1
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
2
|
Chang S, Lei X, Xu W, Guan F, Ge J, Nian F. Preparation and characterization of Tobacco polysaccharides and its modulation on hyperlipidemia in high-fat-diet-induced mice. Sci Rep 2024; 14:26860. [PMID: 39500936 PMCID: PMC11538525 DOI: 10.1038/s41598-024-77514-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
This study aimed to investigate the structural properties of tobacco polysaccharide (TP) and its mechanism of modulating hyperlipidemia in high-fat diet-induced mice. The structural properties of TP were characterized by FT-IR, 1HNMR, SEM, AFM and thermogravimetric analysis. And the regulatory mechanism of TP on lipid metabolism was investigated in hyperlipidemia mice. These results showed that TP had a high composition of reducing monosaccharide and the glycosidic bond type was α-glycosidic bond. The intervention by TP resulted in a significant reduction of body weight and improvement in lipid accumulation. And the modulation mechanism by which TP ameliorated the abnormalities of lipid metabolism was associated with the expression levels of lipid metabolism-related genes and serum exosomes miRNA-128-3p, as well as the modulation of structure and abundance of the gut microbiota in mice. In addition, TP treatment significantly increased the content of short-chain fatty acids (SCFAs) in mice feces. The results of molecular docking and dual-luciferase assay exhibited a good interaction between propionic acid and PPAR-α, and it was hypothesized that the interaction might further ameliorate the hyperlipidemia. Therefore, TP can regulate the expression levels of lipid metabolism-related genes through miRNAs from serum exosomes and SCFAs from gut microbiota.
Collapse
Affiliation(s)
- Shuaishuai Chang
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Xuanhao Lei
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Weijia Xu
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Feng Guan
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China
| | - Jian Ge
- China Jiliang University School of Life Sciences, Hangzhou, 310018, China.
| | - Fuzhao Nian
- Yunnan Agricultural University School of Tobacco Science, Kunming, 650201, China
| |
Collapse
|
3
|
Song H, Chen F, Cao Y, Wang F, Wang L, Xiong L, Shen X. Innovative Applications of Pectin in Lipid Management: Mechanisms, Modifications, Synergies, Nanocarrier Systems, and Safety Considerations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20261-20272. [PMID: 39241169 DOI: 10.1021/acs.jafc.4c06586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Pectin, a natural polysaccharide predominantly sourced from the cell walls of terrestrial plants, is widely regarded for its gelling, thickening, and stabilizing properties, which have extensive applications in the food, pharmaceutical, and biotechnological industries. This review discusses the mechanistic pathways by which pectin mediates its lipid-lowering properties, such as pectin's antioxidant activity, the modulation of gut microbiota, its anti-inflammatory properties, its capacity to bind bile acids and cholesterol, and its impact on the expression of genes associated with lipid metabolism. To enhance its hypolipidemic properties, chemical, physical, and enzymatic modification techniques are explored. Additionally, the synergistic effects of pectin in combination with other bioactive compounds such as phytosterols and polyphenols, as well as its potential in nanocarrier-mediated delivery systems for lipid-lowering agents, are highlighted. The review also conducts a critical analysis of the safety and regulatory considerations associated with pectin use, emphasizing the necessity for comprehensive toxicological evaluations and adherence to regulatory standards. This paper underscores the growing potential of pectin not only as a dietary fiber but also as a multifaceted agent for ameliorating hyperlipidemia, catalyzing a shift toward more targeted and efficacious lipid-lowering strategies.
Collapse
Affiliation(s)
- Haizhao Song
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fangmin Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yubo Cao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Luanfeng Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ling Xiong
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
4
|
Weerawatanakorn M, Kamchonemenukool S, Koh YC, Pan MH. Exploring Phytochemical Mechanisms in the Prevention of Cholesterol Dysregulation: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6833-6849. [PMID: 38517334 PMCID: PMC11018292 DOI: 10.1021/acs.jafc.3c09924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024]
Abstract
Although cholesterol plays a key role in many physiological processes, its dysregulation can lead to several metabolic diseases. Statins are a group of drugs widely used to lower cholesterol levels and cardiovascular risk but may lead to several side effects in some patients. Therefore, the development of a plant-based therapeutic adjuvant with cholesterol-lowering activity is desirable. The maintenance of cholesterol homeostasis encompasses multiple steps, including biosynthesis and metabolism, uptake and transport, and bile acid metabolism; issues arising in any of these processes could contribute to the etiology of cholesterol-related diseases. An increasing body of evidence strongly indicates the benefits of phytochemicals for cholesterol regulation; traditional Chinese medicines prove beneficial in some disease models, although more scientific investigations are needed to confirm their effectiveness. One of the main functions of cholesterol is bile acid biosynthesis, where most bile acids are recycled back to the liver. The composition of bile acid is partly modulated by gut microbes and could be harmful to the liver. In this regard, the reshaping effect of phytochemicals on gut microbiota has been widely reported in the literature for its significance. Therefore, we reviewed studies conducted over the past 5 years elucidating the regulatory effects of phytochemicals or herbal medicines on cholesterol metabolism. In addition, their effects on the recomposition of gut microbiota and bile acid metabolism due to modulation are discussed. This review aims to provide novel insights into the treatment of cholesterol dysregulation and the anticipated development of natural-based compounds in the near and far future.
Collapse
Affiliation(s)
- Monthana Weerawatanakorn
- Department
of Agro-Industry, Naresuan University, 99 Moo 9, Thapho, Muang, Phitsanulok 65000, Thailand
- Centre
of Excellence in Fats and Oils, Naresuan
University Science Park, 99 M 9, Thapho, Muang, Phitsanulok 65000, Thailand
| | - Sudthida Kamchonemenukool
- Department
of Agro-Industry, Naresuan University, 99 Moo 9, Thapho, Muang, Phitsanulok 65000, Thailand
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40447, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung City 41354, Taiwan
| |
Collapse
|
5
|
Latif A, Shehzad A, Niazi S, Zahid A, Ashraf W, Iqbal MW, Rehman A, Riaz T, Aadil RM, Khan IM, Özogul F, Rocha JM, Esatbeyoglu T, Korma SA. Probiotics: mechanism of action, health benefits and their application in food industries. Front Microbiol 2023; 14:1216674. [PMID: 37664108 PMCID: PMC10470842 DOI: 10.3389/fmicb.2023.1216674] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Probiotics, like lactic acid bacteria, are non-pathogenic microbes that exert health benefits to the host when administered in adequate quantity. Currently, research is being conducted on the molecular events and applications of probiotics. The suggested mechanisms by which probiotics exert their action include; competitive exclusion of pathogens for adhesion sites, improvement of the intestinal mucosal barrier, gut immunomodulation, and neurotransmitter synthesis. This review emphasizes the recent advances in the health benefits of probiotics and the emerging applications of probiotics in the food industry. Due to their capability to modulate gut microbiota and attenuate the immune system, probiotics could be used as an adjuvant in hypertension, hypercholesterolemia, cancer, and gastrointestinal diseases. Considering the functional properties, probiotics are being used in the dairy, beverage, and baking industries. After developing the latest techniques by researchers, probiotics can now survive within harsh processing conditions and withstand GI stresses quite effectively. Thus, the potential of probiotics can efficiently be utilized on a commercial scale in food processing industries.
Collapse
Affiliation(s)
- Anam Latif
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Aamir Shehzad
- UniLaSalle, Univ. Artois, ULR7519 - Transformations & Agro-resources, Normandie Université, Mont-Saint-Aignan, France
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Asna Zahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Waqas Ashraf
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tahreem Riaz
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Mahmood Khan
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Türkiye
- Biotechnology Research and Application Center, Cukurova University, Adana, Türkiye
| | - João Miguel Rocha
- CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Zhang Y, Huang B, Jin J, Xiao Y, Ying H. Recent advances in the application of ionomics in metabolic diseases. Front Nutr 2023; 9:1111933. [PMID: 36726817 PMCID: PMC9884710 DOI: 10.3389/fnut.2022.1111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Trace elements and minerals play a significant role in human health and diseases. In recent years, ionomics has been rapidly and widely applied to explore the distribution, regulation, and crosstalk of different elements in various physiological and pathological processes. On the basis of multi-elemental analytical techniques and bioinformatics methods, it is possible to elucidate the relationship between the metabolism and homeostasis of diverse elements and common diseases. The current review aims to provide an overview of recent advances in the application of ionomics in metabolic disease research. We mainly focuses on the studies about ionomic or multi-elemental profiling of different biological samples for several major types of metabolic diseases, such as diabetes mellitus, obesity, and metabolic syndrome, which reveal distinct and dynamic patterns of ion contents and their potential benefits in the detection and prognosis of these illnesses. Accumulation of copper, selenium, and environmental toxic metals as well as deficiency of zinc and magnesium appear to be the most significant risk factors for the majority of metabolic diseases, suggesting that imbalance of these elements may be involved in the pathogenesis of these diseases. Moreover, each type of metabolic diseases has shown a relatively unique distribution of ions in biofluids and hair/nails from patients, which might serve as potential indicators for the respective disease. Overall, ionomics not only improves our understanding of the association between elemental dyshomeostasis and the development of metabolic disease but also assists in the identification of new potential diagnostic and prognostic markers in translational medicine.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China,*Correspondence: Yan Zhang ✉
| | - Biyan Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiao Jin
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Huimin Ying
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China,Huimin Ying ✉
| |
Collapse
|
7
|
Attenuation of Hyperlipidemia by Medicinal Formulations of Emblica officinalis Synergized with Nanotechnological Approaches. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010064. [PMID: 36671636 PMCID: PMC9854976 DOI: 10.3390/bioengineering10010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The ayurvedic herb Emblica officinalis (E. officinalis) is a gift to mankind to acquire a healthy lifestyle. It has great therapeutic and nutritional importance. Emblica officinalis, also known as Indian gooseberry or Amla, is a member of the Euphorbiaceae family. Amla is beneficial for treating illnesses in all its forms. The most crucial component is a fruit, which is also the most common. It is used frequently in Indian medicine as a restorative, diuretic, liver tonic, refrigerant, stomachic, laxative, antipyretic, hair tonic, ulcer preventive, and for the common cold and fever. Hyperlipidemia is also known as high cholesterol or an increase in one or more lipid-containing blood proteins. Various phytocompounds, including polyphenols, vitamins, amino acids, fixed oils, and flavonoids, are present in the various parts of E. officinalis. E. officinalis has been linked to a variety of pharmacological effects in earlier studies, including hepatoprotective, immunomodulatory, antimicrobial, radioprotective, and hyperlipidemic effects. The amla-derived active ingredients and food products nevertheless encounter challenges such as instability and interactions with other food matrices. Considering the issue from this perspective, food component nanoencapsulation is a young and cutting-edge field for controlled and targeted delivery with a range of preventative activities. The nanoformulation of E. officinalis facilitates the release of active components or food ingredients, increased bioaccessibility, enhanced therapeutic activities, and digestion in the human body. Accordingly, the current review provides a summary of the phytoconstituents of E. officinalis, pharmacological actions detailing the plant E. officinalis's traditional uses, and especially hyperlipidemic activity. Correspondingly, the article describes the uses of nanotechnology in amla therapeutics and functional ingredients.
Collapse
|
8
|
Singh S, Zahoor I, Sharma N, Behl T, Kanojia N, Sehgal A, Mohan S, Almoshari Y, Salawi A, Aleya L, Bungau S. Insights into the pivotal role of statins and its nanoformulations in hyperlipidemia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76514-76531. [PMID: 36161571 DOI: 10.1007/s11356-022-23043-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Hyperlipidemia is the primary cause of heart disorders and has been manifested as the condition with remarkable higher levels of very-low-density lipoproteins, low-density lipoproteins, intermediate-density lipoprotein, triglycerides, and cholesterol in blood circulation. Genetic causes or systemic metabolic illnesses like diabetes mellitus, increased alcohol consumption, hypothyroidism, and primary biliary cirrhosis are several reasons behind development of hyperlipidemia. Higher levels of lipids and lipoproteins in plasma are responsible for various health disorders in human body like occlusion of blood vessels, acute pancreatitis, and reduced artery lumen elasticity. Both primary and secondary prophylaxis of heart disease can be achieved through combination of pharmacologic therapy with therapeutic lifestyle adjustments. Statins which belongs to HMG-CoA reductase inhibitors are preferred for primary prevention of hyperlipidemia particularly for individuals at higher risk of development of heart disease. This review discusses the recent advancements and outcomes of nanoparticle drug carriers for statins in the therapy of hyperlipidemia.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi-248007, Dehradun, Uttarakhand, India
| | - Neha Kanojia
- School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Shahid R, Naik SS, Ramphall S, Rijal S, Prakash V, Ekladios H, Mulayamkuzhiyil Saju J, Mandal N, Kham NI, Hamid P. Neurocognitive Impairment in Cardiovascular Disease Patients Taking Statins Versus Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors: A Systematic Review. Cureus 2022; 14:e30942. [PMID: 36465767 PMCID: PMC9712061 DOI: 10.7759/cureus.30942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
Cardiovascular diseases (CVDs) are prevalent medical conditions affecting millions of people worldwide and are associated with significant morbidity and mortality. The main precursor of CVDs and the related events, such as hypertension and heart failure, is hyperlipidemia, most commonly an increase in low-density lipoproteins. Lipid-lowering drugs are cardinal in the treatment of CVDs. American College of Cardiology and American Heart Association have issued guidelines for lipid-lowering therapy, and statins are first-line medication. In the recent years, a new class of lipid-lowering agents called proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors has been identified as the potential lipid-lowering therapy for the statin-resistant patient. In clinical trials and observational studies, PCSK9 inhibitors and statins are both associated with the development of neurocognitive dysfunction in the older population. This systematic review aims to inquire if there is significant neurocognitive dysfunction associated with statins and PCSK9 inhibitors and compare neurocognitive effects associated with statins with those of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Rabia Shahid
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shaili S Naik
- Internal Medicine, Surat Municipal Institute of Medical Education & Research (SMIMER), Surat, IND
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shivana Ramphall
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Swarnima Rijal
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Vishakh Prakash
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Government Medical College, Kozhikode, IND
| | - Heba Ekladios
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jiya Mulayamkuzhiyil Saju
- Internal Medicine, Sree Narayana Institute of Medical Sciences, Ernakulam, IND
- General Surgery, Government Medical College, Thiruvananthapuram, IND
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Naishal Mandal
- Internal Medicine, Surat Municipal Institute of Medical Education & Research (SMIMER), Surat, IND
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nang I Kham
- Hospital Medicine, University of Medicine 1, Yangon, Yangon, MMR
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
10
|
Significance of stressor media on the stability of statins: a critical assessment. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02306-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Sun Y, Ren J, Zhu S, Zhang Z, Guo Z, An J, Yin B, Ma Y. The Effects of Sesamin Supplementation on Obesity, Blood Pressure, and Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Endocrinol (Lausanne) 2022; 13:842152. [PMID: 35311241 PMCID: PMC8931661 DOI: 10.3389/fendo.2022.842152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Aims Sesamin, the main lignin constituent of sesame, plays a pivotal role in regulating physical state. Some studies have evidenced that the supplementation of sesamin may decrease cardiovascular disease risk. The goal of this systematic review was to summarize evidence of the effects of sesamin supplementation on obesity, blood pressure, and lipid profile in humans by performing a meta-analysis of randomized controlled trials. Data Synthesis Five databases (PubMed, Cochrane Library, EMBASE, Web of Science, and Scopus) were searched electronically from inception to July 2021 to identify randomized controlled trials that assessed the impact of sesamin on obesity, blood pressure, and lipid profile. Weighted mean difference (WMD) and standard deviation (SD) were used to present the major outcomes. Conclusions Seven trials (n = 212 participants) were included in the overall analysis. Results showed that sesamin supplementation caused a great reduction in TC (WMD: -10.893 mg/dl, 95% CI: -19.745 to -2.041, p = 0.016), LDL-c (WMD: -8.429 mg/dl, 95% CI: -16.086 to -0.771, p = 0.031), and SBP (WMD: -3.662 mmHg, 95% CI: -6.220 to -1.105, p = 0.005), whereas it had no effect on HDL-c, TG, DBP, or weight. Subgroup analysis showed that duration, parallel design, and unhealthy status can affect TC, LDL-c, and SBP evidently. We did not discover a strong link between indicators' changes and duration of supplementation. Sesamin can be used as an obtainable dietary supplement to improve blood pressure and blood lipids, and further as a health product to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Yiting Sun
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Siqi Zhu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Zhenao Zhang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Zihao Guo
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Jiaqi An
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|