1
|
Aygün N, Vuong C, Krupa O, Mory J, Le BD, Valone JM, Liang D, Shafie B, Zhang P, Salinda A, Wen C, Gandal MJ, Love MI, de la Torre-Ubieta L, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. Am J Hum Genet 2024; 111:1877-1898. [PMID: 39168119 PMCID: PMC11393701 DOI: 10.1016/j.ajhg.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celine Vuong
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beck Shafie
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Salinda
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cindy Wen
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Kobayashi A, Kitagawa Y, Nasser A, Wakimoto H, Yamada K, Tanaka S. Emerging Roles and Mechanisms of RNA Modifications in Neurodegenerative Diseases and Glioma. Cells 2024; 13:457. [PMID: 38474421 DOI: 10.3390/cells13050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Despite a long history of research, neurodegenerative diseases and malignant brain tumor gliomas are both considered incurable, facing challenges in the development of treatments. Recent evidence suggests that RNA modifications, previously considered as static components of intracellular RNAs, are in fact dynamically regulated across various RNA species in cells and play a critical role in major biological processes in the nervous system. Innovations in next-generation sequencing have enabled the accurate detection of modifications on bases and sugars within various RNA molecules. These RNA modifications influence the stability and transportation of RNA, and crucially affect its translation. This review delves into existing knowledge on RNA modifications to offer a comprehensive inventory of these modifications across different RNA species. The detailed regulatory functions and roles of RNA modifications within the nervous system are discussed with a focus on neurodegenerative diseases and gliomas. This article presents a comprehensive overview of the fundamental mechanisms and emerging roles of RNA modifications in these diseases, which can facilitate the creation of innovative diagnostics and therapeutics for these conditions.
Collapse
Affiliation(s)
- Ami Kobayashi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ali Nasser
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Keisuke Yamada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0075, Japan
| | - Shota Tanaka
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0075, Japan
- Department of Neurosurgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
3
|
Aygün N, Krupa O, Mory J, Le B, Valone J, Liang D, Love MI, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555019. [PMID: 37693528 PMCID: PMC10491258 DOI: 10.1101/2023.08.30.555019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk post-mortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA-editing and alternative polyadenylation (APA), within a cell-type-specific population of human neural progenitors and neurons. More RNA-editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting genetically mediated post-transcriptional regulation during brain development lead to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead contact
| |
Collapse
|
4
|
Yan Y, Wei W, Long S, Ye S, Yang B, Jiang J, Li X, Chen J. The role of RNA modification in the generation of acquired drug resistance in glioma. Front Genet 2022; 13:1032286. [DOI: 10.3389/fgene.2022.1032286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system. The clinical treatment strategy is mainly surgery combined with concurrent temozolomide chemotherapy, but patients can develop drug resistance during treatment, which severely limits its therapeutic efficacy. Epigenetic regulation at the RNA level is plastic and adaptable, and it can induce a variety of tumor responses to drugs. The regulators of RNA modification include methyltransferases, demethylases, and methylation binding proteins; these are also considered to play an important role in the development, prognosis, and therapeutic response of gliomas, which provides a basis for finding new targets of epigenetic drugs and resetting the sensitivity of tumor cells to temozolomide. This review discusses the relationship between the development of adaptive drug resistance and RNA modification in glioma and summarizes the progress of several major RNA modification strategies in this field, especially RNA m6A modification, m5C modification, and adenosine-to-inosine editing.
Collapse
|
5
|
Liu C, Zhang W, Xu G, Zhang D, Zhang C, Qiao S, Wang Z, Wang H. Deep multilayer brain omics identifies the potential involvement of menopause molecular networks in Gliomas' disease progression. FASEB J 2022; 36:e22570. [PMID: 36165217 DOI: 10.1096/fj.202200427rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
The risk of high-grade gliomas is lower in young females, however, its incidence enhances after menopause, suggesting potential protective roles of female sex hormones. Hormone oscillations after menopause have received attention as a possible risk factor. Little is known about risk factors for adult gliomas. We examined the association of the aging brain after menopause, determining the risk of gliomas with proteomics and the MALDI-MSI experiment. Menopause caused low neurotransmitter levels such as GABA and ACH, high inflammatory factor levels like il-1β, and increased lipid metabolism-related levels like triglycerides in the brain. Upregulated and downregulated proteins after menopause were correlated with differentially expressed glioma genes, such as ACTA2, CAMK2D, FNBPIL, ARL1, HEBP1, CAST, CLIC1, LPCAT4, MAST3, and DOCK9. Furthermore, differential gene expression analysis of monocytes showed that the downregulated gene LPCAT4 could be used as a marker to prevent menopausal gliomas in women. Our findings regarding the association of menopause with the risk of gliomas are consistent with several extensive cohort studies. In view of the available evidence, postmenopausal status is likely to represent a significant risk factor for gliomas.
Collapse
Affiliation(s)
- Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University, Jinan, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, China
| | - Guozheng Xu
- Department of Physiology and Neurobiology, Shandong First Medical University, Jinan, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Cheng Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Sen Qiao
- Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, China.,School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
6
|
Neurotransmitters: Potential Targets in Glioblastoma. Cancers (Basel) 2022; 14:cancers14163970. [PMID: 36010960 PMCID: PMC9406056 DOI: 10.3390/cancers14163970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aiming to discover potential treatments for GBM, this review connects emerging research on the roles of neurotransmitters in the normal neural and the GBM microenvironments and sheds light on the prospects of their application in the neuropharmacology of GBM. Conventional therapy is blamed for its poor effect, especially in inhibiting tumor recurrence and invasion. Facing this dilemma, we focus on neurotransmitters that modulate GBM initiation, progression and invasion, hoping to provide novel therapy targeting GBM. By analyzing research concerning GBM therapy systematically and scientifically, we discover increasing insights into the regulatory effects of neurotransmitters, some of which have already shown great potential in research in vivo or in vitro. After that, we further summarize the potential drugs in correlation with previously published research. In summary, it is worth expecting that targeting neurotransmitters could be a promising novel pharmacological approach for GBM treatment. Abstract For decades, glioblastoma multiforme (GBM), a type of the most lethal brain tumor, has remained a formidable challenge in terms of its treatment. Recently, many novel discoveries have underlined the regulatory roles of neurotransmitters in the microenvironment both physiologically and pathologically. By targeting the receptors synaptically or non-synaptically, neurotransmitters activate multiple signaling pathways. Significantly, many ligands acting on neurotransmitter receptors have shown great potential for inhibiting GBM growth and development, requiring further research. Here, we provide an overview of the most novel advances concerning the role of neurotransmitters in the normal neural and the GBM microenvironments, and discuss potential targeted drugs used for GBM treatment.
Collapse
|
7
|
ADAR3 activates NF-κB signaling and promotes glioblastoma cell resistance to temozolomide. Sci Rep 2022; 12:13362. [PMID: 35922651 DOI: 10.1038/s41598-022-17559-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022] Open
Abstract
The RNA binding protein ADAR3 is expressed exclusively in the brain and reported to have elevated expression in tumors of patients suffering from glioblastoma compared to adjacent brain tissue. Yet, other studies have indicated that glioblastoma tumors exhibit hemizygous deletions of the genomic region encompassing ADAR3 (10p15.3). As the molecular and cellular consequences of altered ADAR3 expression are largely unknown, here we directly examined the impacts of elevated ADAR3 in a glioblastoma cell line model. Transcriptome-wide sequencing revealed 641 differentially expressed genes between control and ADAR3-expressing U87-MG glioblastoma cells. A vast majority of these genes belong to pathways involved in glioblastoma progression and are regulated by NF-κB signaling. Biochemical and molecular analysis indicated that ADAR3-expressing U87-MG cells exhibit increased NF-κB activation, and treatment with an NF-κB inhibitor abrogated the impacts of ADAR3 on gene expression. Similarly, we found that increased cell survival of ADAR3-expressing cells to temozolomide, the preferred chemotherapeutic for glioblastoma, was due to increased NF-κB activity. Aberrant constitutive NF-κB activation is a common event in glioblastoma and can impact both tumor progression and resistance to treatment. Our results suggest that elevated ADAR3 promotes NF-κB activation and a gene expression program that provides a growth advantage to glioblastoma cells.
Collapse
|
8
|
Zhai J, Koh JH, Soong TW. RNA editing of ion channels and receptors in physiology and neurological disorders. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac010. [PMID: 38596706 PMCID: PMC11003377 DOI: 10.1093/oons/kvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/14/2022] [Accepted: 05/15/2022] [Indexed: 04/11/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a post-transcriptional modification that diversifies protein functions by recoding RNA or alters protein quantity by regulating mRNA level. A-to-I editing is catalyzed by adenosine deaminases that act on RNA. Millions of editing sites have been reported, but they are mostly found in non-coding sequences. However, there are also several recoding editing sites in transcripts coding for ion channels or transporters that have been shown to play important roles in physiology and changes in editing level are associated with neurological diseases. These editing sites are not only found to be evolutionary conserved across species, but they are also dynamically regulated spatially, developmentally and by environmental factors. In this review, we discuss the current knowledge of A-to-I RNA editing of ion channels and receptors in the context of their roles in physiology and pathological disease. We also discuss the regulation of editing events and site-directed RNA editing approaches for functional study that offer a therapeutic pathway for clinical applications.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore 117456, Singapore
| |
Collapse
|
9
|
Lin SH, Chen SCC. RNA Editing in Glioma as a Sexually Dimorphic Prognostic Factor That Affects mRNA Abundance in Fatty Acid Metabolism and Inflammation Pathways. Cells 2022; 11:cells11071231. [PMID: 35406793 PMCID: PMC8997934 DOI: 10.3390/cells11071231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
RNA editing alters the nucleotide sequence and has been associated with cancer progression. However, little is known about its prognostic and regulatory roles in glioma, one of the most common types of primary brain tumors. We characterized and analyzed RNA editomes of glioblastoma and isocitrate dehydrogenase mutated (IDH-MUT) gliomas from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas (CGGA). We showed that editing change during glioma progression was another layer of molecular alterations and that editing profiles predicted the prognosis of glioblastoma and IDH-MUT gliomas in a sex-dependent manner. Hyper-editing was associated with poor survival in females but better survival in males. Moreover, noncoding editing events impacted mRNA abundance of the host genes. Genes associated with inflammatory response (e.g., EIF2AK2, a key mediator of innate immunity) and fatty acid oxidation (e.g., acyl-CoA oxidase 1, the rate-limiting enzyme in fatty acid β-oxidation) were editing-regulated and associated with glioma progression. The above findings were further validated in CGGA samples. Establishment of the prognostic and regulatory roles of RNA editing in glioma holds promise for developing editing-based therapeutic strategies against glioma progression. Furthermore, sexual dimorphism at the epitranscriptional level highlights the importance of developing sex-specific treatments for glioma.
Collapse
|
10
|
Lu C, Chen X, Yan Y, Ren X, Wang X, Peng B, Cai Y, Liang Q, Xu Z, Peng J. Aberrant Expression of ADARB1 Facilitates Temozolomide Chemoresistance and Immune Infiltration in Glioblastoma. Front Pharmacol 2022; 13:768743. [PMID: 35177985 PMCID: PMC8844449 DOI: 10.3389/fphar.2022.768743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Chemoresistance, especially temozolomide (TMZ) resistance, is a major clinical challenge in the treatment of glioblastoma (GBM). Exploring the mechanisms of TMZ resistance could help us identify effective therapies. Adenosine deaminases acting on RNA (ADARs) are very important in RNA modification through regulating the A-to-I RNA editing. Recent studies have shown that ADARs regulate multiple neurotransmitter receptors, which have been linked with the occurrence and progress of GBM. Here, data from several bioinformatics databases demonstrated that adenosine deaminase RNA specific B1 (ADARB1), also named ADAR2, was upregulated in both GBM tissues and cells, and had the prognostic value in GBM patients. Moreover, ADARB1 was found to be involved in AKT-mediated TMZ resistance in GBM cells. The KEGG analysis of ADARB1-associated co-expressed genes showed that ADARB1 was potentially involved in the mitochondrial respiratory chain complex. TISIDB and GEPIA databases were further used to analyze the role of ADARB1 in tumor-immune system interactions in GBM. These findings deepened our understanding of the function of ADARB1 in tumorigenesis and therapeutic response in GBM.
Collapse
Affiliation(s)
- Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China
| |
Collapse
|
11
|
Wang F, Liu X, Jiang H, Chen B. A promising glycolysis and immune related prognostic signature for glioblastoma (GBM). World Neurosurg 2022; 161:e363-e375. [DOI: 10.1016/j.wneu.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
|
12
|
Chokkalla AK, Mehta SL, Vemuganti R. Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Transl Stroke Res 2022; 13:1-11. [PMID: 34224107 PMCID: PMC8727632 DOI: 10.1007/s12975-021-00927-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
RNA is more than just a combination of four genetically encoded nucleobases as it carries extra information in the form of epitranscriptomic modifications. Diverse chemical groups attach covalently to RNA to enhance the plasticity of cellular transcriptome. The reversible and dynamic nature of epitranscriptomic modifications allows RNAs to achieve rapid and context-specific gene regulation. Dedicated cellular machinery comprising of writers, erasers, and readers drives the epitranscriptomic signaling. Epitranscriptomic modifications control crucial steps of mRNA metabolism such as splicing, export, localization, stability, degradation, and translation. The majority of the epitranscriptomic modifications are highly abundant in the brain and contribute to activity-dependent gene expression. Thus, they regulate the vital physiological processes of the brain, such as synaptic plasticity, neurogenesis, and stress response. Furthermore, epitranscriptomic alterations influence the progression of several neurologic disorders. This review discussed the molecular mechanisms of epitranscriptomic regulation in neurodevelopmental and neuropathological conditions with the goal to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Anil K Chokkalla
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA
| | - Raghu Vemuganti
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin, Madison, WI, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, 53792, USA.
- William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
13
|
Pozdyshev DV, Zharikova AA, Medvedeva MV, Muronetz VI. Differential Analysis of A-to-I mRNA Edited Sites in Parkinson's Disease. Genes (Basel) 2021; 13:14. [PMID: 35052353 PMCID: PMC8774971 DOI: 10.3390/genes13010014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a widespread neuronal degenerative disorder with unexplored etiology. It is associated with various pathological events. In particular, the prefrontal cortex Brodmann area 9 (BA9) region is affected in PD. This frontal lobe brain region plays an important role in cognitive, motor, and memory-related functions. BA9 develops Lewy bodies in PD patients and shows essential changes in transcriptome and proteome, connected with mitochondria related pathways, protein folding pathways, and metallothioneins. Recently, altered adenosine to inosine mRNA editing patterns have been detected in various neurological pathologies. In this article, we present an investigation of differences in A-to-I RNA editing levels and specificity of mRNA editing sites in brain tissues of healthy and PD patients based on RNA sequencing data. Overall, decreased editing levels in the brains of PD patients were observed, potential editing sites with altered editing during PD were identified, and the role of different adenosine deaminases in this process was analyzed.
Collapse
Affiliation(s)
- Denis V. Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Anastasia A. Zharikova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.A.Z.); (M.V.M.)
| | - Maria V. Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.A.Z.); (M.V.M.)
| | - Vladimir I. Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.A.Z.); (M.V.M.)
| |
Collapse
|
14
|
Hosaka T, Tsuji H, Kwak S. RNA Editing: A New Therapeutic Target in Amyotrophic Lateral Sclerosis and Other Neurological Diseases. Int J Mol Sci 2021; 22:10958. [PMID: 34681616 PMCID: PMC8536083 DOI: 10.3390/ijms222010958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
The conversion of adenosine to inosine in RNA editing (A-to-I RNA editing) is recognized as a critical post-transcriptional modification of RNA by adenosine deaminases acting on RNAs (ADARs). A-to-I RNA editing occurs predominantly in mammalian and human central nervous systems and can alter the function of translated proteins, including neurotransmitter receptors and ion channels; therefore, the role of dysregulated RNA editing in the pathogenesis of neurological diseases has been speculated. Specifically, the failure of A-to-I RNA editing at the glutamine/arginine (Q/R) site of the GluA2 subunit causes excessive permeability of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors to Ca2+, inducing fatal status epilepticus and the neurodegeneration of motor neurons in mice. Therefore, an RNA editing deficiency at the Q/R site in GluA2 due to the downregulation of ADAR2 in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients suggests that Ca2+-permeable AMPA receptors and the dysregulation of RNA editing are suitable therapeutic targets for ALS. Gene therapy has recently emerged as a new therapeutic opportunity for many heretofore incurable diseases, and RNA editing dysregulation can be a target for gene therapy; therefore, we reviewed neurological diseases associated with dysregulated RNA editing and a new therapeutic approach targeting dysregulated RNA editing, especially one that is effective in ALS.
Collapse
Affiliation(s)
- Takashi Hosaka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
- Department of Internal Medicine, Tsukuba University Hospital Kensei Area Medical Education Center, Chikusei 308-0813, Ibaraki, Japan
- Department of Internal Medicine, Ibaraki Western Medical Center, Chikusei 308-0813, Ibaraki, Japan
| | - Hiroshi Tsuji
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (T.H.); (H.T.)
| | - Shin Kwak
- Department of Neurology, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|