1
|
Grover Z, McCormack J, Cooper J, Fisher JP. Test-retest reliability of a single isometric mid-thigh pull protocol to assess peak force and strength-endurance. PeerJ 2024; 12:e17951. [PMID: 39193516 PMCID: PMC11348909 DOI: 10.7717/peerj.17951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
The purpose of this study was to examine the test-retest reliability of strength-endurance protocols using isometric mid-thigh pull (IMTP). Twenty-eight participants (23.2 ± 4.9 years) completed two protocols across four testing sessions. Protocol one consisted of 10 maximal IMTP tests lasting 5 seconds each with 10 seconds rest between. Protocol two consisted of a prolonged 60 second maximal IMTP. Data from protocol 1 was analysed in two ways; (a) use of the highest peak value from the first three IMTP efforts, and the lowest peak value from the final three IMTP efforts, and (b) use of the mean peak force from the first three IMTP efforts and mean peak force from the final three IMTP efforts. Data from protocol two used the highest and lowest peak values in the first- and final-15 seconds. Analyses revealed excellent reliability for peak force across all four testing sessions (ICC = 0.94), as well as good test-retest reliability for strength-endurance for protocol 1 (a; ICC = 0.81, b; ICC = 0.79). Test-retest reliability for protocol 2 was poor (ICC = 0.305). Bland-Altman bias values were smaller for protocol 1(a = -8.8 Nm, b = 21.7 Nm) compared to protocol 2 = (119.3 Nm). Our data suggest that 10 maximal IMTP tests performed as described herein is a reliable method for exercise professionals to assess both peak force and strength-endurance in a single, time-efficient protocol.
Collapse
Affiliation(s)
- Zak Grover
- School of Sport, Health, and Social Sciences, Solent University, Southampton, Hampshire, United Kingdom
| | - James McCormack
- School of Sport, Health, and Social Sciences, Solent University, Southampton, Hampshire, United Kingdom
| | - Jonathan Cooper
- School of Sport, Health, and Social Sciences, Solent University, Southampton, Hampshire, United Kingdom
| | - James P. Fisher
- School of Sport, Health, and Social Sciences, Solent University, Southampton, Hampshire, United Kingdom
- Therapeutics, Southampton, United Kingdom
| |
Collapse
|
2
|
Song JS, Yamada Y, Kataoka R, Hammert WB, Kang A, Loenneke JP. Cross-Education of Muscular Endurance: A Scoping Review. Sports Med 2024; 54:1771-1783. [PMID: 38758463 PMCID: PMC11258191 DOI: 10.1007/s40279-024-02042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND It is well established that performing unilateral resistance training can increase muscle strength not only in the trained limb but also in the contralateral untrained limb, which is widely known as the cross-education of strength. However, less attention has been paid to the question of whether performing unilateral resistance training can induce cross-education of muscular endurance, despite its significant role in both athletic performance and activities of daily living. OBJECTIVES The objectives of this scoping review were to provide an overview of the existing literature on cross-education of muscular endurance, as well as discuss its potential underlying mechanisms and offer considerations for future research. METHODS A scoping review was conducted on the effects of unilateral resistance training on changes in muscular endurance in the contralateral untrained limb. This scoping review was conducted in PubMed, SPORTDiscus, and Scopus. RESULTS A total of 2000 articles were screened and 21 articles met the inclusion criteria. Among the 21 included studies, eight studies examined the cross-education of endurance via absolute (n = 6) or relative (n = 2) muscular endurance test, while five studies did not clearly indicate whether they examined absolute or relative muscular endurance. The remaining eight studies examined different types of muscular endurance measurements (e.g., time to task failure, total work, and fatigue index). CONCLUSION The current body of the literature does not provide sufficient evidence to draw clear conclusions on whether the cross-education of muscular endurance is present. The cross-education of muscular endurance (if it exists) may be potentially driven by neural adaptations (via bilateral access and/or cross-activation models that lead to cross-education of strength) and increased tolerance to exercise-induced discomfort. However, the limited number of available randomized controlled trials and the lack of understanding of underlying mechanisms provide a rationale for future research.
Collapse
Affiliation(s)
- Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
3
|
Wu W, Chen Z, Zhou H, Wang L, Li X, Lv Y, Sun T, Yu L. Effects of Acute Ingestion of Caffeine Capsules on Muscle Strength and Muscle Endurance: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:1146. [PMID: 38674836 PMCID: PMC11054210 DOI: 10.3390/nu16081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to explore the effects of acute ingestion of caffeine capsules on muscle strength and muscle endurance. We searched the PubMed, Web of Science, Cochrane, Scopus, and EBSCO databases. Data were pooled using the weighted mean difference (WMD) and 95% confidence interval. Fourteen studies fulfilled the inclusion criteria. The acute ingestion of caffeine capsules significantly improved muscle strength (WMD, 7.09, p < 0.00001) and muscle endurance (WMD, 1.37; p < 0.00001), especially in males (muscle strength, WMD, 7.59, p < 0.00001; muscle endurance, WMD, 1.40, p < 0.00001). Subgroup analyses showed that ≥ 6 mg/kg body weight of caffeine (WMD, 6.35, p < 0.00001) and ingesting caffeine 45 min pre-exercise (WMD, 8.61, p < 0.00001) were more effective in improving muscle strength, with the acute ingestion of caffeine capsules having a greater effect on lower body muscle strength (WMD, 10.19, p < 0.00001). In addition, the acute ingestion of caffeine capsules had a greater effect in moderate-intensity muscle endurance tests (WMD, 1.76, p < 0.00001). An acute ingestion of caffeine capsules significantly improved muscle strength and muscle endurance in the upper body and lower body of males.
Collapse
Affiliation(s)
- Weiliang Wu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| | - Zhizhou Chen
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| | - Huixuan Zhou
- School of Sport Sciences, Beijing Sport University, Beijing 100084, China;
| | - Leiyuyang Wang
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| | - Xiang Li
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| | - Yuanyuan Lv
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China;
| | - Tingting Sun
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
| | - Laikang Yu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China;
- Department of Strength and Conditioning Assessment and Monitoring, Beijing Sport University, Beijing 100084, China; (Z.C.); (L.W.); (X.L.)
| |
Collapse
|
4
|
López-Torres O, Rodríguez-Longobardo C, Capel-Escoriza R, Fernández-Elías VE. Ergogenic Aids to Improve Physical Performance in Female Athletes: A Systematic Review with Meta-Analysis. Nutrients 2022; 15:nu15010081. [PMID: 36615738 PMCID: PMC9823656 DOI: 10.3390/nu15010081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Most intervention studies investigating the effects of ergogenic aids (EAs) on sports performance have been carried out in the male population. Thus, the aim of this systematic review and meta-analysis was to summarize the effects in the existing literature of EAs used by female athletes on performance. A literature research was conducted, and a descriptive analysis of the articles included in the systematic review was carried out. Meta-analyses could be performed on 32 of the included articles, evaluating performance in strength, sprint, and cardiovascular capacity. A random-effects model and the standardized mean differences (SMD) ± 95% confidence intervals (CI) were reported. The results showed that caffeine helped to improve jumping performance, isometric strength values, and the number of repetitions until failure. Caffeine and sodium phosphate helped to improve sprint performance. Aerobic tests could be improved with the use of taurine, caffeine, and beta-alanine. No conclusive effects of beetroot juice, polyphenols, or creatine in improving aerobic performance were shown. In terms of anaerobic variables, both caffeine and sodium phosphate could help to improve repeated sprint ability. More studies are needed in female athletes that measure the effects of different EAs on sports performance, such as beetroot juice, beta-alanine or sodium phosphate, as the studies to date are scarce and there are many types of EA that need to be further considered in this population, such as creatine and taurine.
Collapse
Affiliation(s)
- Olga López-Torres
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Celia Rodríguez-Longobardo
- Social Sciences of Physical Activity, Sport and Leisure Department, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Raquel Capel-Escoriza
- Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
- Raquel Wellness Instituto de Nutrición y Salud, 28050 Madrid, Spain
| | | |
Collapse
|
5
|
Effects of caffeine on isometric handgrip strength: A meta-analysis. Clin Nutr ESPEN 2022; 47:89-95. [DOI: 10.1016/j.clnesp.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
|
6
|
Grgic J. Exploring the minimum ergogenic dose of caffeine on resistance exercise performance: a meta-analytical approach. Nutrition 2022; 97:111604. [DOI: 10.1016/j.nut.2022.111604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 01/15/2022] [Indexed: 11/25/2022]
|
7
|
Karayigit R, Koz M, Sánchez-Gómez A, Naderi A, Yildirim UC, Domínguez R, Gur F. High Dose of Caffeine Mouth Rinse Increases Resistance Training Performance in Men. Nutrients 2021; 13:3800. [PMID: 34836058 PMCID: PMC8617760 DOI: 10.3390/nu13113800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
Caffeine mouth rinsing (CMR) has been shown to enhance exercise performance. However, no studies have analyzed the effects of different dosages of CMR on muscular performance. Therefore, the purpose of this study was to examine the effects of different dosages of CMR on strength (bench press 1 repetition maximum (1-RM)) and muscular endurance (60% of 1-RM repetitions to failure) in resistance-trained males. Fourteen resistance-trained males (age: 23 ± 2 years, height: 179 ± 3 cm, body mass: 83 ± 4 kg, BMI: 17 ± 2 kg/m2) completed four conditions in random order. The four conditions consisted of a mouth rinse with 25 mL solutions containing either 1% (250 mg) of CMR (low dose of CMR: LCMR), 2% (500 mg) of CMR (moderate dose of CMR: MCMR), 3% (750 mg) of CMR (high dose of CMR: HCMR) and sweetened water (placebo: PLA) for 5 s prior to a bench press strength and muscular endurance test. Maximal strength, muscular endurance, heart rate (HR) and ratings of perceived exertion (RPE) were recorded for each condition. There were no significant differences in strength (p = 0.30) and HR (p = 0.83) between conditions. HCMR significantly increased muscular endurance performance (p = 0.01) and decreased RPE values (p = 0.01). In conclusion, CMR did not affect bench press 1-RM strength performance, but muscular endurance responses to CMR seems to be dose-dependent.
Collapse
Affiliation(s)
- Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (M.K.); (U.C.Y.)
| | - Mitat Koz
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (M.K.); (U.C.Y.)
| | - Angela Sánchez-Gómez
- Department of Nursing Pharmacology and Physiotherapy, Faculty of Medicine and Nursing, University of Córdoba, 14000 Córdoba, Spain;
| | - Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd 6915136111, Iran;
| | - Ulas Can Yildirim
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (M.K.); (U.C.Y.)
| | - Raúl Domínguez
- Departamento de Motricidad Humana y Rendimiento Deportivo, Universidad de Sevilla, 41013 Sevilla, Spain
- Studies Research Group in Neuromuscular Responses (GEPREN), University of Lavras, Lavras 37200-000, Brazil
| | - Fatih Gur
- Faculty of Sport Science, Pamukkale University, Pamukkale, Denizli 20000, Turkey;
| |
Collapse
|
8
|
Effects of Caffeine on Resistance Exercise: A Review of Recent Research. Sports Med 2021; 51:2281-2298. [PMID: 34291426 DOI: 10.1007/s40279-021-01521-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
In the last few years, a plethora of studies have explored the effects of caffeine on resistance exercise, demonstrating that this field of research is growing fast. This review evaluates and summarizes the most recent findings. Given that toxic doses of caffeine are needed to increase skeletal muscle contractility, the binding of caffeine to adenosine receptors is likely the primary mechanism for caffeine's ergogenic effects on resistance exercise. There is convincing evidence that caffeine ingestion is ergogenic for (i) one-repetition maximum, isometric, and isokinetic strength; and (ii) muscular endurance, velocity, and power in different resistance exercises, loads, and set protocols. Furthermore, there is some evidence that caffeine supplementation also may enhance adaptations to resistance training, such as gains in strength and power. Caffeine ingestion is ergogenic for resistance exercise performance in females, and the magnitude of these effects seems to be similar to that observed in men. Habitual caffeine intake and polymorphisms within CYP1A2 and ADORA2A do not seem to modulate caffeine's ergogenic effects on resistance exercise. Consuming lower doses of caffeine (e.g., 2-3 mg/kg) appears to be comparably ergogenic to consuming high doses of caffeine (e.g., 6 mg/kg). Minimal effective doses of caffeine seem to be around 1.5 mg/kg. Alternate caffeine sources such as caffeinated chewing gum, gel, and coffee are also ergogenic for resistance exercise performance. With caffeine capsules, the optimal timing of ingestion seems to be 30-60 min before exercise. Caffeinated chewing gums and gels may enhance resistance exercise performance even when consumed 10 min before exercise. It appears that caffeine improves performance in resistance exercise primarily due to its physiological effects. Nevertheless, a small portion of the ergogenic effect of caffeine seems to be placebo-driven.
Collapse
|
9
|
Karayigit R, Naderi A, Akca F, da Cruz CJG, Sarshin A, Yasli BC, Ersoz G, Kaviani M. Effects of Different Doses of Caffeinated Coffee on Muscular Endurance, Cognitive Performance, and Cardiac Autonomic Modulation in Caffeine Naive Female Athletes. Nutrients 2020; 13:nu13010002. [PMID: 33374947 PMCID: PMC7821939 DOI: 10.3390/nu13010002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Caffeine is widely consumed among elite athletes for its well-known ergogenic properties, and its ability to increase exercise performance. However, studies to date have predominantly focused on the anhydrous form of caffeine in male participants. The aim of the study was to investigate the effect of caffeinated coffee ingestion on lower-upper body muscular endurance, cognitive performance, and heart rate variability (HRV) in female athletes. A total of 17 participants (mean ± standard deviation (SD): age = 23 ± 2 years, body mass = 64 ± 4 kg, height = 168 ± 3 cm) in a randomized cross-over design completed three testing sessions, following the ingestion of 3 mg/kg/bm of caffeine (3COF), 6 mg/kg/bm of caffeine (6COF) provided from coffee or decaffeinated coffee (PLA) in 600 mL of hot water. The testing results included: (1) repetition number for muscular endurance performance; (2): reaction time and response accuracy for cognitive performance; (3): HRV parameters, such as standard deviation of normal-to-normal (NN) intervals (SDNN), standard deviation of successive differences (SDSD), root mean square of successive differences (RMSSD), total power (TP), the ratio of low- and high-frequency powers (LF/HF), high-frequency power (HF), normalized HF (HFnu), low-frequency power (LF), and normalized LF (LFnu). A one-way repeated measures ANOVA revealed that 3COF (p = 0.024) and 6COF (p = 0.036) improved lower body muscular endurance in the first set as well as cognitive performance (p = 0.025, p = 0.035 in the post-test, respectively) compared to PLA. However, no differences were detected between trials for upper body muscular endurance (p = 0.07). Lastly, all HRV parameters did not change between trials (p > 0.05). In conclusion, ingesting caffeinated coffee improved lower body muscular endurance and cognitive performance, while not adversely affecting cardiac autonomic function.
Collapse
Affiliation(s)
- Raci Karayigit
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (R.K.); (F.A.); (G.E.)
| | - Alireza Naderi
- Department of Sport Physiology, Boroujerd Branch, Islamic Azad University, Boroujerd 6915136111, Iran;
| | - Firat Akca
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (R.K.); (F.A.); (G.E.)
| | - Carlos Janssen Gomes da Cruz
- Laboratory of Exercise Physiology, Faculty of Physical Education, University of Brasilia, Brasilia 70910-900, Brazil;
| | - Amir Sarshin
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Karaj Branch 3149968111, Iran;
| | - Burak Caglar Yasli
- Department of Physical Education and Sports, Iğdır University, Igdir 76000, Turkey;
| | - Gulfem Ersoz
- Faculty of Sport Sciences, Ankara University, Gölbaşı, Ankara 06830, Turkey; (R.K.); (F.A.); (G.E.)
| | - Mojtaba Kaviani
- Faculty of Pure & Applied Science, School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2R6, Canada
- Correspondence: ; Tel.: +1-902-585-1884
| |
Collapse
|