1
|
Xu C, Wang JC, Sun L, Zhuang LH, Guo ZJ, Ding QS, Ma DN, Song LY, Li J, Tang HC, Zhu XY, Zheng HL. Genome-Wide Identification of Pentatricopeptide Repeat (PPR) Gene Family and Multi-Omics Analysis Provide New Insights Into the Albinism Mechanism of Kandelia obovata Propagule Leaves. PLANT, CELL & ENVIRONMENT 2024; 47:5498-5510. [PMID: 39222055 DOI: 10.1111/pce.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Pentatricopeptide repeat (PPR) gene family constitutes one of the largest gene families in plants, which mainly participate in RNA editing and RNA splicing of organellar RNAs, thereby affecting the organellar development. Recently, some evidence elucidated the important roles of PPR proteins in the albino process of plant leaves. However, the functions of PPR genes in the woody mangrove species have not been investigated. In this study, using a typical true mangrove Kandelia obovata, we systematically identified 298 PPR genes and characterized their general features and physicochemical properties, including evolutionary relationships, the subcellular localization, PPR motif type, the number of introns and PPR motifs, and isoelectric point, and so forth. Furthermore, we combined genome-wide association studies (GWAS) and transcriptome analysis to identify the genetic architecture and potential PPR genes associated with propagule leaves colour variations of K. obovata. As a result, we prioritized 16 PPR genes related to the albino phenotype using different strategies, including differentially expressed genes analysis and genetic diversity analysis. Further analysis discovered two genes of interest, namely Maker00002998 (PLS-type) and Maker00003187 (P-type), which were differentially expressed genes and causal genes detected by GWAS analysis. Moreover, we successfully predicted downstream target chloroplast genes (rps14, rpoC1 and rpoC2) bound by Maker00002998 PPR proteins. The experimental verification of RNA editing sites of rps14, rpoC1, and rpoC2 in our previous study and the verification of interaction between Maker00002998 and rps14 transcript using in vitro RNA pull-down assays revealed that Maker00002998 PPR protein might be involved in the post-transcriptional process of chloroplast genes. Our result provides new insights into the roles of PPR genes in the albinism mechanism of K. obovata propagule leaves.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ji-Cheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ling Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Li-Han Zhuang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, China
| | - Qian-Su Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Han-Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Hussain Q, Ye T, Shang C, Li S, Khan A, Nkoh JN, Mustafa AEZMA, Elshikh MS. NRAMP gene family in Kandelia obovata: genome-wide identification, expression analysis, and response to five different copper stress conditions. FRONTIERS IN PLANT SCIENCE 2024; 14:1318383. [PMID: 38239217 PMCID: PMC10794735 DOI: 10.3389/fpls.2023.1318383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Natural resistance-associated macrophage proteins (NRAMPs) are a class of metal transporters found in plants that exhibit diverse functions across different species. Transporter proteins facilitate the absorption, distribution, and sequestration of metallic elements within various plant tissues. Despite the extensive identification of NRAMP family genes in various species, a full analysis of these genes in tree species is still necessary. Genome-wide identification and bioinformatics analysis were performed to understand the roles of NRAMP genes in copper (CuCl2) stress in Kandelia obovata (Ko). In Arachis hypogaea L., Populus trichocarpa, Vitis vinifera, Phaseolus vulgaris L., Camellia sinensis, Spirodela polyrhiza, Glycine max L. and Solanum lycopersicum, a genome-wide study of the NRAMP gene family was performed earlier. The domain and 3D structural variation, phylogenetic tree, chromosomal distributions, gene structure, motif analysis, subcellular localization, cis-regulatory elements, synteny and duplication analysis, and expression profiles in leaves and CuCl2 were all investigated in this research. In order to comprehend the notable functions of the NRAMP gene family in Kandelia obovata, a comprehensive investigation was conducted at the genomic level. This study successfully found five NRAMP genes, encompassing one gene pair resulting from whole-genome duplication and a gene that had undergone segmental duplication. The examination of chromosomal position revealed an unequal distribution of the KoNRAMP genes across chromosomes 1, 2, 5, 7, and 18. The KoNRAMPs can be classified into three subgroups (I, II, and SLC) based on phylogeny and synteny analyses, similar to Solanum lycopersicum. Examining cis-regulatory elements in the promoters revealed five hormone-correlated responsive elements and four stress-related responsive elements. The genomic architecture and properties of 10 highly conserved motifs are similar among members of the NRAMP gene family. The conducted investigations demonstrated that the expression levels of all five genes exhibited alterations in response to different levels of CuCl2 stress. The results of this study offer crucial insights into the roles of KoNRAMPs in the response of Kandelia obovata to CuCl2 stress.
Collapse
Affiliation(s)
- Quaid Hussain
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ting Ye
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Chenjing Shang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Sihui Li
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Asadullah Khan
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | | | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zhang Y, Yang Y, He M, Wei Z, Qin X, Wu Y, Jiang Q, Xiao Y, Yang Y, Wang W, Jin X. Comparative chloroplast genome analyses provide insights into evolutionary history of Rhizophoraceae mangroves. PeerJ 2023; 11:e16400. [PMID: 38025714 PMCID: PMC10658886 DOI: 10.7717/peerj.16400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background The Rhizophoraceae family comprises crucial mangrove plants that inhabit intertidal environments. In China, eight Rhizophoraceae mangrove species exist. Although complete chloroplast (Cp) genomes of four Rhizophoraceae mangrove plants have been reported, the Cp genomes of the remaining four species remain unclear, impeding a comprehensive understanding of the evolutionary history of this family. Methods Illumina high-throughput sequencing was employed to obtain the DNA sequences of Rhizophoraceae species. Cp genomes were assembled by NOVOPlasty and annotated using CpGAVAS software. Phylogenetic and divergence time analyses were conducted using MEGA and BEAST 2 software. Results Four novel Cp genomes of Rhizophoraceae mangrove species (Bruguiera sexangula, Bruguiera gymnorrhiza, Bruguiera × rhynchopetala and Rhizophora apiculata) were successfully assembled. The four Cp genomes ranged in length from 163,310 to 164,560 bp, with gene numbers varying from 124 to 128. The average nucleotide diversity (Pi) value of the eight Rhizophoraceae Cp genomes was 0.00596. Phylogenetic trees constructed based on the complete Cp genomes supported the monophyletic origin of Rhizophoraceae. Divergence time estimation based on the Cp genomes of representative species from Malpighiales showed that the origin of Rhizophoraceae occurred at approximately 58.54-50.02 million years ago (Mya). The divergence time within the genus Rhizophora (∼4.51 Mya) was much earlier than the divergence time within the genus Bruguiera (∼1.41 Mya), suggesting recent speciation processes in these genera. Our data provides new insights into phylogenetic relationship and evolutionary history of Rhizophoraceae mangrove plants.
Collapse
Affiliation(s)
- Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, Hainan, China
- Qiongtai Normal University, Research Center for Wild Animal and Plant Resource Protection and Utilization, Haikou, Hainan, China
- Lingnan Normal University, Life Science and Technology School, Zhanjiang, Guangdong, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Meng He
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Ziqi Wei
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Xi Qin
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Yuanhao Wu
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Qingxing Jiang
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Yufeng Xiao
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Yong Yang
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| | - Wei Wang
- Qiongtai Normal University, Research Center for Wild Animal and Plant Resource Protection and Utilization, Haikou, Hainan, China
| | - Xiang Jin
- Qiongtai Normal University, Research Center for Wild Animal and Plant Resource Protection and Utilization, Haikou, Hainan, China
- Hainan Normal University, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Haikou, Hainan, China
| |
Collapse
|
4
|
Xu X, Shen Y, Zhang Y, Li Q, Wang W, Chen L, Chen G, Ng WL, Islam MN, Punnarak P, Zheng H, Zhu X. A comparison of 25 complete chloroplast genomes between sister mangrove species Kandelia obovata and Kandelia candel geographically separated by the South China Sea. FRONTIERS IN PLANT SCIENCE 2023; 13:1075353. [PMID: 36684775 PMCID: PMC9845719 DOI: 10.3389/fpls.2022.1075353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
In 2003, Kandelia obovata was identified as a new mangrove species differentiated from Kandelia candel. However, little is known about their chloroplast (cp) genome differences and their possible ecological significance. In this study, 25 whole cp genomes, with seven samples of K. candel from Malaysia, Thailand, and Bangladesh and 18 samples of K. obovata from China, were sequenced for comparison. The cp genomes of both species encoded 128 genes, namely 83 protein-coding genes, 37 tRNA genes, and eight rRNA genes, but the cp genome size of K. obovata was ~2 kb larger than that of K. candle due to the presence of more and longer repeat sequences. Of these, tandem repeats and simple sequence repeats exhibited great differences. Principal component analysis based on indels, and phylogenetic tree analyses constructed with homologous protein genes from the single-copy genes, as well as 38 homologous pair genes among 13 mangrove species, gave strong support to the separation of the two species within the Kandelia genus. Homologous genes ndhD and atpA showed intraspecific consistency and interspecific differences. Molecular dynamics simulations of their corresponding proteins, NAD(P)H dehydrogenase chain 4 (NDH-D) and ATP synthase subunit alpha (ATP-A), predicted them to be significantly different in the functions of photosynthetic electron transport and ATP generation in the two species. These results suggest that the energy requirement was a pivotal factor in their adaptation to differential environments geographically separated by the South China Sea. Our results also provide clues for future research on their physiological and molecular adaptation mechanisms to light and temperature.
Collapse
Affiliation(s)
- Xiuming Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yuchen Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qianying Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenqing Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Luzhen Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh
| | - Porntep Punnarak
- Aquatic Resources Research Institute, Chulalongkorn University, Bangkok, Thailand
| | - Hailei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Zhou Q, Chen Y, Wang J, Li M, Zeng W, Wang Y, Li Y, Zhao H. A comparative study of the chloroplast genomes of five Lepidium species with high medicinal value. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:29-45. [PMID: 36043226 DOI: 10.1071/fp22052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Plantgenomics is a rapidly developing field in medicinal plant research. This study analysed the relevant information of chloroplasts genome sequences of five medicinal plants from the genus Lepidium . We sequenced the complete chloroplast (cp) genomes of Lepidium apetalum Willd. and Lepidium perfoliatum Linnaeus., and assessed their genetic profiles against the reported profiles of Lepidium sativum Linnaeus., Lepidium meyenii Walp., and Lepidium virginicum Linn. We found that L. apetalum and L. perfoliatum possessed 130 distinct genes that included 85 protein-coding, 37 transfer RNA (tRNA), and eight ribosomal RNA (rRNA) genes. Our repeat analyses revealed that L. apetalum harboured 20 direct repeats, 16 palindrome repeats, 30 tandem repeats, and 87 simple sequence repeats, whereas, L. perfoliatum had 15 direct repeats, 20 palindrome repeats, four reverse repeats, 21 tandem repeats, and 98 simple sequence repeats. Using syntenic analysis, we also revealed a high degree of sequence similarity within the coding regions of Lepidium medicinal plant cp genomes, and a high degree of divergence among the intergenic spacers. Pairwise alignment and single-nucleotide polymorphism (SNP) examinations further revealed certain Lepidium -specific gene fragments. Codon usage analysis showed that codon 14 was the most frequently used codon in the Lepidium coding sequences. Further, correlation investigations suggest that L. apetalum and L. perfoliatum originate from similar genetic backgrounds. Analysis of codon usage bias of Lepidium cp genome was strongly influenced by mutation and natural selection. We showed that L. apetalum and L. perfoliatum will likely enhance breeding, species recognition, phylogenetic evolution, and cp genetic engineering of the Lepidium medicinal plants.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi, China
| | - Yun Chen
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi, China
| | - Jilian Wang
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi, China
| | - Mingyuan Li
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi, China
| | - Weijun Zeng
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Yuzhou Wang
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geography Sciences, Kashi University, Kashi, China
| | - Yanhong Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| |
Collapse
|
6
|
Guo H, Wang L, Xu W, Huo Z, Yang P, Zhang Q, Wang H, Li P, Lu X. The complete chloroplast genome sequence of Cyathula officinalis and comparative analysis with four related species. Gene 2022; 839:146728. [PMID: 35850203 DOI: 10.1016/j.gene.2022.146728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
Cyathula officinalis is a medicinal and edible herb, which can remove blood stasis, stimulate menstrual flow, and ease joint movement. In this study, the complete chloroplast genome of Cyathula officinalis was sequenced, assembled, and analyzed. Compared with the chloroplast genomes of Cyathula capitata, Achyranthes bidentata, Achyranthes longifolianine and Achyranthes aspera, the basic characteristics, codon usage bias, repeat sequences, simple sequence repeats, and phylogenetic tree were analyzed. In addition, according to nucleotide diversity analysis and sequence alignment, DNA barcoding and allele-specific PCR primers were designed to identify and distinguish Cyathula officinalis from its fake drugs, which has effectively practical significance for the authentication of "Chuan Niuxi" crude drug in the market.
Collapse
Affiliation(s)
- Huijun Guo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Long Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Wenbo Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Ziting Huo
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Qianwen Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Huiying Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Lu G, Qiao J, Wang L, Liu H, Wu G, Zhu Y, Zhao Y, Xie G, Qin M. An integrated study of Violae Herba (Viola philippica) and five adulterants by morphology, chemical compositions and chloroplast genomes: insights into its certified plant origin. Chin Med 2022; 17:32. [PMID: 35241112 PMCID: PMC8892722 DOI: 10.1186/s13020-022-00585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/11/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Viola philippica Cav. is the only original plant for Violae Herba, as described in the Chinese Pharmacopoeia. The quality of this crude drug is affected by several adulterants from congeneric Viola species, and the authentic plant origin of Violae Herba is still controversial. Genome-based identification offers abundant genetic information and potential molecular markers that can be used for the authentication of closely related species. This study aims to investigate the certified origin of Violae Herba and to develop more effective markers for these easily confused species at the genetic level. METHODS We compared the morphology and chemical composition of 18 batches of commercial samples and six widespread medicinal Viola plants used as Violae Herba or its substitutes by TLC and HPLC-Triple-TOF-MS/MS analyses. The complete chloroplast genomes of these species were sequenced and analyzed, including the general features, repeat sequences, mutational hotspots and phylogeny. The complete chloroplast genomes used as superbarcodes and some specific barcodes screened from mutational hotspots were tested for their ability to distinguish Viola species. RESULTS A comparative study showed that Violae Herba is a multi-origin traditional Chinese medicine. Commercial decoction pieces and the standard reference drug were mainly derived from V. prionantha, clashing with the record in the Chinese Pharmacopoeia. Chloroplast genome analyses of V. philippica and five adulterants indicated that sequence divergence was relatively low within Viola species. By tree-based approaches, the complete chloroplast genomes showed a better discrimination ability and phylogenetic resolution for each Viola species. These results indicate that the whole chloroplast genomes can be used as superbarcodes to differentiate Viola medicinal plants. More specific DNA barcodes could be further developed from the Viola chloroplast genomes for more efficient and rapid identification of commercial Violae Herba and its adulterants. CONCLUSIONS This study has implications for chloroplast genome-based phylogenetic analysis and the authentication of multiple Viola species used as Violae Herba. The legal origin recorded in the Chinese Pharmacopoeia should be further revised to V. prionantha, in line with the commercial Violae Herba in the TCM markets.
Collapse
Affiliation(s)
- Gengyu Lu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Juanjuan Qiao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Long Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Hui Liu
- Yangzhou Center for Food and Drug Control, Yangzhou, 225000 China
| | - Gang Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
8
|
Ruang-Areerate P, Yoocha T, Kongkachana W, Phetchawang P, Maknual C, Meepol W, Jiumjamrassil D, Pootakham W, Tangphatsornruang S. Comparative Analysis and Phylogenetic Relationships of Ceriops Species (Rhizophoraceae) and Avicennia lanata (Acanthaceae): Insight into the Chloroplast Genome Evolution between Middle and Seaward Zones of Mangrove Forests. BIOLOGY 2022; 11:383. [PMID: 35336757 PMCID: PMC8945693 DOI: 10.3390/biology11030383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
Ceriops and Avicennia are true mangroves in the middle and seaward zones of mangrove forests, respectively. The chloroplast genomes of Ceriops decandra, Ceriops zippeliana, and Ceriops tagal were assembled into lengths of 166,650, 166,083 and 164,432 bp, respectively, whereas Avicennia lanata was 148,264 bp in length. The gene content and gene order are highly conserved among these species. The chloroplast genome contains 125 genes in A. lanata and 129 genes in Ceriops species. Three duplicate genes (rpl2, rpl23, and trnM-CAU) were found in the IR regions of the three Ceriops species, resulting in expansion of the IR regions. The rpl32 gene was lost in C. zippeliana, whereas the infA gene was present in A. lanata. Short repeats (<40 bp) and a lower number of SSRs were found in A. lanata but not in Ceriops species. The phylogenetic analysis supports that all Ceriops species are clustered in Rhizophoraceae and A. lanata is in Acanthaceae. In a search for genes under selective pressures of coastal environments, the rps7 gene was under positive selection compared with non-mangrove species. Finally, two specific primer sets were developed for species identification of the three Ceriops species. Thus, this finding provides insightful genetic information for evolutionary relationships and molecular markers in Ceriops and Avicennia species.
Collapse
Affiliation(s)
- Panthita Ruang-Areerate
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Thippawan Yoocha
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Phakamas Phetchawang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chatree Maknual
- Department of Marine and Coastal Resources, 120 The Government Complex, Chaengwatthana Rd., Thung Song Hong, Bangkok 10210, Thailand
| | - Wijarn Meepol
- Department of Marine and Coastal Resources, Ranong Mangrove Forest Research Center, Tambon Ngao, Muang District, Ranong 85000, Thailand
| | - Darunee Jiumjamrassil
- Marine and Coastal Resources Office 5, 199/6 Khanom, Khanom, Nakhon Si Thammarat 80210, Thailand
| | - Wirulda Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | | |
Collapse
|
9
|
Nizam A, Meera SP, Kumar A. Genetic and molecular mechanisms underlying mangrove adaptations to intertidal environments. iScience 2022; 25:103547. [PMID: 34988398 PMCID: PMC8693430 DOI: 10.1016/j.isci.2021.103547] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mangroves are halophytic plants belonging to diverse angiosperm families that are adapted to highly stressful intertidal zones between land and sea. They are special, unique, and one of the most productive ecosystems that play enormous ecological roles and provide a large number of benefits to the coastal communities. To thrive under highly stressful conditions, mangroves have innovated several key morphological, anatomical, and physio-biochemical adaptations. The evolution of the unique adaptive modifications might have resulted from a host of genetic and molecular changes and to date we know little about the nature of these genetic and molecular changes. Although slow, new information has accumulated over the last few decades on the genetic and molecular regulation of the mangrove adaptations, a comprehensive review on it is not yet available. This review provides up-to-date consolidated information on the genetic, epigenetic, and molecular regulation of mangrove adaptive traits.
Collapse
Affiliation(s)
- Ashifa Nizam
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| | - Suraj Prasannakumari Meera
- Department of Biotechnology and Microbiology, Dr. Janaki Ammal Campus, Kannur University, Palayad, Kerala 670661, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala 671316, India
| |
Collapse
|
10
|
Fan Y, Jin Y, Ding M, Tang Y, Cheng J, Zhang K, Zhou M. The Complete Chloroplast Genome Sequences of Eight Fagopyrum Species: Insights Into Genome Evolution and Phylogenetic Relationships. FRONTIERS IN PLANT SCIENCE 2021; 12:799904. [PMID: 34975990 PMCID: PMC8715082 DOI: 10.3389/fpls.2021.799904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/18/2021] [Indexed: 05/09/2023]
Abstract
Buckwheat (Fagopyrum genus, Polygonaceae), is an annual or perennial, herbaceous or semi-shrub dicotyledonous plant. There are mainly three cultivated buckwheat species, common buckwheat (Fagopyrum esculentum) is widely cultivated in Asia, Europe, and America, while Tartary buckwheat (F. tataricum) and F. cymosum (also known as F. dibotrys) are mainly cultivated in China. The genus Fagopyrum is taxonomically confusing due to the complex phenotypes of different Fagopyrum species. In this study, the chloroplast (cp) genomes of three Fagopyrum species, F. longistylum, F. leptopodum, F. urophyllum, were sequenced, and five published cp genomes of Fagopyrum were retrieved for comparative analyses. We determined the sequence differentiation, repeated sequences of the cp genomes, and the phylogeny of Fagopyrum species. The eight cp genomes ranged, gene number, gene order, and GC content were presented. Most of variations of Fagopyrum species cp genomes existed in the LSC and SSC regions. Among eight Fagopyrum chloroplast genomes, six variable regions (ndhF-rpl32, trnS-trnG, trnC, trnE-trnT, psbD, and trnV) were detected as promising DNA barcodes. In addition, a total of 66 different SSR (simple sequence repeats) types were found in the eight Fagopyrum species, ranging from 8 to 16 bp. Interestingly, many SSRs showed significant differences especially in some photosystem genes, which provided valuable information for understanding the differences in light adaptation among different Fagopyrum species. Genus Fagopyrum has shown a typical branch that is distinguished from the Rumex, Rheum, and Reynoutria, which supports the unique taxonomic status in Fagopyrum among the Polygonaceae. In addition, phylogenetic analysis based on the cp genomes strongly supported the division of eight Fagopyrum species into two independent evolutionary directions, suggesting that the separation of cymosum group and urophyllum group may be earlier than the flower type differentiation in Fagopyrum plants. The results of the chloroplast-based phylogenetic tree were further supported by the matK and Internal Transcribed Spacer (ITS) sequences of 17 Fagopyrum species, which may help to further anchor the taxonomic status of other members in the urophyllum group in Fagopyrum. This study provides valuable information and high-quality cp genomes for identifying species and evolutionary analysis for future Fagopyrum research.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Guiyang, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya’nan Jin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Inner Mongolia MINZU University, Tongliao, China
| | - Mengqi Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Tang
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, China
| | - Kaixuan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Ruang-Areerate P, Kongkachana W, Naktang C, Sonthirod C, Narong N, Jomchai N, Maprasop P, Maknual C, Phormsin N, Shearman JR, Pootakham W, Tangphatsornruang S. Complete chloroplast genome sequences of five Bruguiera species (Rhizophoraceae): comparative analysis and phylogenetic relationships. PeerJ 2021; 9:e12268. [PMID: 34733586 PMCID: PMC8544253 DOI: 10.7717/peerj.12268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
Bruguiera is a genus of true mangroves that are mostly distributed in the Indo-West Pacific region. However, the number of published whole chloroplast genome sequences of Bruguiera species are limited. Here, the complete chloroplast sequences of five Bruguiera species were sequenced and assembled using Illumina data. The chloroplast genomes of B. gymnorhiza, B. hainesii, B. cylindrica, B. parviflora and B. sexangula were assembled into 161,195, 164,295, 164,297, 163,228 and 164,170 bp, respectively. All chloroplast genomes contain 37 tRNA and eight rRNA genes, with either 84 or 85 protein-coding genes. A comparative analysis of these genomes revealed high similarity in gene structure, gene order and boundary position of the LSC, SSC and two IR regions. Interestingly, B. gymnorhiza lost a rpl32 gene in the SSC region. In addition, a ndhF gene in B. parviflora straddles both the SSC and IRB boundary regions. These genes reveal differences in chloroplast evolution among Bruguiera species. Repeats and SSRs in the chloroplast genome sequences were found to be highly conserved between B. cylindrica and B. hainesii as well as B. gymnorhiza and B. sexangula indicating close genetic relationships based on maternal inheritance. Notably, B. hainesii, which is considered a hybrid between B. gymnorhiza and B. cylindrica, appears to have inherited the chloroplast from B. cylindrica. Investigating the effects of selection events on shared protein-coding genes showed a positive selection in rps7 and rpl36 genes in all species compared to land-plant species. A phylogenetic analysis, based on 59 conserved chloroplast protein-coding genes, showed strong support that all Bruguiera species are in the clade Rhizophoraceae. This study provides valuable genetic information for the study of evolutionary relationships and population genetics in Bruguiera and other mangrove species.
Collapse
Affiliation(s)
- Panthita Ruang-Areerate
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nattapol Narong
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nukoon Jomchai
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pasin Maprasop
- Department of Marine and Coastal Resources, Bangkok, Thailand
| | - Chatree Maknual
- Department of Marine and Coastal Resources, Bangkok, Thailand
| | - Nawin Phormsin
- Department of Marine and Coastal Resources, Bangkok, Thailand
| | - Jeremy R Shearman
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wirulda Pootakham
- National Omics Center, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | |
Collapse
|
12
|
The complete chloroplast genome sequence of Rubus hirsutus Thunb. and a comparative analysis within Rubus species. Genetica 2021; 149:299-311. [PMID: 34546501 DOI: 10.1007/s10709-021-00131-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/18/2021] [Indexed: 11/27/2022]
Abstract
Rubus hirsutus is a type of tonifying kidney-essence herb that belongs to the Rosaceae family, and has been commonly used to treat multiple diseases, such as polyuria, impotence, and infertility. In this study, we determined the complete chloroplast sequence of R. hirsutus and conduced a comparative analysis within the genus Rubus. The assembled chloroplast (cp.) genome is 156,380 bp in length with a GC content of 37.0% and shares a conserved quadripartite structure within the other cp. genomes in this genus. A total of 132 unique genes were annotated in the cp. genome of R. hirsutus, which contained 87 protein-coding genes, 37 tRNAs, and eight rRNAs. Seventeen duplicated genes were identified in the inverted repeats region. Furthermore, 70 simple sequence repeats and 35 long repeats were detected in total in the R. hirsutus chloroplast genome. Eight mutational hotspots were identified in the cp. genome of this species with higher nucleotide variations in non-coding regions than those of coding regions. Furthermore, the gene order, codon usage, and repeat sequence distribution were highly consistent in Rubus according to the results of a comparative analysis. A phylogenetic analysis indicated that there was a sister relationship between R. hirsutus and R. chingii. Overall, the complete chloroplast genome of R. hirsutus and the comparative analysis will help to further the evolutionary study, conservation, phylogenetic reconstruction, and development of molecular barcodes for the genus Rubus.
Collapse
|
13
|
Luo H, Liang Q, Huang R, Dong J, Zhang Y. The complete chloroplast genome of Epimedium flavum Stearn (Berberidaceae). Mitochondrial DNA B Resour 2021; 6:2484-2485. [PMID: 34377801 PMCID: PMC8330771 DOI: 10.1080/23802359.2021.1920500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epimedium flavum Stearn, which belongs to Berberidaceae, is mainly distributed in the Sichuan province of China. In this study, the complete chloroplast genome of E. flavum was reported for the first time. The whole genome of E. flavum was 159,134 bp in length, and revealed a typical quadripartite structure, including two copies of an inverted repeat (IR) region of 27,735 bp separating a large single-copy region (LSC, 86,576 bp) and a small single-copy region (SSC, 17, 088 bp). The chloroplast genome contained 112 unique genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis showed that E. flavum of series Davidianae was firstly clustered with E. brevicornu of ser. Brachyerae.
Collapse
Affiliation(s)
- Hui Luo
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, People’s Republic of China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Qiong Liang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ruoqi Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jingzhou Dong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Yanjun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
14
|
Li YC, Li SY, Zhang TH, Qin LL, An YD, Pang YK, Jiang GF. Characterization of the complete chloroplast genome of mangrove Rhizophora apiculata Blume (Rhizophoraceae). Mitochondrial DNA B Resour 2021; 6:2071-2073. [PMID: 34222659 PMCID: PMC8231346 DOI: 10.1080/23802359.2021.1923421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/24/2021] [Indexed: 11/05/2022] Open
Abstract
The chloroplast (cp) genome sequence of Rhizophora apiculata was characterized. The cp genome length was 164,343 bp in length, containing a typical structure of a large single copy (LSC) of 93,155 bp, a small single copy (SSC) of 19,376 bp, and two inverted repeats (IRs) of 25,906 bp, with a GC content of 34.9%. There were 131 genes were annotated in the cp genome, including 85 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. A phylogenetic analysis using cp genomes of mangroves and ecologically associated species resolved R. apiculata in Rhizophora with R. stylosa and R. x lamarckii. This complete chloroplast sequence offers a promising tool for further species identification and evolutionary studies of Rhizophora, as well as for mangroves.
Collapse
Affiliation(s)
- Yi-Chan Li
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Su-Yuan Li
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Tian-Hao Zhang
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Yi-Dong An
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| |
Collapse
|
15
|
Li SY, Li YC, Zhang TH, Qin LL, An YD, Pang YK, Jiang GF. Characterization of the complete chloroplast genome of mangrove Bruguiera gymnorrhiza (L.) Lam. ex Savigny. Mitochondrial DNA B Resour 2021; 6:2076-2078. [PMID: 34222660 PMCID: PMC8231343 DOI: 10.1080/23802359.2021.1914220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The chloroplast (cp) genome sequence of Bruguiera gymnorrhiza was characterized. The cp genome length was 163,795 bp in length, with a GC content of 35.3%, containing a large single copy (LSC) of 90,830 bp, a small single copy (SSC) of 20,207 bp, and a pair of inverted repeats (IRs) of 26,379 bp. The genome contained 121 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. A phylogenetic analysis using cp genomes of mangroves and ecologically associated species resolved B. gymnorrhiza in Bruguiera with B. sexangula var. rhynchopetala. This complete chloroplast sequence offers a promising tool for further species identification and evolutionary studies of Bruguiera, as well as for mangroves.
Collapse
Affiliation(s)
- Su-Yuan Li
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Yi-Chan Li
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Tian-Hao Zhang
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Yi-Dong An
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| | - Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, PR China
| |
Collapse
|
16
|
Liu H, Hu H, Zhang S, Jin J, Liang X, Huang B, Wang L. The complete chloroplast genome of the rare species Epimedium tianmenshanensis and comparative analysis with related species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2075-2083. [PMID: 33088051 PMCID: PMC7548308 DOI: 10.1007/s12298-020-00882-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Epimedium tianmenshanensis is a rare perennial herb distributed in China, and it is also an important medicinal plant. Here, we used illumina paired-end sequencing technology to obtain the complete chloroplast genome of E. tianmenshanensis, and compared analysis with related species. The length of the complete chloroplast genome of E. tianmenshanensis is 156,956 bp, which is a relatively conserved quadripartite structure including a large single copy (LSC) region of 88,409 bp, a small single copy (SSC) region of 17,448 bp, and a pair of inverted repeat (IRa/IRb) regions of 25,550 bp. The whole genome contains 132 unique genes, including 85 protein-coding genes, 38 tRNA genes, eight rRNA genes and one pseudogene. 87 simple sequence repeats (SSRs) were identified, and most of them were found to be composed of A/T. In addition, 22,923 codons were detected in 78 protein-coding genes of E. tianmenshanensis, and the overall codon bias pattern in the genome tended to use A/U ending codons. Phylogenetic analysis demonstrated that all the Epimedium species formed a monophyletic clade, and E. tianmenshanensis had the closest relationship to E. dolichostemon. The results of this study provided useful molecular information about the evolution and molecular biology of E. tianmenshanensis.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013 China
| | - Haibo Hu
- School of Pharmacy, Gannan Medical University, Ganzhou, 341000 China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013 China
| | - Jian Jin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013 China
| | - Xuejuan Liang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, 410013 China
| | - Bing Huang
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198 China
| | - Long Wang
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, 211198 China
| |
Collapse
|
17
|
Shi C, Han K, Li L, Seim I, Lee SMY, Xu X, Yang H, Fan G, Liu X. Complete Chloroplast Genomes of 14 Mangroves: Phylogenetic and Comparative Genomic Analyses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8731857. [PMID: 32462024 PMCID: PMC7225854 DOI: 10.1155/2020/8731857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022]
Abstract
Mangroves are a group of plant species that occupy the coastal intertidal zone and are major components of this ecologically important ecosystem. Mangroves belong to about twenty diverse families. Here, we sequenced and assembled chloroplast genomes of 14 mangrove species from eight families spanning five rosid orders and one asterid order: Fabales (Pongamia pinnata), Lamiales (Avicennia marina), Malpighiales (Excoecaria agallocha, Bruguiera sexangula, Kandelia obovata, Rhizophora stylosa, and Ceriops tagal), Malvales (Hibiscus tiliaceus, Heritiera littoralis, and Thespesia populnea), Myrtales (Laguncularia racemosa, Sonneratia ovata, and Pemphis acidula), and Sapindales (Xylocarpus moluccensis). These chloroplast genomes range from 149 kb to 168 kb in length. A conserved structure of two inverted repeats (IRa and IRb, ~25.8 kb), one large single-copy region (LSC, ~89.0 kb), and one short single-copy region (SSC, ~18.9 kb) as well as ~130 genes (85 protein-coding, 37 tRNAs, and 8 rRNAs) was observed. We found the lowest divergence in the IR regions among the four regions. We also identified simple sequence repeats (SSRs), which were found to be variable in numbers. Most chloroplast genes are highly conserved, with only four genes under positive selection or relaxed pressure. Combined with publicly available chloroplast genomes, we carried out phylogenetic analysis and confirmed the previously reported phylogeny within rosids, including the positioning of obscure families in Malpighiales. Our study reports 14 mangrove chloroplast genomes and illustrates their genome features and evolution.
Collapse
Affiliation(s)
- Chengcheng Shi
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Kai Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Liangwei Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing 210046, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba 4102, Australia
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xun Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|