1
|
Mônico AT, Koch ED, Ferrão M, Fernandes IY, Marques GMG, Chaparro JC, Rodrigues MT, Lima AP, Fouquet A. The small and inconspicuous majority: Revealing the megadiversity and historical biogeography of the Pristimantis unistrigatus species group (Anura, Strabomantidae). Mol Phylogenet Evol 2024; 201:108203. [PMID: 39303973 DOI: 10.1016/j.ympev.2024.108203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
With more than 600 recognized species, the genus Pristimantis is already the most diverse among vertebrates, but described species only represent a fraction of the actual diversity in this clade. This genus is widely distributed throughout the Neotropics and represents an interesting model for biogeographic studies because Pristimantis spp. are direct developing and generally have narrow ecological niches and low dispersal abilities. The P. unistrigatus species group is one of the most important components in the genus (ca. 200 recognized species) and has been supported by morphological but not by molecular evidence. We assessed the species boundaries and distribution in the P. unistrigatus species group and infer spatiotemporal patterns of diversification related to historical landscape changes in the Neotropics. We gathered three mitochondrial, and two nuclear DNA loci from 416 specimens throughout the range of the group, and including 68 nominal species. We redefine the group based on the obtained phylogeny and found 151 candidate species that composes it, with 83 of these remaining undescribed. We recovered 11 major clades within the group that diverged before 13 Ma. The diversification of the group started during the early Miocene most likely in northwestern South America, currently corresponding to western Amazonia and northern Andes. The other neotropical areas subsequently acted as sinks, receiving lineages mostly during the last 10 Ma, after the demise of the Pebas System and the setup of the modern Amazonian hydrographic system.
Collapse
Affiliation(s)
- Alexander Tamanini Mônico
- Programa de Pós-Graduação em Biologia (Ecologia), Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil.
| | - Esteban Diego Koch
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Miquéias Ferrão
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Centro Nacional de Pesquisa e Conservação de Répteis e Anfíbios, Instituto Chico Mendes de Conservação da Biodiversidade, Goiânia, Goiás, Brazil; Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States of America
| | - Igor Yuri Fernandes
- Programa de Pós-Graduação em Biologia (Ecologia), Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Giselle Moura Guimarães Marques
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Juan Carlos Chaparro
- Museo de Biodiversidad del Perú, Cusco, Peru; Museo de Historia Natural, Universidad Nacional de San Antonio Abad del Cusco, Peru
| | - Miguel Trefaut Rodrigues
- Programa de Pós-Graduação em Zoologia, Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, Brazil
| | - Albertina Pimentel Lima
- Programa de Pós-Graduação em Biologia (Ecologia), Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Antoine Fouquet
- Centre de Recherche sur la Biodiversité et l'Environnement, UMR 5300, CNRS, IRD, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
2
|
Fouquet A, Réjaud A, Rodrigues MT, Ron SR, Chaparro JC, Osorno M, Werneck FP, Hrbek T, Lima AP, Camacho-Badani T, Jaramillo-Martinez AF, Chave J. Diversification of the Pristimantis conspicillatus group (Anura: Craugastoridae) within distinct neotropical areas throughout the Neogene. SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2130464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1, 118 Route de Narbonne, Toulouse, 31077, France
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1, 118 Route de Narbonne, Toulouse, 31077, France
| | - Miguel T. Rodrigues
- Departamento de Zoologia, Universidade de São Paulo Instituto de Biociências, São Paulo, SP, Brazil
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan C. Chaparro
- Museo de Biodiversidad del Perú, Urbanización Mariscal Gamarra A-61, Zona 2, Cusco, Peru
- Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Paraninfo Universitario (Plaza de Armas s/n), Cusco, Perú
| | - Mariela Osorno
- Instituto Amazónico de Investigaciones Científicas SINCHI, Sede enlace. Calle 20 # 5-44, Bogotá, Colombia
| | - Fernanda P. Werneck
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Avenida André Araújo 2936, Manaus, 69080-971, AM, Brazil
| | - Tomas Hrbek
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, 69080-900, AM, Brazil
| | - Albertina P. Lima
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Avenida André Araújo 2936, Manaus, 69080-971, AM, Brazil
| | | | - Andres F. Jaramillo-Martinez
- Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Prédio 40, sala 110, Porto Alegre, 90619-900, RS, Brazil
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1, 118 Route de Narbonne, Toulouse, 31077, France
| |
Collapse
|
3
|
Saitoh T, Murakami S, de Guia APO, Ohnishi N, Kawai K. Estimation of Evolutionary Rates for Mitochondrial Control Region in Sibling Species of Myodes (Rodentia) by Calibrations Based on Island Formation. MAMMAL STUDY 2022. [DOI: 10.3106/ms2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Saitoh
- Field Science Center, Hokkaido University, Kita 11, Nishi 10, Sapporo 060-0811, Japan
| | - Shota Murakami
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | - Anna Pauline O. de Guia
- Animal Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Naoki Ohnishi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Nabeyashiki, Morioka 020-0123, Japan
| | - Kuniko Kawai
- School of Biological Sciences, Tokai University, Minamisawa, Sapporo 005-0825, Japan
| |
Collapse
|
4
|
Fouquet A, Cornuault J, Rodrigues MT, Werneck FP, Hrbek T, Acosta-Galvis AR, Massemin D, J. R. Kok P, Ernst R. Diversity, biogeography and reproductive evolution in the genus Pipa (Amphibia: Anura: Pipidae). Mol Phylogenet Evol 2022; 170:107442. [DOI: 10.1016/j.ympev.2022.107442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
|
5
|
Diversity of Land Snail Tribe Helicini (Gastropoda: Stylommatophora: Helicidae): Where Do We Stand after 20 Years of Sequencing Mitochondrial Markers? DIVERSITY 2021. [DOI: 10.3390/d14010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sequences of mitochondrial genes revolutionized the understanding of animal diversity and continue to be an important tool in biodiversity research. In the tribe Helicini, a prominent group of the western Palaearctic land snail fauna, mitochondrial data accumulating since the 2000s helped to newly delimit genera, inform species-level taxonomy and reconstruct past range dynamics. We combined the published data with own unpublished sequences and provide a detailed overview of what they revealed about the diversity of the group. The delimitation of Helix is revised by placing Helix godetiana back in the genus and new synonymies are suggested within the genera Codringtonia and Helix. The spatial distribution of intraspecific mitochondrial lineages of several species is shown for the first time. Comparisons between species reveal considerable variation in distribution patterns of intraspecific lineages, from broad postglacial distributions to regions with a fine-scale pattern of allopatric lineage replacement. To provide a baseline for further research and information for anyone re-using the data, we thoroughly discuss the gaps in the current dataset, focusing on both taxonomic and geographic coverage. Thanks to the wealth of data already amassed and the relative ease with which they can be obtained, mitochondrial sequences remain an important source of information on intraspecific diversity over large areas and taxa.
Collapse
|
6
|
Baca M, Popović D, Lemanik A, Fewlass H, Talamo S, Zima J, Ridush B, Popov V, Nadachowski A. The Tien Shan vole ( Microtus ilaeus; Rodentia: Cricetidae) as a new species in the Late Pleistocene of Europe. Ecol Evol 2021; 11:16113-16125. [PMID: 34824815 PMCID: PMC8601874 DOI: 10.1002/ece3.8289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
Grey voles (subgenus Microtus) represent a complex of at least seven closely related and partly cryptic species. The range of these species extends from the Atlantic to the Altai Mountains, but most of them occur east of the Black Sea. Using ancient DNA analyses of the Late Pleistocene specimens, we identified a new mtDNA lineage of grey voles in Europe. Phylogenetic analysis of mitochondrial DNA cytochrome b sequences from 23 voles from three caves, namely, Emine-Bair-Khosar (Crimea, Ukraine), Cave 16 (Bulgaria), and Bacho Kiro (Bulgaria), showed that 14 specimens form a previously unrecognized lineage, sister to the Tien Shan vole. The average sequence divergence of this lineage and the extant Tien Shan vole was 4.8%, which is similar to the divergence of grey vole forms, which are considered distinct species or being on the verge of speciation; M. arvalis and M. obscurus or M. mystacinus and M. rossiaemeridionalis. We estimated the time to the most recent common ancestor of the grey voles to be 0.66 Ma, which is over twice the recent estimates, while the divergence of the extant Tien Shan vole and the new lineage to be 0.29 Ma. Our discovery suggests that grey voles may have been more diversified in the past and that their ranges may have differed substantially from current ones. It also underlines the utility of ancient DNA to decipher the evolutionary history of voles.
Collapse
Affiliation(s)
- Mateusz Baca
- Centre of New TechnologiesUniversity of WarsawWarszawaPoland
| | | | - Anna Lemanik
- Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakówPoland
| | - Helen Fewlass
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Sahra Talamo
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
- Department of Chemistry G. CiamicianUniversity of BolognaBolognaItaly
| | - Jan Zima
- Institute of Vertebrate BiologyAcademy of Sciences of Czech RepublicBrnoCzech Republic
| | - Bogdan Ridush
- Department of Physical Geography, Geomorphology and PaleogeographyYuriy Fedkovych Chernivtsi National UniversityChernivtsiUkraine
| | - Vasil Popov
- Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSophiaBulgaria
| | - Adam Nadachowski
- Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakówPoland
| |
Collapse
|
7
|
Bannikova AA, Zemlemerova ED, Lebedev VS, Lavrenchenko LA. The phylogenetic relationships within the Eastern Afromontane clade of Crocidura based on mitochondrial and nuclear data. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00120-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Fouquet A, Marinho P, Réjaud A, Carvalho TR, Caminer MA, Jansen M, Rainha RN, Rodrigues MT, Werneck FP, Lima AP, Hrbek T, Giaretta AA, Venegas PJ, Chávez G, Ron S. Systematics and biogeography of the Boana albopunctata species group (Anura, Hylidae), with the description of two new species from Amazonia. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1873869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1 31062 cedex 9, 118 Route de Narbonne, Toulouse, 31077, France
| | - Pedro Marinho
- Laboratório de Anuros Neotropicais, Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG, Brazil
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, UMR 5174, CNRS, IRD, Université Paul Sabatier, Bâtiment 4R1 31062 cedex 9, 118 Route de Narbonne, Toulouse, 31077, France
| | - Thiago R. Carvalho
- Laboratório de Herpetologia, Departamento de Biodiversidade e Centro de Aquicultura, I.B., Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Marcel A. Caminer
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Germany
| | - Martin Jansen
- Department of Terrestrial Zoology, Research Institute and Nature Museum Senckenberg, Frankfurt, Germany
| | - Raíssa N. Rainha
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, AM, Brazil
| | - Miguel T. Rodrigues
- Departamento de Zoologia, Universidade de São Paulo, Instituto de Biociências, São Paulo, SP, Brazil
| | - Fernanda P. Werneck
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, AM, Brazil
| | - Albertina P. Lima
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, AM, Brazil
| | - Tomas Hrbek
- Departamento de Genética, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Ariovaldo A. Giaretta
- Laboratório de Anuros Neotropicais, Instituto de Ciências Exatas e Naturais do Pontal, Universidade Federal de Uberlândia, Ituiutaba, MG, Brazil
| | | | | | - Santiago Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
9
|
Harigai W, Saito A, Suzuki H, Yamamoto M. Genetic Diversity of Ligidium Isopods in Hokkaido and Niigata, Northern Japan, Based on Mitochondrial DNA Analysis. Zoolog Sci 2021; 37:417-428. [PMID: 32972082 DOI: 10.2108/zs200017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/24/2020] [Indexed: 11/17/2022]
Abstract
The genetic diversity of the genus Ligidium in Hokkaido and Niigata, northern Japan, was investigated by analyzing the cytochrome c oxidase subunit 1 (CO1) region in the mitochondrial DNA (mtDNA). The genetic diversity in Hokkaido was much lower than that in Niigata. Nine different operational taxonomic units (OTUs) were identified. Only a single OTU, most likely Ligidium japonicum, was found in Hokkaido, whereas all nine OTUs were found in Niigata. Using the mtDNA evolutionary rate determined for the marine invertebrate Haptosquilla pulchella (Miers, 1880), population expansion for OTU1 in Hokkaido was estimated to have occurred at 12,600 years BP, suggesting that Ligidium underwent a bottleneck due to glacial cooling, and the population then expanded after postglacial warming. Assuming that the expansion of the OTU1 population occurred at 9600 years BP, when the sea surface temperature rose offshore of Tokachi in the Northwestern Pacific, the evolutionary rate (µ) of the mtDNA CO1 region in Ligidium is calculated as: 0.087 (95% confidence intervals: min: 0.042-max: 0.12) (substitutions/site/million years). The presence of a haplotype common to Hokkaido and Niigata implies that the haplotype migrated across the Tsugaru Strait. Considering that geological evidence indicates that the Tsugaru Strait was continuously present even during the last glacial maximum when the sea level was at its lowest, accidental transport by human beings or animals might have been critical to the migration of Ligidium.
Collapse
Affiliation(s)
- Wakana Harigai
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan,
| | - Aya Saito
- Department of Earth and Planetary Sciences, School of Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Hitoshi Suzuki
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Masanobu Yamamoto
- Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
10
|
Galbreath KE, Toman HM, Li C, Hoberg EP. When parasites persist: tapeworms survive host extinction and reveal waves of dispersal across Beringia. Proc Biol Sci 2020; 287:20201825. [PMID: 33352070 DOI: 10.1098/rspb.2020.1825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Investigations of intercontinental dispersal between Asia and North America reveal complex patterns of geographic expansion, retraction and isolation, yet historical reconstructions are largely limited by the depth of the record that is retained in patterns of extant diversity. Parasites offer a tool for recovering deep historical insights about the biosphere, improving the resolution of past community-level interactions. We explored biogeographic hypotheses regarding the history of dispersal across Beringia, the region intermittently linking Asia and North America, through large-scale multi-locus phylogenetic analyses of the genus Schizorchis, an assemblage of host-specific cestodes in pikas (Lagomorpha: Ochotonidae). Our genetic data support palaeontological evidence for two separate geographic expansions into North America by Ochotona in the late Tertiary, a history that genomic evidence from extant pikas does not record. Pikas descending from the first colonization of Miocene age persisted into the Pliocene, subsequently coming into contact with a second wave of Nearctic colonists from Eurasia before going extinct. Spatial and temporal overlap of historically independent pika populations provided a window for host colonization, allowing persistence of an early parasite lineage in the contemporary fauna following the extinction of its ancestral hosts. Empirical evidence for ancient 'ghost assemblages' of hosts and parasites demonstrates how complex mosaic faunas are assembled in the biosphere through episodes of faunal mixing encompassing parasite lineages across deep and shallow time.
Collapse
Affiliation(s)
- Kurt E Galbreath
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, USA
| | - Heather M Toman
- Department of Biology, Northern Michigan University, 1401 Presque Isle Ave, Marquette, MI 49855, USA
| | - Chenhong Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Eric P Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, CERIA Building, MSC03 2020, Albuquerque, NM 87131, USA
| |
Collapse
|
11
|
Kay C, Williams TA, Gibson W. Mitochondrial DNAs provide insight into trypanosome phylogeny and molecular evolution. BMC Evol Biol 2020; 20:161. [PMID: 33297939 PMCID: PMC7724854 DOI: 10.1186/s12862-020-01701-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Trypanosomes are single-celled eukaryotic parasites characterised by the unique biology of their mitochondrial DNA. African livestock trypanosomes impose a major burden on agriculture across sub-Saharan Africa, but are poorly understood compared to those that cause sleeping sickness and Chagas disease in humans. Here we explore the potential of the maxicircle, a component of trypanosome mitochondrial DNA to study the evolutionary history of trypanosomes. Results We used long-read sequencing to completely assemble maxicircle mitochondrial DNA from four previously uncharacterized African trypanosomes, and leveraged these assemblies to scaffold and assemble a further 103 trypanosome maxicircle gene coding regions from published short-read data. While synteny was largely conserved, there were repeated, independent losses of Complex I genes. Comparison of pre-edited and non-edited genes revealed the impact of RNA editing on nucleotide composition, with non-edited genes approaching the limits of GC loss. African tsetse-transmitted trypanosomes showed high levels of RNA editing compared to other trypanosomes. The gene coding regions of maxicircle mitochondrial DNAs were used to construct time-resolved phylogenetic trees, revealing deep divergence events among isolates of the pathogens Trypanosoma brucei and T. congolense. Conclusions Our data represents a new resource for experimental and evolutionary analyses of trypanosome phylogeny, molecular evolution and function. Molecular clock analyses yielded a timescale for trypanosome evolution congruent with major biogeographical events in Africa and revealed the recent emergence of Trypanosoma brucei gambiense and T. equiperdum, major human and animal pathogens.
Collapse
Affiliation(s)
- C Kay
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - T A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - W Gibson
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Cabrera VM. Counterbalancing the time-dependent effect on the human mitochondrial DNA molecular clock. BMC Evol Biol 2020; 20:78. [PMID: 32600249 PMCID: PMC7325269 DOI: 10.1186/s12862-020-01640-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The molecular clock is an important genetic tool for estimating evolutionary timescales. However, the detection of a time-dependent effect on substitution rate estimates complicates its application. It has been suggested that demographic processes could be the main cause of this confounding effect. In the present study, I propose a new algorithm for estimating the coalescent age of phylogenetically related sequences, taking into account the observed time-dependent effect on the molecular rate detected by others. RESULTS By applying this method to real human mitochondrial DNA trees with shallow and deep topologies, I obtained significantly older molecular ages for the main events of human evolution than were previously estimated. These ages are in close agreement with the most recent archaeological and paleontological records favoring the emergence of early anatomically modern humans in Africa 315 ± 34 thousand years ago (kya) and the presence of recent modern humans outside of Africa as early as 174 ± 48 thousand years ago. Furthermore, during the implementation process, I demonstrated that in a population with fluctuating sizes, the probability of fixation of a new neutral mutant depends on the effective population size, which is in better accordance with the fact that under the neutral theory of molecular evolution, the fate of a molecular mutation is mainly determined by random drift. CONCLUSIONS I suggest that the demographic history of populations has a more decisive effect than purifying selection and/or mutational saturation on the time-dependent effect observed for the substitution rate, and I propose a new method that corrects for this effect.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
13
|
Membrebe JV, Suchard MA, Rambaut A, Baele G, Lemey P. Bayesian Inference of Evolutionary Histories under Time-Dependent Substitution Rates. Mol Biol Evol 2020; 36:1793-1803. [PMID: 31004175 PMCID: PMC6657730 DOI: 10.1093/molbev/msz094] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many factors complicate the estimation of time scales for phylogenetic histories, requiring increasingly complex evolutionary models and inference procedures. The widespread application of molecular clock dating has led to the insight that evolutionary rate estimates may vary with the time frame of measurement. This is particularly well established for rapidly evolving viruses that can accumulate sequence divergence over years or even months. However, this rapid evolution stands at odds with a relatively high degree of conservation of viruses or endogenous virus elements over much longer time scales. Building on recent insights into time-dependent evolutionary rates, we develop a formal and flexible Bayesian statistical inference approach that accommodates rate variation through time. We evaluate the novel molecular clock model on a foamy virus cospeciation history and a lentivirus evolutionary history and compare the performance to other molecular clock models. For both virus examples, we estimate a similarly strong time-dependent effect that implies rates varying over four orders of magnitude. The application of an analogous codon substitution model does not implicate long-term purifying selection as the cause of this effect. However, selection does appear to affect divergence time estimates for the less deep evolutionary history of the Ebolavirus genus. Finally, we explore the application of our approach on woolly mammoth ancient DNA data, which shows a much weaker, but still important, time-dependent rate effect that has a noticeable impact on node age estimates. Future developments aimed at incorporating more complex evolutionary processes will further add to the broad applicability of our approach.
Collapse
Affiliation(s)
- Jade Vincent Membrebe
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA.,Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom.,Fogarty International Center, National Institutes of Health, Bethesda, MD
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Gariboldi MC, Inserra PIF, Lucero S, Failla M, Perez SI, Vitullo AD. Unexpected low genetic variation in the South American hystricognath rodent Lagostomus maximus (Rodentia: Chinchillidae). PLoS One 2019; 14:e0221559. [PMID: 31513588 PMCID: PMC6742371 DOI: 10.1371/journal.pone.0221559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/09/2019] [Indexed: 11/23/2022] Open
Abstract
The South American plains vizcacha, Lagostomus maximus inhabits primarily the Pampean and adjoining Espinal, Monte and Chaquenean regions of Argentina. In order to study the population genetic structure of L. maximus, a fragment of 560 bp of the mitochondrial DNA hypervariable region 1from 90 individuals collected from the 3 subspecies and 8 groups along Argentina was amplified and analyzed. We found 9 haplotypes. The haplotype network did not show an apparent phylogeographical signal. Although low levels of genetic variation were found in all the subspecies and groups analyzed, a radiation of L. maximus would have occurred from the North and Center of the Pampean region toward the rest of its geographic range in Argentina. Low levels of genetic diversity, the existence of a single genetically distinct population in Argentina and changes of its effective size indicate that metapopulation processes and changes in human population dynamics during the late-Holocene were important factors shaping the population genetic structure of L. maximus in Argentina.
Collapse
Affiliation(s)
- María Constanza Gariboldi
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sergio Lucero
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- División de Mastozoología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Sergio Iván Perez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de la Plata, Buenos Aires, Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
15
|
Morgan-Richards M, Langton-Myers SS, Trewick SA. Loss and gain of sexual reproduction in the same stick insect. Mol Ecol 2019; 28:3929-3941. [PMID: 31386772 PMCID: PMC6852293 DOI: 10.1111/mec.15203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023]
Abstract
The outcome of competition between different reproductive strategies within a single species can be used to infer selective advantage of the winning strategy. Where multiple populations have independently lost or gained sexual reproduction it is possible to investigate whether the advantage is contingent on local conditions. In the New Zealand stick insect Clitarchus hookeri, three populations are distinguished by recent change in reproductive strategy and we determine their likely origins. One parthenogenetic population has established in the United Kingdom and we provide evidence that sexual reproduction has been lost in this population. We identify the sexual population from which the parthenogenetic population was derived, but show that the UK females have a post‐mating barrier to fertilisation. We also demonstrate that two sexual populations have recently arisen in New Zealand within the natural range of the mtDNA lineage that otherwise characterizes parthenogenesis in this species. We infer independent origins of males at these two locations using microsatellite genotypes. In one population, a mixture of local and nonlocal alleles suggested males were the result of invasion. Males in another population were most probably the result of loss of an X chromosome that produced a male phenotype in situ. Two successful switches in reproductive strategy suggest local competitive advantage for outcrossing over parthenogenetic reproduction. Clitarchus hookeri provides remarkable evidence of repeated and rapid changes in reproductive strategy, with competitive outcomes dependent on local conditions.
Collapse
Affiliation(s)
| | | | - Steven A Trewick
- Wildlife & Ecology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
16
|
Hanazaki K, Tomozawa M, Suzuki Y, Kinoshita G, Yamamoto M, Irino T, Suzuki H. Estimation of Evolutionary Rates of Mitochondrial DNA in Two Japanese Wood Mouse Species Based on Calibrations with Quaternary Environmental Changes. Zoolog Sci 2019; 34:201-210. [PMID: 28589839 DOI: 10.2108/zs160169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reliable estimates of evolutionary rates of mitochondrial DNA might allow us to build realistic evolutionary scenarios covering broad time scales based on phylogenetic inferences. In the present study, we sought to obtain estimates of evolutionary rates in murine rodents using calibrations against historical biogeographic events. We first assumed that land-bridge-like structures that appeared intermittently at glacial maxima with 100,000-year intervals shaped the divergence patterns of cytochrome b (Cytb) sequences (1140 bp) of the larger Japanese wood mouse Apodemus speciosus. The comparison of sequences from peripheral remote islands that are separated from one another by deep straits allowed us to estimate mitochondrial DNA evolutionary rates (substitutions/site/million years) to be 0.027 to 0.036, with presumed calibrations from 140,000, 250,000, 350,000, and 440,000 years ago. Second, we addressed rapid expansion events inferred from analyses of the Cytb sequences of the lesser Japanese wood mouse A. argenteus. We detected five expansion signals in the dataset and established three categories based on the expansion parameter tau values: 3.9, 5.6-5.7, and 7.8-8.1. Considering that the climate became warmer 15,000, 53,000, and 115,000 years ago after preceding periods of rapid cooling, we calculated evolutionary rates to be 0.114, 0.047, and 0.031, respectively. This preliminary concept of the evolutionary rates on a time scale from 15,000 to 440,000 years ago for the wood mouse should be refined and tested in other species of murine rodents, including mice and rats.
Collapse
Affiliation(s)
- Kaori Hanazaki
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | | | - Yutaro Suzuki
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Gohta Kinoshita
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Masanobu Yamamoto
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Tomohisa Irino
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| | - Hitoshi Suzuki
- 1 Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
17
|
Tong KJ, Duchêne DA, Duchêne S, Geoghegan JL, Ho SYW. A comparison of methods for estimating substitution rates from ancient DNA sequence data. BMC Evol Biol 2018; 18:70. [PMID: 29769015 PMCID: PMC5956955 DOI: 10.1186/s12862-018-1192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/04/2018] [Indexed: 12/02/2022] Open
Abstract
Background Phylogenetic analysis of DNA from modern and ancient samples allows the reconstruction of important demographic and evolutionary processes. A critical component of these analyses is the estimation of evolutionary rates, which can be calibrated using information about the ages of the samples. However, the reliability of these rate estimates can be negatively affected by among-lineage rate variation and non-random sampling. Using a simulation study, we compared the performance of three phylogenetic methods for inferring evolutionary rates from time-structured data sets: regression of root-to-tip distances, least-squares dating, and Bayesian inference. We also applied these three methods to time-structured mitogenomic data sets from six vertebrate species. Results Our results from 12 simulation scenarios show that the three methods produce reliable estimates when the substitution rate is high, rate variation is low, and samples of similar ages are not all grouped together in the tree (i.e., low phylo-temporal clustering). The interaction of these factors is particularly important for least-squares dating and Bayesian estimation of evolutionary rates. The three estimation methods produced consistent estimates of rates across most of the six mitogenomic data sets, with sequence data from horses being an exception. Conclusions We recommend that phylogenetic studies of ancient DNA sequences should use multiple methods of inference and test for the presence of temporal signal, among-lineage rate variation, and phylo-temporal clustering in the data. Electronic supplementary material The online version of this article (10.1186/s12862-018-1192-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- K Jun Tong
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - David A Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Sebastián Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Jemma L Geoghegan
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| |
Collapse
|
18
|
Dong F, Hung CM, Li XL, Gao JY, Zhang Q, Wu F, Lei FM, Li SH, Yang XJ. Ice age unfrozen: severe effect of the last interglacial, not glacial, climate change on East Asian avifauna. BMC Evol Biol 2017; 17:244. [PMID: 29212454 PMCID: PMC5719578 DOI: 10.1186/s12862-017-1100-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glacial-interglacial cycles in the Pleistocene caused repeated range expansion and contraction of species in several regions in the world. However, it remains uncertain whether such climate oscillations had similar impact on East Asian biota, despite its widely recognized importance in global biodiversity. Here we use both molecular and ecological niche profiles on 11 East Asian avian species with various elevational ranges to reveal their response to the late Pleistocene climate changes. RESULTS The ecological niche models (ENM) consistently showed that these avian species might substantially contract their ranges to the south during the Last Interglacial period (LIG) and expanded their northern range margins through the Last Glacial Maximum (LGM), leading to the LGM ranges observed for all 11 species. Consistently, coalescent simulations based on 25-30 nuclear genes retrieved signatures of significant population growth through the last glacial period across all species studied. Climate statistics suggested that high climatic variability during the LIG and a relatively mild climate at the LGM potentially explained the historical population dynamics of these birds. CONCLUSIONS This is the first study based on multiple species and both lines of ecological niche profiles and genetic data to characterize the unique response of East Asian biota to late Pleistocene climate. The present study highlights regional differences in the evolutionary consequence of climate change during the last glacial cycle and implies that global warming might pose a great risk to species in this region given potentially higher climatic variation in the future analogous to that during the LIG.
Collapse
Affiliation(s)
- Feng Dong
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China.,Department of Life Science, National Taiwan Normal University, 88 Ting-chou Rd., Sec. 4, Taipei, 116, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Xin-Lei Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China
| | - Jian-Yun Gao
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China
| | - Qiang Zhang
- Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Fei Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China
| | - Fu-Min Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Shou-Hsien Li
- Department of Life Science, National Taiwan Normal University, 88 Ting-chou Rd., Sec. 4, Taipei, 116, Taiwan.
| | - Xiao-Jun Yang
- Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu Rd., Kunming, Yunnan, China.
| |
Collapse
|
19
|
Kotov AA, Karabanov DP, Bekker EI, Neretina TV, Taylor DJ. Phylogeography of the Chydorus sphaericus Group (Cladocera: Chydoridae) in the Northern Palearctic. PLoS One 2016; 11:e0168711. [PMID: 27992559 PMCID: PMC5167426 DOI: 10.1371/journal.pone.0168711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/05/2016] [Indexed: 11/28/2022] Open
Abstract
The biodiversity and the biogeography are still poorly understood for freshwater invertebrates. The crustacean Chydorus sphaericus-brevilabris complex (Cladocera: Chydoridae) is composed of species that are important components of Holarctic freshwater food webs. Recent morphological and genetic study of the complex has indicated a substantial species diversity in the northern hemisphere. However, we know little of the geographic boundaries of these novel lineages. Moreover, a large section of the Palearctic remains unexamined at the genetic level. Here we attempt to address the biodiversity knowledge gap for the Chydorus sphaericus group in the central Palearctic and assess its diversity and biogeographic boundaries. We sequenced nuclear (ITS-2) and mitochondrial (COI) gene regions of Chydorus specimens across the Palearctic and compared them with already available Holarctic sequences. We detected six main clades in the C. sphaericus group in the Palearctic, of which two of the groups are novel. Three of the more divergent clades are geographically widespread. The central portion of Eurasia (the Yenisey River basin) appears to be a narrow zone of secondary contact for phylogroups that expanded from European and Beringian refugia. As such, the previously unsampled central Palearctic represents an important region for understanding the evolutionary consequences of Pleistocene climatic oscillations on the Chydorus sphaericus group.
Collapse
Affiliation(s)
- Alexey A. Kotov
- Laboratory of Aquatic Ecology and Invasions, A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Dmitry P. Karabanov
- Laboratory of Aquatic Ecology and Invasions, A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
- Laboratory of Fish Ecology, I. D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok, Yaroslavl Area, Russia
| | - Eugeniya I. Bekker
- Laboratory of Aquatic Ecology and Invasions, A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V. Neretina
- White Sea Biological Station, Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Derek J. Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, United States of America
| |
Collapse
|
20
|
Duchêne S, Holt KE, Weill FX, Le Hello S, Hawkey J, Edwards DJ, Fourment M, Holmes EC. Genome-scale rates of evolutionary change in bacteria. Microb Genom 2016; 2:e000094. [PMID: 28348834 PMCID: PMC5320706 DOI: 10.1099/mgen.0.000094] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023] Open
Abstract
Estimating the rates at which bacterial genomes evolve is critical to understanding major evolutionary and ecological processes such as disease emergence, long-term host–pathogen associations and short-term transmission patterns. The surge in bacterial genomic data sets provides a new opportunity to estimate these rates and reveal the factors that shape bacterial evolutionary dynamics. For many organisms estimates of evolutionary rate display an inverse association with the time-scale over which the data are sampled. However, this relationship remains unexplored in bacteria due to the difficulty in estimating genome-wide evolutionary rates, which are impacted by the extent of temporal structure in the data and the prevalence of recombination. We collected 36 whole genome sequence data sets from 16 species of bacterial pathogens to systematically estimate and compare their evolutionary rates and assess the extent of temporal structure in the absence of recombination. The majority (28/36) of data sets possessed sufficient clock-like structure to robustly estimate evolutionary rates. However, in some species reliable estimates were not possible even with ‘ancient DNA’ data sampled over many centuries, suggesting that they evolve very slowly or that they display extensive rate variation among lineages. The robustly estimated evolutionary rates spanned several orders of magnitude, from approximately 10−5 to 10−8 nucleotide substitutions per site year−1. This variation was negatively associated with sampling time, with this relationship best described by an exponential decay curve. To avoid potential estimation biases, such time-dependency should be considered when inferring evolutionary time-scales in bacteria.
Collapse
Affiliation(s)
- Sebastian Duchêne
- 1Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.,2Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC 3010, Australia.,3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kathryn E Holt
- 2Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC 3010, Australia.,3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | - Simon Le Hello
- 4Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris 75015, France
| | - Jane Hawkey
- 2Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC 3010, Australia.,3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David J Edwards
- 2Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC 3010, Australia.,3Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathieu Fourment
- 1Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward C Holmes
- 1Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Alexander M, Ho SYW, Molak M, Barnett R, Carlborg Ö, Dorshorst B, Honaker C, Besnier F, Wahlberg P, Dobney K, Siegel P, Andersson L, Larson G. Mitogenomic analysis of a 50-generation chicken pedigree reveals a rapid rate of mitochondrial evolution and evidence for paternal mtDNA inheritance. Biol Lett 2016; 11:rsbl.2015.0561. [PMID: 26510672 PMCID: PMC4650172 DOI: 10.1098/rsbl.2015.0561] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial genomes represent a valuable source of data for evolutionary research, but studies of their short-term evolution have typically been limited to invertebrates, humans and laboratory organisms. Here we present a detailed study of 12 mitochondrial genomes that span a total of 385 transmissions in a well-documented 50-generation pedigree in which two lineages of chickens were selected for low and high juvenile body weight. These data allowed us to test the hypothesis of time-dependent evolutionary rates and the assumption of strict maternal mitochondrial transmission, and to investigate the role of mitochondrial mutations in determining phenotype. The identification of a non-synonymous mutation in ND4L and a synonymous mutation in CYTB, both novel mutations in Gallus, allowed us to estimate a molecular rate of 3.13 × 10(-7) mutations/site/year (95% confidence interval 3.75 × 10(-8)-1.12 × 10(-6)). This is substantially higher than avian rate estimates based upon fossil calibrations. Ascertaining which of the two novel mutations was present in an additional 49 individuals also revealed an instance of paternal inheritance of mtDNA. Lastly, an association analysis demonstrated that neither of the point mutations was strongly associated with the phenotypic differences between the two selection lines. Together, these observations reveal the highly dynamic nature of mitochondrial evolution over short time periods.
Collapse
Affiliation(s)
- Michelle Alexander
- BioArCh Biology S Block, University of York, Wentworth Way, Heslington, York YO10 5DD, UK Department of Archaeology, School of Geosciences, University of Aberdeen, St. Mary's, Elphinstone Road, AB24 3UF, UK
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Martyna Molak
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw 00-679, Poland
| | - Ross Barnett
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
| | - Örjan Carlborg
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, PO Box 7078, 75007 Uppsala, Sweden
| | - Ben Dorshorst
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, PO Box 582, 75123 Uppsala, Sweden Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Christa Honaker
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Francois Besnier
- Section of Population Genetics, Institute of Marine Research, Nordnes 5817, Bergen, Norway
| | - Per Wahlberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, PO Box 582, 75123 Uppsala, Sweden
| | - Keith Dobney
- Department of Archaeology, School of Geosciences, University of Aberdeen, St. Mary's, Elphinstone Road, AB24 3UF, UK
| | - Paul Siegel
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, PO Box 582, 75123 Uppsala, Sweden Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, PO Box 7023, 75007 Uppsala, Sweden
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
| |
Collapse
|
22
|
Ho SYW, Duchêne S, Molak M, Shapiro B. Time-dependent estimates of molecular evolutionary rates: evidence and causes. Mol Ecol 2016; 24:6007-12. [PMID: 26769402 DOI: 10.1111/mec.13450] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/30/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
We are writing in response to a recent critique by Emerson & Hickerson (2015), who challenge the evidence of a time-dependent bias in molecular rate estimates. This bias takes the form of a negative relationship between inferred evolutionary rates and the ages of the calibrations on which these estimates are based. Here, we present a summary of the evidence obtained from a broad range of taxa that supports a time-dependent bias in rate estimates, with a consideration of the potential causes of these observed trends. We also describe recent progress in improving the reliability of evolutionary rate estimation and respond to the concerns raised by Emerson & Hickerson (2015) about the validity of rates estimated from time-structured sequence data. In doing so, we hope to dispel some misconceptions and to highlight several research directions that will improve our understanding of time-dependent biases in rate estimates.
Collapse
Affiliation(s)
- Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sebastián Duchêne
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Martyna Molak
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA.,UCSC Genomics Institute, University of California, Santa Cruz, California, USA
| |
Collapse
|
23
|
Junqueira ACM, Azeredo-Espin AML, Paulo DF, Marinho MAT, Tomsho LP, Drautz-Moses DI, Purbojati RW, Ratan A, Schuster SC. Large-scale mitogenomics enables insights into Schizophora (Diptera) radiation and population diversity. Sci Rep 2016; 6:21762. [PMID: 26912394 PMCID: PMC4766414 DOI: 10.1038/srep21762] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/28/2016] [Indexed: 11/21/2022] Open
Abstract
True flies are insects of the order Diptera and encompass one of the most diverse groups of animals on Earth. Within dipterans, Schizophora represents a recent radiation of insects that was used as a model to develop a pipeline for generating complete mitogenomes using various sequencing platforms and strategies. 91 mitogenomes from 32 different species were sequenced and assembled with high fidelity, using amplicon, whole genome shotgun or single molecule sequencing approaches. Based on the novel mitogenomes, we estimate the origin of Schizophora within the Cretaceous-Paleogene (K-Pg) boundary, about 68.3 Ma. Detailed analyses of the blowfly family (Calliphoridae) place its origin at 22 Ma, concomitant with the radiation of grazing mammals. The emergence of ectoparasitism within calliphorids was dated 6.95 Ma for the screwworm fly and 2.3 Ma for the Australian sheep blowfly. Varying population histories were observed for the blowfly Chrysomya megacephala and the housefly Musca domestica samples in our dataset. Whereas blowflies (n = 50) appear to have undergone selective sweeps and/or severe bottlenecks in the New World, houseflies (n = 14) display variation among populations from different zoogeographical zones and low levels of gene flow. The reported high-throughput mitogenomics approach for insects enables new insights into schizophoran diversity and population history of flies.
Collapse
Affiliation(s)
- Ana Carolina M. Junqueira
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551
| | - Ana Maria L. Azeredo-Espin
- Centro de Biologia Molecular e Engenharia Genética and Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas, Campinas, SP, 13083-875, Brazil
| | - Daniel F. Paulo
- Centro de Biologia Molecular e Engenharia Genética and Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas, Campinas, SP, 13083-875, Brazil
| | - Marco Antonio T. Marinho
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Lynn P. Tomsho
- Center for Comparative Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniela I. Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551
| | - Rikky W. Purbojati
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551
| | - Aakrosh Ratan
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Stephan C. Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551
| |
Collapse
|