1
|
Ye L, Zhang B, Yang X, Huang Y, Luo J, Zhang X, Tan W, Song C, Ao Z, Shen C, Li X. Metabolomic profiling reveals biomarkers for diverse flesh colors in jelly fungi (Auricularia cornea). Food Chem 2024; 446:138906. [PMID: 38460278 DOI: 10.1016/j.foodchem.2024.138906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Auricularia cornea has garnered attention due to its nutrition, culinary applications, and promising commercial prospects. However, there is little information available regarding the metabolic profiling of various colors strains. In this study, 642 metabolites across 64 classes were identified by LC-MS/MS to understand the metabolic variations between white, pink and dark brown strains. Notably, prenol lipids, carboxylic acids and fatty acyls accounted for 46.8 % of the total. Comparative analysis revealed 17 shared differential metabolites (DMs) among them. ACP vs ACW exhibited 17 unique metabolites, including d-arginine and maleic acid, etc. ACP vs ACB showed 5 unique metabolites, with only PS(18:1(9Z)/0:0) demonstrating up-regulation. ACB vs ACW showed 8 unique metabolites, including 4-hydroxymandelic acid and 5'-methylthioadenosine, etc. KEGG enrichment analysis highlighted pathway variations, and MetPA analysis identified key-pathways influencing DMs accumulation in A. cornea. This pioneering metabolomics study offers insights into A. cornea metabolic profiling, potential applications, and guides further research.
Collapse
Affiliation(s)
- Lei Ye
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611134, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xuezhen Yang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Yu Huang
- Sichuan Institute of Edible Fungi, Chengdu 610066, China
| | - Jianhua Luo
- Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611134, China
| | - Wei Tan
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China.
| | - Chuan Song
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | - Zonghua Ao
- Luzhou Laojiao Co., Ltd, Luzhou 646000, China
| | | | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Chengdu 610066, China; Sichuan Jindi Fungus Co., Ltd., Chengdu 610066, China; Luzhou Laojiao Co., Ltd, Luzhou 646000, China.
| |
Collapse
|
2
|
Chen ZJ, Li ML, Gao SS, Sun YB, Han H, Li BL, Li YY. Plant Growth-Promoting Bacteria Influence Microbial Community Composition and Metabolic Function to Enhance the Efficiency of Hybrid pennisetum Remediation in Cadmium-Contaminated Soil. Microorganisms 2024; 12:870. [PMID: 38792702 PMCID: PMC11124114 DOI: 10.3390/microorganisms12050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu-Ying Li
- Overseas Expertise Introduction Center for Discipline Innovation of Watershed Ecological Security in the Water Source Area of the Mid-line Project of South-to-North Water Diversion, College of Water Resource and Environment Engineering, Nanyang Normal University, Nanyang 473061, China; (Z.-J.C.)
| |
Collapse
|
3
|
Synytsya A, Bleha R, Skrynnikova A, Babayeva T, Čopíková J, Kvasnička F, Jablonsky I, Klouček P. Mid-Infrared Spectroscopic Study of Cultivating Medicinal Fungi Ganoderma: Composition, Development, and Strain Variability of Basidiocarps. J Fungi (Basel) 2023; 10:23. [PMID: 38248933 PMCID: PMC10817577 DOI: 10.3390/jof10010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was proposed for rapid, versatile, and non-invasive screening of Ganoderma basidiocarps to assess their potential for specific applications. Fifteen species and strains of this fungus were selected for analysis, and fine sections at different parts of young and mature basidiocarps were obtained. The spectra of fungal samples showed significant differences interpreted in terms of biochemical composition using characteristic bands of proteins, polysaccharides, lipids, and triterpenoids. Obviously, for the transverse sections in trama, especially in the basal part, the most intense bands at 950-1200 cm-1 corresponded to polysaccharide vibrations, while for the superficial sections, the bands of carbonyl and aliphatic groups of triterpenoids at 1310-1470, 1550-1740, and 2850-2980 cm-1 predominated. The pilei, especially hymenium tubes, apparently contained more proteins than the bases and stipes, as evidenced by the intense bands of amide vibrations at 1648 and 1545-1550 cm-1. The specificity of the Ganoderma basidiocarp is a densely pigmented surface layer rich in triterpenoids, as proved by ATR-FTIR spectroscopy. The spectral differences corresponding to the specificity of the triterpenoid composition may indicate the prospects of individual strains and species of this genus for cultivation and further use in food, cosmetics, or medicine.
Collapse
Affiliation(s)
- Andriy Synytsya
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Roman Bleha
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Anastasia Skrynnikova
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Tamilla Babayeva
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - Jana Čopíková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic; (A.S.); (T.B.); (J.Č.)
| | - František Kvasnička
- Department of Meat and Preservation, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic;
| | - Ivan Jablonsky
- Department of Gardening, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| | - Pavel Klouček
- Department of Food Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic;
| |
Collapse
|
4
|
Shi P, Luo H, Huang Q, Xu C, Tong X, Shen H, Su H, Pu H, Wang H, Yu L, Li H. Extraction and characterisation of pigment from Yanzhiguo [ Prunus napaulensis (Ser.) Steud.]. PeerJ 2023; 11:e15517. [PMID: 37547716 PMCID: PMC10402702 DOI: 10.7717/peerj.15517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 08/08/2023] Open
Abstract
Yanzhiguo [Prunus napaulensis (Ser.) Steud] belongs to Rosaceae family and is consumed as wild fruit, pulp and juice. However, its potential for extracting natural pigment has not yet been explored. Herein, the components in the fresh Yanzhiguo pulp were preliminarily analyzed by liquid chromatography coupled to mass spectrometry. And, the optimal pre-treatment conditions were established for further extraction of Yanzhiguo pigment based on the a* value. Then, by combining the data from single-factor experiments and response surface methodology, the optimal extraction process was established as: 35% EtOH, a liquid-solid ratio of 200:1 mL g-1, an extraction time of 65 min, and an extraction temperature of 100 °C. Moreover, it was found that the a* value and yield had high fitness except when extracted into ethanol (EtOH) with different concentrations. Meanwhile, our result demonstrated Yanzhiguo pigment had high stability in general environments with carmine (a synthetic pigment) as control, except for extreme environments such as direct (hot) sunlight, high temperature (75 °C) and strong alkaline (pH ≥ 11). Also, Yanzhiguo pigment exhibited good antioxidant activity. Our results contribute to more information on Yanzhiguo pigment and promote its application by providing efficient extraction technology.
Collapse
Affiliation(s)
- Pingping Shi
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Haibo Luo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Qiuqiu Huang
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Changliang Xu
- Agricultural and Animal Products Quality Testing Center, Suqian, Jiangsu, China
| | - Xiuzi Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Hui Shen
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Huosheng Su
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Hongmei Pu
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Haidan Wang
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Lijuan Yu
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Hong Li
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Zeng Z, Jin S, Xiang X, Yuan H, Jin Y, Shi Q, Zhang Y, Yang M, Zhang L, Huang R, Song C. Dynamical changes of tea metabolites fermented by Aspergillus cristatus, Aspergillus neoniger and mixed fungi: A temporal clustering strategy for untargeted metabolomics. Food Res Int 2023; 170:112992. [PMID: 37316065 DOI: 10.1016/j.foodres.2023.112992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Dark tea fermentation involves various fungi, but studies focusing on the mixed fermentation in tea remain limited. This study investigated the influences of single and mixed fermentation on the dynamical alterations of tea metabolites. The differential metabolites between unfermented and fermented teas were determined using untargeted metabolomics. Dynamical changes in metabolites were explored by temporal clustering analysis. Results indicated that Aspergillus cristatus (AC) at 15 days, Aspergillus neoniger (AN) at 15 days, and mixed fungi (MF) at 15 days had respectively 68, 128 and 135 differential metabolites, compared with unfermentation (UF) at 15 days. Most of metabolites in the AN or MF group showed a down-regulated trend in cluster 1 and 2, whereas most of metabolites in the AC group showed an up-regulated trend in cluster 3 to 6. The three key metabolic pathways mainly composed of flavonoids and lipids included flavone and flavonol biosynthesis, glycerophospholipid metabolism and flavonoid biosynthesis. Based on the dynamical changes and metabolic pathways of the differential metabolites, AN showed a predominant status in MF compared with AC. Together, this study will advance the understanding of dynamic changes in tea fermentation and provide valuable insights into the processing and quality control of dark tea.
Collapse
Affiliation(s)
- Zhaoxiang Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Xingliang Xiang
- School of Life Sciences, Hainan University, 58 Renmin Avenue, Meilan District, 570228 Haikou, Hainan, China
| | - Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Yuehui Jin
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Yanmei Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Min Yang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Lijun Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China.
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Hongshan District, 430065 Wuhan, Hubei, China.
| |
Collapse
|
6
|
Liu Y, Qian Y, Wang C, He Y, Zhu C, Chen G, Lin L, Chen Y. Study of the Metabolite Changes in Ganoderma lucidum under Pineapple Leaf Residue Stress via LC-MS/MS Coupled with a Non-Targeted Metabolomics Approach. Metabolites 2023; 13:metabo13040487. [PMID: 37110146 PMCID: PMC10144527 DOI: 10.3390/metabo13040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The effects of fermentation metabolites of G. lucidum under different pineapple leaf residue additions were separated and identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The mass spectra showed that the metabolites had good response values only in the positive ion mode, and 3019 metabolites with significant differences, mainly distributed in 95 metabolic pathways, were identified. The multivariate analyses, including the principal component analysis (PCA), orthogonal least squares discriminant analysis (OPLS-DA), and volcano plots (VP), revealed that the G. lucidum metabolites exhibited significant differences (p < 0.05) and were well clustered under various pineapple leaf residue additions, featuring 494–545 upregulated and 998–1043 downregulated metabolites. The differential metabolic pathway analysis proved that two metabolic pathways related to the biosynthesis of amino acids and ABC transporters were particularly significant under the addition of pineapple leaf residue, where amino acids such as histidine and lysine were upregulated in contrast to downregulated tyrosine, valine, L-alanine, and L-asparagine. These study results are considered instrumental in substantiating the application of pineapple leaf residue in the cultivation of G. lucidum and improving its utilization rate and added value.
Collapse
|
7
|
Mechanism of enhanced production of triterpenoids in algal-fungal consortium. Bioprocess Biosyst Eng 2022; 45:1625-1633. [PMID: 35963944 DOI: 10.1007/s00449-022-02768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chlorella pyrenoidosa-Ganoderma lucidum symbiotic systems were constructed. The mechanism of enhanced production of triterpenoids in algal-fungal consortium by comparing the contents of triterpenoids in individual fungal systems and algal-fungal consortium systems was investigated. The production of triterpenoids in C. pyrenoidosa-G. lucidum consortium increased significantly (P < 0.05). The categories and relative abundances of metabolites in the individual systems and algal-fungal systems were measured and analyzed by metabonomic tests. There were 57 significant different metabolites (VIP > 1 and P < 0.05) including 12 downregulated metabolites and 45 upregulated metabolites were obtained. The significant enriched metabolic pathways (VIP > 1 and P < 0.05) of citrate cycle (TCA cycle), tyrosine metabolism, glycolysis, and terpenoid backbone biosynthesis in algal-fungal consortium were obtained. The relative abundances of important precursors of triterpenoids including mevalonic acid, lanosterol, and hydroquinone were 1.4 times, 1.7 times, and 2 times, respectively, in algal-fungal consortium than that in the individual fungal systems. The presence of C. pyrenoidosa in algal-fungal consortium promoted the biosynthesis of triterpenoids in G. lucidum.
Collapse
|
8
|
Jin M, Chen X, Gao M, Sun R, Tian D, Xiong Q, Wei J, Kalkhajeh YK, Gao H. Manganese promoted wheat straw decomposition by regulating microbial communities and enzyme activities. J Appl Microbiol 2021; 132:1079-1090. [PMID: 34424586 DOI: 10.1111/jam.15266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/01/2022]
Abstract
AIMS This study investigated the dose-effect of manganese (Mn) addition on wheat straw (WS) decomposition, and explored the potential mechanisms of Mn involved in the acceleration of WS decomposition in regards to the soil microbial communities and enzyme activities. METHODS AND RESULTS A 180-day incubation experiment was performed to examine the decomposition of WS under four Mn levels, that is, 0, 0.25, 1 and 2 mg g-1 . The effects of microbial communities and enzyme activities were evaluated using control (0 mg g-1 ) and Mn (0.25 mg g-1 ) treatments. Our results revealed that Mn (0.25 mg g-1 ) addition significantly increased WS decomposition, and enhanced the release of carbon and nitrogen. Optimal Mn addition (0.25 mg g-1 ) also caused significant increases in the activity of neutral xylanase (NEX), laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP) within the incubation period. Mn (0.25 mg g-1 ) addition also enriched some operational taxonomic units (OTUs) that, in turn, had the potential ability to decompose crop straw, such as secreting lignocellulolytic enzymes. CONCLUSIONS Mn (0.25 mg g-1 ) could promote WS decomposition through enrichment of the microbial species involved in biomass decomposition, which enhanced the lignocellulose-degrading enzyme activity. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides evidence for Mn to promote WS biodegradation after Mn application, opening new windows to improve the utilization efficiency of crop residues.
Collapse
Affiliation(s)
- M Jin
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.,Research Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection, Yangtze River Economic Zone, P.R. China
| | - X Chen
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.,Research Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection, Yangtze River Economic Zone, P.R. China
| | - M Gao
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.,Research Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection, Yangtze River Economic Zone, P.R. China
| | - R Sun
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.,Research Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection, Yangtze River Economic Zone, P.R. China
| | - D Tian
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.,Research Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection, Yangtze River Economic Zone, P.R. China
| | - Q Xiong
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.,Research Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection, Yangtze River Economic Zone, P.R. China
| | - J Wei
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.,Research Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection, Yangtze River Economic Zone, P.R. China
| | - Y K Kalkhajeh
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.,Research Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection, Yangtze River Economic Zone, P.R. China
| | - H Gao
- Anhui Province Key Laboratory of Farmland Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.,Research Centre of Phosphorous Highly Efficient Utilization and Water Environment Protection, Yangtze River Economic Zone, P.R. China
| |
Collapse
|
9
|
Tan P, Zeng C, Wan C, Liu Z, Dong X, Peng J, Lin H, Li M, Liu Z, Yan M. Metabolic Profiles of Brassica juncea Roots in Response to Cadmium Stress. Metabolites 2021; 11:383. [PMID: 34199254 PMCID: PMC8232002 DOI: 10.3390/metabo11060383] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Brassica juncea has great application potential in phytoremediation of cadmium (Cd)-contaminated soil because of its excellent Cd accumulating and high biomass. In this study, we compared the effects of Cd under 48 h and 7 d stress in roots of Brassica juncea using metabolite profiling. The results showed that many metabolic pathways and metabolites in Brassica juncea roots were altered significantly in response to Cd stress. We found that significant differences in levels of amino acids, organic acids, carbohydrates, lipids, flavonoids, alkaloids, and indoles were induced by Cd stress at different times, which played a pivotal role in the adaptation of Brassica juncea roots to Cd stress. Meanwhile, Brassica juncea roots could resist 48 h Cd stress by regulating the biosynthesis of amino acids, linoleic acid metabolism, aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, ABC transporters, arginine biosynthesis, valine, leucine and isoleucine biosynthesis, and alpha-linolenic acid metabolism; however, they regulated alpha-linolenic acid metabolism, glycerophospholipid metabolism, ABC transporters, and linoleic acid metabolism to resist 7 d Cd stress. A metabolomic expedition to the response of Brassica juncea to Cd stress will help to comprehend its tolerance and accumulation mechanisms of Cd.
Collapse
Affiliation(s)
- Piaopiao Tan
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
| | - Chaozhen Zeng
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
| | - Chang Wan
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
| | - Zhe Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
| | - Xujie Dong
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China;
| | - Jiqing Peng
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China;
| | - Haiyan Lin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China;
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Zhixiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (P.T.); (C.Z.); (C.W.); (Z.L.); (X.D.); (J.P.)
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation on Forest Resource Biotechnology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China;
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|