian species in captive breeding or in wild populations using cryopreserved genetic material. This gap in the application of technology to conservation programs needs to be addressed if assisted reproductive technologies (ARTs) and biobanking are to realise their potential in amphibian conservation. We review successful technologies including non-invasive gamete collection, IVF and sperm cryopreservation that work well enough to be applied to many current conservation programs. We consider new advances in technology (vitrification and laser warming) of cryopreservation of aquatic embryos of fish and some marine invertebrates that may help us to overcome factors limiting amphibian oocyte and embryo cryopreservation. Finally, we address two case studies that illustrate the urgent need and the opportunity to implement immediately ARTs, cryopreservation and biobanking to amphibian conservation. These are (1) managing the biosecurity (disease risk) of the frogs of New Guinea which are currently free of chytridiomycosis, but are at high risk (2) the Sehuencas water frog of Bolivia, which until recently had only one known surviving male.
Collapse
Affiliation(s)
- J Clulow
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia.
| | - R Upton
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - V L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - S Clulow
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|