1
|
Wang X, Cheng L, Liu A, Liu L, Gong L, Shen G. Metabolomics approach reveals key plasma biomarkers in multiple myeloma for diagnosis, staging, and prognosis. J Transl Med 2025; 23:163. [PMID: 39915820 PMCID: PMC11800462 DOI: 10.1186/s12967-024-05848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/30/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Multiple myeloma (MM) is the most aggressive and prevalent primary malignant tumor within the blood system, and can be classified into grades RISS-I, II, and III. High-grade tumors are associated with decreased survival rates and increased recurrence rates. To better understand metabolic disorders and expand the potential targets for MM, we conducted large-scale untargeted metabolomics on plasma samples from MM patients and healthy controls (HC). METHODS Our study included 33 HC, 38 newly diagnosed MM patients (NDMM) categorized into three RISS grades (grade I: n = 5; grade II: n = 19; grade III: n = 8), and 92 MM patients post-targeted therapy with bortezomib-based regimens. Simultaneously, MM cell lines were employed for validation studies. Metabolites were analyzed and identified using ultra high liquid chromatography coupled with Q Orbitrap mass spectrometry (UPLC-HRMS), followed by verification through a self-built database. RESULTS Compared with HC participants, a total of 70 metabolites were identified as undergoing significant changes in NDMM. These metabolites were significantly enriched in citrate cycle, choline metabolism, glycerophospholipid metabolism, and sphingolipid metabolism, etc. Notably, a panel of circulating plasma metabolite biomarkers, including lactic acid and leucine, has emerged not only as diagnostic indicators but also as valuable tools for tumor surveillance, aiding in the assessment of disease stage and prognostic evaluation. Moreover, 14 differential metabolites were identified in both MM cell lines and MM patients. Among these, intracellular levels of lactate and leucine significantly decreased in vitro, aligning with the plasma results. CONCLUSION Our findings on key metabolites and metabolic pathways provide novel insights into the exploration of diagnostic and therapeutic targets for MM. A prospective study is essential to validate these discoveries for future MM patient care.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Longhao Cheng
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Capital Medical University, No. 2 YingHua Road, Beijing, 100029, China
| | - Aijun Liu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Capital Medical University, No. 2 YingHua Road, Beijing, 100029, China
| | - Lili Gong
- Institute of Clinical Medical Sciences, State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Capital Medical University, No. 2 YingHua Road, Beijing, 100029, China.
| | - Guolin Shen
- Institute of Chemicals Safety, Chinese Academy of Inspection and Quarantine, No. 11 Rong Hua Middle Road, Economic-Technological Development Area, Beijing, 100176, China.
| |
Collapse
|
2
|
Guo Z, Guo L. OTUD7B deubiquitinates and stabilizes YAP1 to upregulate NUAK2 expression, thus accelerating gastric cancer procession. Dig Liver Dis 2024; 56:352-362. [PMID: 37429790 DOI: 10.1016/j.dld.2023.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies worldwide. Ovarian tumor protein superfamily serves a crucial role in tumor growth progression, among them, ovarian tumor domain-containing 7B (OTUD7B) as a deubiquitinase (DUB) is frequently found in various cancers, but the role of OTUD7B in GC is poorly understood. AIMS To clarify the effect of OTUD7B on GC progression. METHODS Functional experiments were performed to detect the proliferation, migration and invasion of GC cells. Xenografts were used to measure the effects in vivo. Co-immunoprecipitation (Co-IP) and ubiquitination assays showed the interaction of OTUD7B and YAP1. RESULTS OTUD7B was highly expressed in tumor tissues from GC patients, and high mRNA expression was strongly associated with poor prognosis, suggesting that OTUD7B was an independent prognostic factor. Moreover, OTUD7B overexpression promoted GC cell proliferation and metastasis both in vitro and in vivo, whereas OTUD7B knockdown exhibited opposing biological effects. Mechanically, OTUD7B promoted downstream target genes of YAP1 including NUAK2, Snail, Slug, CDK6, CTGF, and BIRC5. Importantly, OTUD7B enhanced the activation of YAP1 via deubiquitinating and stabilizing to upregulate NUAK2 expression. CONCLUSIONS OTUD7B is a novel DUB of the YAP1 pathway and accelerates GC progression. Therefore, OTUD7B may be a promising therapeutic target against GC.
Collapse
Affiliation(s)
- Zijun Guo
- Department of Operating Room, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
3
|
Tian W, Li H, Li Y, Guo J, Wang H, Yang B, Li P, Cui X, Liu L. A novel missense variant in OTUD5 causes X-linked multiple congenital anomalies-neurodevelopmental syndrome. Mol Genet Genomic Med 2024; 12:e2325. [PMID: 38037881 PMCID: PMC10767676 DOI: 10.1002/mgg3.2325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The OTUD5 gene encodes a deubiquitinating enzyme (DUB) of the OTU family. Variants of OTUD5 are associated with X-linked multiple congenital anomalies-neurodevelopmental syndrome (MCAND). The case described in this study expands the clinical and molecular spectrum of OTUD5. METHODS Trio-based clinical exome sequencing (trio-CES) was performed on a Chinese boy with a clinical phenotype and both of his parents. Sanger sequencing was employed for validation of the variant detected. RESULTS The patient presented with characteristic facial features, intellectual disability, motor/language/cognitive, and global developmental delays, limb contractures, and kidney abnormalities, and trio-CES identified a de novo missense variant, c.1305T>A, of the OTUD5 gene. DISCUSSION We describe OTUD5 gene variation in the Chinese population, with the first report of this variant. Additionally, we provide a comprehensive summary of all published cases of MCAND to date, in order to elucidate the primary clinical features of the syndrome and the variability in phenotype severity. This case expands the genetic and clinical phenotypic spectrum of OTUD5-associated MCAND.
Collapse
Affiliation(s)
- Weifang Tian
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan ProvinceZhengzhouChina
| | - Haiyu Li
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan ProvinceZhengzhouChina
| | - Ying Li
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan ProvinceZhengzhouChina
| | - Jing Guo
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan ProvinceZhengzhouChina
| | - Handuo Wang
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan ProvinceZhengzhouChina
| | - Bo Yang
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan ProvinceZhengzhouChina
| | - Pengyun Li
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan ProvinceZhengzhouChina
| | - Xueyin Cui
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan ProvinceZhengzhouChina
| | - Ling Liu
- Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Maternal and Child Health Hospital of Henan ProvinceZhengzhouChina
| |
Collapse
|
4
|
Martínez-Espinoza I, Bungwon AD, Guerrero-Plata A. Human Metapneumovirus-Induced Host microRNA Expression Impairs the Interferon Response in Macrophages and Epithelial Cells. Viruses 2023; 15:2272. [PMID: 38005948 PMCID: PMC10675405 DOI: 10.3390/v15112272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Human metapneumovirus (HMPV) is a nonsegmented, single-stranded negative RNA virus and a member of the Pneumoviridae family. During HMPV infection, macrophages play a critical role in defending the respiratory epithelium by secreting large amounts of type I interferon (IFN). MicroRNAs (miRNAs) are small, noncoding, single-stranded RNAs that play an essential role in regulating gene expression during normal cellular homeostasis and disease by binding to specific mRNAs, thereby regulating at the transcriptional and post-transcriptional levels with a direct impact on the immune response and other cellular processes. However, the role of miRNAs in macrophages and respiratory viral infections remains largely unknown. Here, we characterized the susceptibility of THP-1-derived macrophages to HMPV infection and the effect of hsa-miR-4634 on these cells. Transfection of an miRNA mimic and inhibitor demonstrated that hsa-miR-4634 regulates the IFN response in HMPV-infected macrophages, suggesting that HMPV induces the expression of the miRNA as a subversion mechanism of the antiviral response. This effect was not limited to macrophages, as a similar effect was also observed in epithelial cells. Overall, our results demonstrate that hsa-miR-4634 is an important factor in regulating the IFN response in macrophages and epithelial cells during HMPV infection.
Collapse
Affiliation(s)
| | | | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (I.M.-E.); (A.D.B.)
| |
Collapse
|
5
|
Fu L, Lu K, Jiao Q, Chen X, Jia F. The Regulation and Double-Edged Roles of the Deubiquitinase OTUD5. Cells 2023; 12:cells12081161. [PMID: 37190070 DOI: 10.3390/cells12081161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
OTUD5 (OTU Deubiquitinase 5) is a functional cysteine protease with deubiquitinase activity and is a member of the ovarian tumor protease (OTU) family. OTUD5 is involved in the deubiquitination of many key proteins in various cellular signaling pathways and plays an important role in maintaining normal human development and physiological functions. Its dysfunction can affect physiological processes, such as immunity and DNA damage repair, and it can even lead to tumors, inflammatory diseases and genetic disorders. Therefore, the regulation of OTUD5 activity and expression has become a hot topic of research. A comprehensive understanding of the regulatory mechanisms of OTUD5 and its use as a therapeutic target for diseases is of great value. Herein, we review the physiological processes and molecular mechanisms of OTUD5 regulation, outline the specific regulatory processes of OTUD5 activity and expression, and link OTUD5 to diseases from the perspective of studies on signaling pathways, molecular interactions, DNA damage repair and immune regulation, thus providing a theoretical basis for future studies.
Collapse
Affiliation(s)
- Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Qian Jiao
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Xi Chen
- School of Basic Medicine, Qingdao University, Qingdao 266072, China
| | - Fengju Jia
- School of Nursing, Qingdao University, Qingdao 266072, China
| |
Collapse
|
6
|
The Functions of TRIM56 in Antiviral Innate Immunity and Tumorigenesis. Int J Mol Sci 2023; 24:ijms24055046. [PMID: 36902478 PMCID: PMC10003129 DOI: 10.3390/ijms24055046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
As a member of the TRIM (tripartite motif) protein family, TRIM56 can function as an E3 ubiquitin ligase. In addition, TRIM56 has been shown to possess deubiquitinase activity and the ability to bind RNA. This adds to the complexity of the regulatory mechanism of TRIM56. TRIM56 was initially found to be able to regulate the innate immune response. In recent years, its role in direct antiviral and tumor development has also attracted the interest of researchers, but there is no systematic review on TRIM56. Here, we first summarize the structural features and expression of TRIM56. Then, we review the functions of TRIM56 in TLR and cGAS-STING pathways of innate immune response, the mechanisms and structural specificity of TRIM56 against different types of viruses, and the dual roles of TRIM56 in tumorigenesis. Finally, we discuss the future research directions regarding TRIM56.
Collapse
|
7
|
Job F, Mai C, Villavicencio-Lorini P, Herfurth J, Neuhaus H, Hoffmann K, Pfirrmann T, Hollemann T. OTUD3: A Lys6 and Lys63 specific deubiquitinase in early vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194901. [PMID: 36503125 DOI: 10.1016/j.bbagrm.2022.194901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Ubiquitination and deubiquitylation regulate essential cellular processes and involve hundreds of sequentially acting enzymes, many of which are barely understood. OTUD3 is an evolutionarily highly conserved deubiquitinase involved in many aspects of cellular homeostasis. However, its biochemical properties and physiological role during development are poorly understood. Here, we report on the expression of OTUD3 in human tissue samples where it appears prominently in those of neuronal origin. In cells, OTUD3 is present in the cytoplasm where it can bind to microtubules. Interestingly, we found that OTUD3 cleaves preferentially at K6 and K63, i.e., poly-ubiquitin linkages that are not primarily involved in protein degradation. We employed Xenopus embryos to study the consequences of suppressing otud3 function during early neural development. We found that Otud3 deficiency led to impaired formation of cranial and particularly of cranial neural crest-derived structures as well as movement defects. Thus, OTUD3 appears as a neuronally enriched deubiquitinase that is involved in the proper development of the neural system.
Collapse
Affiliation(s)
- Florian Job
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany; Martin-Luther-University Halle-Wittenberg, Institute of Human Genetics, 06114 Halle, Germany
| | - Carolin Mai
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | | | - Juliane Herfurth
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | - Herbert Neuhaus
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany
| | - Katrin Hoffmann
- Martin-Luther-University Halle-Wittenberg, Institute of Human Genetics, 06114 Halle, Germany
| | - Thorsten Pfirrmann
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany; Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Thomas Hollemann
- Martin-Luther-University Halle-Wittenberg, Institute for Physiological Chemistry, 06114 Halle, Germany.
| |
Collapse
|
8
|
Li Q, Zhang C, Zhang C, Duan R, Hua Y. CG4968 positively regulates the immune deficiency pathway by targeting Imd protein in Drosophila. PeerJ 2023; 11:e14870. [PMID: 36778143 PMCID: PMC9912943 DOI: 10.7717/peerj.14870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Drosophila melanogaster relies solely on innate immunity to defend against various microbial pathogens. Although it is well-known that the adaptor protein Imd undergoes K63-linked ubiquitination to activate the downstream signaling cascades, its involvement with K48-linked ubiquitination and what is responsible for controlling this modification remain largely unknown. In this study, we explored the immunological function of CG4968, which encodes a typical ovarian tumour-associated protease (OTU)-type deubiquitinase (Dub) in flies. Our in vitro and vivo evidence demonstrated that CG4968 plays a positive role in governing the immune deficiency (IMD), but not the Toll innate immune response in an OTU domain-dependent manner. Mechanistically, we found that CG4968 is associated with Imd to restrict its K48-linked ubiquitination, thereby contributing to its turnover. Collectively, our study uncovered a novel regulatory mechanism involving the K48-linked ubiquitination of Imd in Drosophila innate immunity.
Collapse
|
9
|
Che Y, Bai M, Lu K, Fu L. Splicing factor SRSF3 promotes the progression of cervical cancer through regulating DDX5. Mol Carcinog 2023; 62:210-223. [PMID: 36282044 DOI: 10.1002/mc.23477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
Aberrant alternative splicing (AS) profoundly affects tumorigenesis and cancer progression. Serine/arginine-rich splicing factor 3 (SRSF3) regulates the AS of precursor mRNAs and acts as a proto-oncogene in many tumors, but its function and potential mechanisms in cervical cancer remain unclear. Here, we found that SRSF3 was highly expressed in cervical cancer tissues and that SRSF3 expression was correlated with prognosis after analyses of the The Cancer Genome Atlas and GEO databases. Furthermore, knockdown of SRSF3 reduced the proliferation, migration, and invasion abilities of HeLa cells, while overexpression of SRSF3 promoted proliferation, migration, and invasion of CaSki cells. Further studies showed that SRSF3 mediated the variable splicing of exon 12 of the transcriptional cofactor DEAD-box helicase 5 (DDX5). Specifically, overexpression of SRSF3 promoted the production of the pro-oncogenic spliceosome DDX5-L and repressed the production of the repressive spliceosome DDX5-S. Ultimately, both SRSF3 and DDX5-L were able to upregulate oncogenic AKT expression, while DDX5-S downregulated AKT expression. In conclusion, we found that SRSF3 increased the production of DDX5-L and decreased the production of DDX5-S by regulating the variable splicing of DDX5. This, in turn promoted the proliferation, migration, and invasion of cervical cancer by upregulating the expression level of AKT. These results reveal the oncogenic role of SRSF3 in cervical cancer and emphasize the importance of the SRSF3-DDX5-AKT axis in tumorigenesis. SRSF3 and DDX5 are new potential biomarkers and therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yingying Che
- School of Basic Medicine, Qingdao University, Qingdao, China.,Weihai Ocean Vocational College, Weihai, China
| | - Mixue Bai
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Han N, Li X, Wang Y, Li H, Zhang C, Zhao X, Zhang Z, Ruan M, Zhang C. HIF-1α induced NID1 expression promotes pulmonary metastases via the PI3K-AKT pathway in salivary gland adenoid cystic carcinoma. Oral Oncol 2022; 131:105940. [DOI: 10.1016/j.oraloncology.2022.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
11
|
Functional Screen for microRNAs Suppressing Anchorage-Independent Growth in Human Cervical Cancer Cells. Int J Mol Sci 2022; 23:ijms23094791. [PMID: 35563182 PMCID: PMC9100801 DOI: 10.3390/ijms23094791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The progression of anchorage-dependent epithelial cells to anchorage-independent growth represents a critical hallmark of malignant transformation. Using an in vitro model of human papillomavirus (HPV)-induced transformation, we previously showed that acquisition of anchorage-independent growth is associated with marked (epi)genetic changes, including altered expression of microRNAs. However, the laborious nature of the conventional growth method in soft agar to measure this phenotype hampers a high-throughput analysis. We developed alternative functional screening methods using 96- and 384-well ultra-low attachment plates to systematically investigate microRNAs regulating anchorage-independent growth. SiHa cervical cancer cells were transfected with a microRNA mimic library (n = 2019) and evaluated for cell viability. We identified 84 microRNAs that consistently suppressed growth in three independent experiments. Further validation in three cell lines and comparison of growth in adherent and ultra-low attachment plates yielded 40 microRNAs that specifically reduced anchorage-independent growth. In conclusion, ultra-low attachment plates are a promising alternative for soft-agar assays to study anchorage-independent growth and are suitable for high-throughput functional screening. Anchorage independence suppressing microRNAs identified through our screen were successfully validated in three cell lines. These microRNAs may provide specific biomarkers for detecting and treating HPV-induced precancerous lesions progressing to invasive cancer, the most critical stage during cervical cancer development.
Collapse
|
12
|
Yue L, Zeng P, Li Y, Chai Y, Wu C, Gao B. Nontargeted and targeted metabolomics approaches reveal the key amino acid alterations involved in multiple myeloma. PeerJ 2022; 10:e12918. [PMID: 35186493 PMCID: PMC8840056 DOI: 10.7717/peerj.12918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Multiple myeloma (MM), a kind of malignant neoplasm of clonal plasma cells in the bone marrow, is a refractory disease. Understanding the metabolism disorders and identification of metabolomics pathways as well as key metabolites will provide new insights for exploring diagnosis and therapeutic targets of MM. METHODS We conducted nontargeted metabolomics analysis of MM patients and normal controls (NC) using ultra-high-performance liquid chromatography (UHPLC) combined with quadrupole time-of-flight mass spectrometry (Q-TOF-MS) in 40 cases of cohort 1 subjects. The targeted metabolomics analysis of amino acids using multiple reaction monitoring-mass spectrometry (MRM-MS) was also performed in 30 cases of cohort 1 and 30 cases of cohort 2 participants, to comprehensively investigate the metabolomics disorders of MM. RESULTS The nontargeted metabolomics analysis in cohort 1 indicated that there was a significant metabolic signature change between MM patients and NC. The differential metabolites were mainly enriched in metabolic pathways related to amino acid metabolism, such as protein digestion and absorption, and biosynthesis of amino acids. Further, the targeted metabolomics analysis of amino acids in both cohort 1 and cohort 2 revealed differential metabolic profiling between MM patients and NC. We identified 12 and 14 amino acid metabolites with altered abundance in MM patients compared to NC subjects, in cohort 1 and cohort 2, respectively. Besides, key differential amino acid metabolites, such as choline, creatinine, leucine, tryptophan, and valine, may discriminate MM patients from NC. Moreover, the differential amino acid metabolites were associated with clinical indicators of MM patients. CONCLUSIONS Our findings indicate that amino acid metabolism disorders are involved in MM. The differential profiles reveal the potential utility of key amino acid metabolites as diagnostic biomarkers of MM. The alterations in metabolome, especially the amino acid metabolome, may provide more evidences for elucidating the pathogenesis and development of MM.
Collapse
Affiliation(s)
- Lingling Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Pengyun Zeng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yanhong Li
- Institute of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ye Chai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:ijms222111971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (T.G.S.); (M.M.A.-D.); Tel.: +91-9815951171 (T.G.S.); +966-580192142 (M.M.A.-D.)
| |
Collapse
|
14
|
Zhou J, Xu L, Yang P, Lu Y, Lin S, Yuan G. The exosomal transfer of human bone marrow mesenchymal stem cell-derived miR-1913 inhibits osteosarcoma progression by targeting NRSN2. Am J Transl Res 2021; 13:10178-10192. [PMID: 34650689 PMCID: PMC8507079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Osteosarcoma is a malignant bone tumor consisting of mesenchymal cells. This study aimed to investigate the inhibitory effects of human bone marrow mesenchymal stem cell (hBMSC)-derived miR-1913 on osteosarcoma. METHODS Cell viability was determined using CCK8 and colony formation assays. The cell migration and invasion abilities were assessed using wound healing and transwell assays. RT-qPCR and western blot were used to measure the miR-1913, Neurensin-2 (NRSN2), N-cadherin, and E-cadherin expression levels. Dual luciferase reporter assays were conducted to identify the target relationship between miR-1913 and NRSN2. The exosomes were extracted and identified using TEM and NTA assays. RESULTS In the osteosarcoma tumor tissues and cell lines, the NRSN2 expressions were up-regulated, which correlated with a poor osteosarcoma prognosis. MiR-1913 inhibited the cell viability, proliferation, migration, and invasion by negatively targeting NRSN2. Furthermore, the hBMSC-derived exosomes delivered miR-1913 to inhibit the NRSN2 expression in the osteosarcoma cells. CONCLUSION The inhibitory role of hBMSC-derived miR-1913 on osteosarcoma progression was achieved by targeting NRSN2, indicating the potential therapeutic value of hBMSC-derived miR-1913.
Collapse
Affiliation(s)
- Jihui Zhou
- Department of Traumatic Orthopedics, Maoming People’s HospitalMaoming, Guangdong Province, China
| | - Lili Xu
- Department of Center Vaccination Clinic, Fuchunjiang Community Health Service Center of Changjiang RoadWest Coast New District of Qingdao, Qingdao, Shandong Province, China
| | - Peng Yang
- Department of Hand and Foot Surgery, The Eighth People’s Hospital of QingdaoQingdao, Shandong Province, China
| | - Yao Lu
- Department of Hand and Foot Surgery, The Eighth People’s Hospital of QingdaoQingdao, Shandong Province, China
| | - Shibang Lin
- Department of Traumatic Orthopedics, Maoming People’s HospitalMaoming, Guangdong Province, China
| | - Guanghai Yuan
- Department of Hand and Foot Surgery, The Eighth People’s Hospital of QingdaoQingdao, Shandong Province, China
| |
Collapse
|
15
|
Qiao G, Wang HB, Duan XN, Yan XF. The effect and mechanism of miR-607/CANT1 axis in lung squamous carcinoma. Anticancer Drugs 2021; 32:693-702. [PMID: 33675611 DOI: 10.1097/cad.0000000000001045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lung squamous carcinoma (LUSC) is the second most frequent subtype of non-small cell lung cancer. Rarely gene alterations are identified in LUSC. Therefore, identifying LUSC-related genes to explain the relevant molecular mechanism is urgently needed. A potential biomarker, calcium-activated nucleotidase 1 (CANT1), was elevated in tissues of LUSC patients relative to normal cases based on the TCGA and/or GTEx database. CCK-8 and transwell tests were then implemented to measure the proliferative, invasive and migratory capacities, and showed that knockdown of CANT1 blocked LUSC cells proliferation. miR-607, predicted as an upstream factor for CANT1, was declined in LUSC using TargetScan analysis and luciferase activity test. Low miR-607 expression was related with unfavorable outcomes of LUSC patients. Moreover, miR-607 downregulation elevated cell viability, invasion and migration in LUSC cells, which was antagonized by si-CANT1. GEPIA website was accessed to estimate the relevance between CANT1 and epithelial-mesenchymal transition (EMT)-related positive factors. The protein levels of Fibronectin, Vimentin, Snail and β-catenin were altered due to the abnormal CANT1 and miR-607 expression. Together, these data unveiled that miR-607/CANT1 pair may exert a vital role in the progression of LUSC through mediating EMT process, which would furnish an available therapeutic therapy for LUSC.
Collapse
Affiliation(s)
- Gang Qiao
- Department of Integrative Medicine Oncology, Zibo Bashan Wanjie Hospital, Zibo
| | - Hai-Bo Wang
- Emergency department, Rizhao Central Hospital, Rizhao
| | - Xiu-Na Duan
- Department of Nuclear Medicine, Central Hospital of Shan County, Shan County, Heze, Shandong People's Republic of China
| | - Xiao-Fang Yan
- Department of Nuclear Medicine, Central Hospital of Shan County, Shan County, Heze, Shandong People's Republic of China
| |
Collapse
|
16
|
Wang W, Xie X, Zhou Z, Zhang H. Expression Analysis of MIST1 and EMT Markers in Primary Tumor Samples Points to MIST1 as a Biomarker of Cervical Cancer. Int J Gen Med 2021; 14:1293-1300. [PMID: 33883927 PMCID: PMC8055369 DOI: 10.2147/ijgm.s307367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/09/2022] Open
Abstract
Background Mist1 is a basic transcription factor, which plays an important role in the development of multiple organs, and may also regulate tumor progression by mediating epithelial-mesenchymal transformation. However, there is lack of research on its role of squamous cell carcinoma, especially in cervical squamous cell carcinoma. Methods Bioinformatic methods were used to analyze gene expression, correlation, and patient survival according to the TCGA database. Thirty pairs of cancer tissues and distal cancer tissues from cervical cancer patients who received radical surgery were enrolled in the study. The expression of Mist1 was analyzed using Western blot. Furthermore, the potential associations among Mist1 expression, EMT biomarkers and various clinicopathological characteristics were investigated. All statistical tests employed in this study were two-sided, and P values <0.05 were deemed statistically significant. Results Overall survival data were obtained from TCGA-CESC dataset, containing 3 control samples and 305 tumor samples. The expression of Mist1 was significantly higher in primary tumor than in normal tissues (P<0.001). The samples were divided into a low Mist1 expression group (n=144) and a high Mist1 expression group (n=146) according to the median expression level. Kaplan–Meier survival analysis revealed that high expression of Mist1 was significantly correlated with poor overall survival (P=0.032). We further explored the relationships between Mist1 and EMT. Among the 30 primary cervical cancer specimens investigated, the difference in Mist1 expressed statuses between cervical cancer tissues and distal noncancerous cervical tissues was significant (P=0.001). And the epithelial cell marker E-cadherin was downregulated in Mist1 overexpressed cervical cancer cells; however, the mesenchymal marker N-Cadherin and Twist was upregulated. Conclusion Our study found that Mist1 seemed to play the role of oncogene in cervical squamous cell carcinoma and could be a potential biomarker.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhangjian Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|
17
|
Cong Y, So V, Tijssen MAJ, Verbeek DS, Reggiori F, Mauthe M. WDR45, one gene associated with multiple neurodevelopmental disorders. Autophagy 2021; 17:3908-3923. [PMID: 33843443 PMCID: PMC8726670 DOI: 10.1080/15548627.2021.1899669] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The WDR45 gene is localized on the X-chromosome and variants in this gene are linked to six different neurodegenerative disorders, i.e., ß-propeller protein associated neurodegeneration, Rett-like syndrome, intellectual disability, and epileptic encephalopathies including developmental and epileptic encephalopathy, early-onset epileptic encephalopathy and West syndrome and potentially also specific malignancies. WDR45/WIPI4 is a WD-repeat β-propeller protein that belongs to the WIPI (WD repeat domain, phosphoinositide interacting) family. The precise cellular function of WDR45 is still largely unknown, but deletions or conventional variants in WDR45 can lead to macroautophagy/autophagy defects, malfunctioning mitochondria, endoplasmic reticulum stress and unbalanced iron homeostasis, suggesting that this protein functions in one or more pathways regulating directly or indirectly those processes. As a result, the underlying cause of the WDR45-associated disorders remains unknown. In this review, we summarize the current knowledge about the cellular and physiological functions of WDR45 and highlight how genetic variants in its encoding gene may contribute to the pathophysiology of the associated diseases. In particular, we connect clinical manifestations of the disorders with their potential cellular origin of malfunctioning and critically discuss whether it is possible that one of the most prominent shared features, i.e., brain iron accumulation, is the primary cause for those disorders. Abbreviations: ATG/Atg: autophagy related; BPAN: ß-propeller protein associated neurodegeneration; CNS: central nervous system; DEE: developmental and epileptic encephalopathy; EEG: electroencephalograph; ENO2/neuron-specific enolase, enolase 2; EOEE: early-onset epileptic encephalopathy; ER: endoplasmic reticulum; ID: intellectual disability; IDR: intrinsically disordered region; MRI: magnetic resonance imaging; NBIA: neurodegeneration with brain iron accumulation; NCOA4: nuclear receptor coactivator 4; PtdIns3P: phosphatidylinositol-3-phosphate; RLS: Rett-like syndrome; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting
Collapse
Affiliation(s)
- Yingying Cong
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent So
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Cao Y, Di X, Zhang Q, Li R, Wang K. RBM10 Regulates Tumor Apoptosis, Proliferation, and Metastasis. Front Oncol 2021; 11:603932. [PMID: 33718153 PMCID: PMC7943715 DOI: 10.3389/fonc.2021.603932] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding motif protein 10 (RBM10) is involved in alternative splicing and modifies mRNA post-transcriptionally. RBM10 is abnormally expressed in the lung, breast, and colorectal cancer, female genital tumors, osteosarcoma, and other malignant tumors. It can inhibit proliferation, promote apoptosis, and inhibit invasion and metastasis. RBM10 has long been considered a tumor suppressor because it promotes apoptosis through the regulation of the MDM2-p53 negative feedback loop, Bcl-2, Bax, and other apoptotic proteins and inhibits proliferation through the Notch signaling and rap1a/Akt/CREB pathways. However, it has been recently demonstrated that RBM10 can also promote cancer. Given these different views, it is necessary to summarize the research progress of RBM10 in various fields to reasonably analyze the underlying molecular mechanisms, and provide new ideas and directions for the clinical research of RBM10 in various cancer types. In this review, we provide a new perspective on the reasons for these opposing effects on cancer biology, molecular mechanisms, research progress, and clinical value of RBM10.
Collapse
Affiliation(s)
- Yingshu Cao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Xin Di
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qinghua Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Ranwei Li
- Department of Urinary Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ke Wang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Yu WL, Yao JJ, Xie ZZ, Huang YJ, Xiao S. LncRNA PRNCR1 rs1456315 and CCAT2 rs6983267 Polymorphisms on 8q24 Associated with Lung Cancer. Int J Gen Med 2021; 14:255-266. [PMID: 33542645 PMCID: PMC7851581 DOI: 10.2147/ijgm.s290997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding RNA single nucleotide polymorphisms (lncRNA-SNPs) PCAT1 rs710886, PRNCR1 rs1456315 and CCAT2 rs6983267 on 8q24 region present generalizability in the susceptibility to multiple cancers, however, the influence of rs710886, rs1456315 and rs6983267 on lung cancer has not been assessed. The aim of this study was to investigate associations between three lncRNA-SNPs and lung cancer. Methods A case–control study was performed on 438 patients with lung cancer and 456 healthy controls in the Han population from southern China. The collected samples were genotyped by the TaqMan genotyping, and the association with clinical characteristics, including age, gender, drinking status, smoking status, pathological types and clinical stages were analyzed. And the SNP function prediction was based on lncRNASNP2, RNAfold and GTEx. Results The rs1456315 T allele increased the risk of lung cancer [OR=1.95, 95% CI (1.58–2.43), P=0.003] compared to the rs1456315 C allele, and rs1456315 significantly increased the risk of lung cancer in the dominant model [OR=1.86, 95% CI (1.16–3.00), P=0.002]. The rs6983267 G allele, compared with the T allele, increased the risk of lung cancer [OR=1.29, 95% CI (1.07–1.57), P=0.007], and rs6983267 was identified as a risk factor for lung cancer [OR=1.28, 95% CI (1.06–1.55), P=0.003] in the additive model. Both rs1456315 and rs6983267 demonstrated significance after adjusting for the smoking status, drinking status and age. The structure prediction found rs6983267 and rs1456315 influence the secondary structure of its lncRNA. The results from lncRNASNP2 indicated that rs6983267 and rs1456315 change gain/loss target of miRNAs. Conclusion PRNCR1 rs1456315 and CCAT2 rs6983267 on 8q24 region are significantly associated with lung cancer in the Han population of southern China and alter the potential biological function in bioinformatic analysis, and the results further extended generalism of the susceptibility of cancer-associated lncRNA-SNPs to lung cancer and underlying mechanism involved in lung cancer.
Collapse
Affiliation(s)
- Wei-Ling Yu
- Oncology Department of Haikou City People's Hospital, Haikou 570208, Hainan, People's Republic of China.,Key Laboratory of Emergency and Trauma, Ministry of Education of Hainan Medical University, Haikou 571199, Hainan, People's Republic of China
| | - Jin-Jian Yao
- Key Laboratory of Emergency and Trauma, Ministry of Education of Hainan Medical University, Haikou 571199, Hainan, People's Republic of China.,Emergency Center of Hainan General Hospital Affiliated to Hainan Medical University, Haikou 570311, Hainan, People's Republic of China
| | - Zong-Zhou Xie
- Oncology Department of Haikou City People's Hospital, Haikou 570208, Hainan, People's Republic of China
| | - Yan-Jing Huang
- Oncology Department of Hainan General Hospital Affiliated to Hainan Medical University, Haikou 570311, Hainan, People's Republic of China
| | - Sha Xiao
- School of Public Health of Hainan Medical University, Haikou 571199, Hainan, People's Republic of China
| |
Collapse
|
20
|
Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol 2021; 22:733-750. [PMID: 34302147 PMCID: PMC8300085 DOI: 10.1038/s41580-021-00392-4] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a versatile degradation system for maintaining cellular homeostasis whereby cytosolic materials are sequestered in a double-membrane autophagosome and subsequently delivered to lysosomes, where they are broken down. In multicellular organisms, newly formed autophagosomes undergo a process called 'maturation', in which they fuse with vesicles originating from endolysosomal compartments, including early/late endosomes and lysosomes, to form amphisomes, which eventually become degradative autolysosomes. This fusion process requires the concerted actions of multiple regulators of membrane dynamics, including SNAREs, tethering proteins and RAB GTPases, and also transport of autophagosomes and late endosomes/lysosomes towards each other. Multiple mechanisms modulate autophagosome maturation, including post-translational modification of key components, spatial distribution of phosphoinositide lipid species on membranes, RAB protein dynamics, and biogenesis and function of lysosomes. Nutrient status and various stresses integrate into the autophagosome maturation machinery to coordinate the progression of autophagic flux. Impaired autophagosome maturation is linked to the pathogenesis of various human diseases, including neurodegenerative disorders, cancer and myopathies. Furthermore, invading pathogens exploit various strategies to block autophagosome maturation, thus evading destruction and even subverting autophagic vacuoles (autophagosomes, amphisomes and autolysosomes) for survival, growth and/or release. Here, we discuss the recent progress in our understanding of the machinery and regulation of autophagosome maturation, the relevance of these mechanisms to human pathophysiology and how they are harnessed by pathogens for their benefit. We also provide perspectives on targeting autophagosome maturation therapeutically.
Collapse
Affiliation(s)
- Yan G. Zhao
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Patrice Codogno
- grid.508487.60000 0004 7885 7602Institut Necker-Enfants Malades, INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Hong Zhang
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People’s Republic of China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|