1
|
Abstract
PURPOSE OF REVIEW As a chronic and relapsing disease, obesity impairs metabolism and causes cardiovascular diseases. Although behavioral modification is important for the treatment of obesity, it is difficult to achieve an ideal weight or sustain the process of long-term weight loss. Therefore, the obesity control guidelines strongly recommend lifestyle interventions along with medical treatment for patients who are overweight. There is sufficient evidence supporting that pharmacotherapy in combination with behavior-based interventions can result in significant weight loss and improved cardiometabolism. RECENT FINDINGS Recent meta-analyses of new anti-obesity drugs and their weight-loss efficacy have shown that the overall placebo-subtracted weight reduction (%) for at least 12 months ranged from 2.9 to 6.8% for the following drugs: phentermine/topiramate (6.8%), liraglutide (5.4%), naltrexone/bupropion (4.0%), orlistat (2.9%), and lorcaserin (3.1%). However, very recently, on February 13, 2020, the US Food and Drug Administration (FDA) ordered the withdrawal of lorcaserin from markets, as a clinical trial to assess drug safety showed an increased risk of cancer. Currently, the anti-obesity medications that have been approved by the FDA for chronic weight management are orlistat, phentermine/topiramate, naltrexone/bupropion, and liraglutide. However, they are costly and may have adverse effects in some individuals. Therefore, drug therapy should be initiated in obese individuals after weighing its benefits and risks. One of the strategies for long-term obesity control is that anti-obesity medications should be tailored for specific patients depending on their chronic conditions, comorbidities, and preferences.
Collapse
Affiliation(s)
- Young Jin Tak
- Department of Family Medicine, Pusan National University Hospital, Busan, 49241, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, 49241, South Korea
| | - Sang Yeoup Lee
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, 50612, South Korea.
- Department of Medical Education, Pusan National University School of Medicine, Yangsan, 50612, South Korea.
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, 50612, South Korea.
| |
Collapse
|
2
|
Mathur N, Mehdi SF, Anipindi M, Aziz M, Khan SA, Kondakindi H, Lowell B, Wang P, Roth J. Ghrelin as an Anti-Sepsis Peptide: Review. Front Immunol 2021; 11:610363. [PMID: 33584688 PMCID: PMC7876230 DOI: 10.3389/fimmu.2020.610363] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Sepsis continues to produce widespread inflammation, illness, and death, prompting intensive research aimed at uncovering causes and therapies. In this article, we focus on ghrelin, an endogenous peptide with promise as a potent anti-inflammatory agent. Ghrelin was discovered, tracked, and isolated from stomach cells based on its ability to stimulate release of growth hormone. It also stimulates appetite and is shown to be anti-inflammatory in a wide range of tissues. The anti-inflammatory effects mediated by ghrelin are a result of both the stimulation of anti-inflammatory processes and an inhibition of pro-inflammatory forces. Anti-inflammatory processes are promoted in a broad range of tissues including the hypothalamus and vagus nerve as well as in a broad range of immune cells. Aged rodents have reduced levels of growth hormone (GH) and diminished immune responses; ghrelin administration boosts GH levels and immune response. The anti-inflammatory functions of ghrelin, well displayed in preclinical animal models of sepsis, are just being charted in patients, with expectations that ghrelin and growth hormone might improve outcomes in patients with sepsis.
Collapse
Affiliation(s)
- Nimisha Mathur
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Syed F. Mehdi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Manasa Anipindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Sawleha A. Khan
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Hema Kondakindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Barbara Lowell
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jesse Roth
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
3
|
Tsilingiris D, Liatis S, Dalamaga M, Kokkinos A. The Fight Against Obesity Escalates: New Drugs on the Horizon and Metabolic Implications. Curr Obes Rep 2020; 9:136-149. [PMID: 32388792 DOI: 10.1007/s13679-020-00378-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW There is currently a steep rise in the global prevalence of obesity. Pharmaceutical therapy is a valuable component of conservative obesity therapy. Herein, medications currently in the phase of preclinical or clinical testing are reviewed, along with an overview of the mechanisms that regulate energy intake and expenditure. In addition, the current and potential future directions of obesity drug therapy are discussed. RECENT FINDINGS Although the current arsenal of obesity pharmacotherapy is limited, a considerable number of agents that exert their actions through a variety of pharmacodynamic targets and mechanisms are in the pipeline. This expansion shapes a potential near future of obesity conservative management, characterized by tailored combined therapeutic regimens, targeting not only weight loss but also improved overall health outcomes. The progress regarding the elucidation of the mechanisms which regulate the bodily energy equilibrium has led to medications which mimic hormonal adaptations that follow bariatric surgery, in the quest for a "Medical bypass." These, combined with agents which could increase energy expenditure, point to a brilliant future in the conservative treatment of obesity.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Stavros Liatis
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 17 Ag. Thoma Street, 11527, Athens, Greece.
| |
Collapse
|
4
|
A systematic review of the present and future of non-alcoholic fatty liver disease. Clin Exp Hepatol 2018; 4:165-174. [PMID: 30324141 PMCID: PMC6185929 DOI: 10.5114/ceh.2018.78120] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the Western world. Ongoing research has furthered our understanding of NAFLD, the nature of progression of this disease, and its impact on morbidity and mortality. An active form of NAFLD is non-alcoholic steatohepatitis (NASH); it is the most severe subtype, without any current recommended therapies, according to the European Medicines Agency. The development of new therapies presents challenges, notably due to the slow progression of NASH and the clinically relevant endpoints. Correlating new data with effective treatment regimens is an emerging challenge, which will increase our understanding of the factors affecting the NAFLD course. This can enable more appropriate non-invasive prognostic assessments, which can focus on specifically at-risk NAFLD populations for tailored individual treatment. This review article aims to highlight the current developments in the field of NAFLD: pathogenesis, epidemiology, diagnosis, clinical features, and available treatment, including novel targets and therapies.
Collapse
|
5
|
Hope DCD, Tan TMM, Bloom SR. No Guts, No Loss: Toward the Ideal Treatment for Obesity in the Twenty-First Century. Front Endocrinol (Lausanne) 2018; 9:442. [PMID: 30158899 PMCID: PMC6104129 DOI: 10.3389/fendo.2018.00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/17/2018] [Indexed: 12/25/2022] Open
Abstract
Over the last century, our knowledge of the processes which control appetite and weight regulation has developed significantly. The understanding of where gut hormones fit into the control of energy homeostasis in addition to the rapid advancement of pharmacotherapeutics has paved the way for the development of novel gut hormone analogs to target weight loss. Currently, bariatric surgery remains the most efficacious treatment for obesity. The emergence of gut hormone analogs may provide a useful non-surgical addition to the armamentarium in treating obesity. Simply targeting single gut hormone pathways may be insufficiently efficacious, and combination/multiple-agonist approaches may be necessary to obtain the results required for clear clinical impact.
Collapse
Affiliation(s)
- David C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Tricia M M Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Khatib MN, Shankar AH, Kirubakaran R, Gaidhane A, Gaidhane S, Simkhada P, Quazi Syed Z. Ghrelin for the management of cachexia associated with cancer. Cochrane Database Syst Rev 2018; 2:CD012229. [PMID: 29489032 PMCID: PMC6491219 DOI: 10.1002/14651858.cd012229.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cancer sufferers are amongst the most malnourished of all the patient groups. Studies have shown that ghrelin, a gut hormone can be a potential therapeutic agent for cachexia (wasting syndrome) associated with cancer. A variety of mechanisms of action of ghrelin in people with cancer cachexia have been proposed. However, safety and efficacy of ghrelin for cancer-associated cachexia have not been systematically reviewed. The aim of this review was to assess whether ghrelin is associated with better food intake, body composition and survival than other options for adults with cancer cachexia. OBJECTIVES To assess the efficacy and safety of ghrelin in improving food intake, body composition and survival in people with cachexia associated with cancer. SEARCH METHODS We searched CENTRAL, MEDLINE and Embase without language restrictions up to July 2017. We also searched for ongoing studies in trials registers, performed handsearching, checked bibliographic references of relevant articles and contacted authors and experts in the field to seek potentially relevant research. We applied no restrictions on language, date, or publication status. SELECTION CRITERIA We included randomised controlled (parallel-group or cross-over) trials comparing ghrelin (any formulation or route of administration) with placebo or an active comparator in adults (aged 18 years and over) who met any of the international criteria for cancer cachexia. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for eligibility. Two review authors then extracted data and assessed the risk of bias for individual studies using standard Cochrane methodology. For dichotomous variables, we planned to calculate risk ratio with 95% confidence intervals (CI) and for continuous data, we planned to calculate mean differences (MD) with 95% CI. We assessed the evidence using GRADE and created 'Summary of findings' tables. MAIN RESULTS We screened 926 individual references and identified three studies that satisfied the inclusion criteria. Fifty-nine participants (37 men and 22 women) aged between 54 and 78 years were randomised initially, 47 participants completed the treatment. One study had a parallel design and two had a cross-over design. The studies included people with a variety of cancers and also differed in the dosage, route of administration, frequency and duration of treatment.One trial, which compared ghrelin with placebo, found that ghrelin improved food intake (very low-quality evidence) and had no adverse events (very low-quality evidence). Due to unavailability of data we were unable to report on comparisons for ghrelin versus no treatment or alternative experimental treatment modalities, or ghrelin in combination with other treatments or ghrelin analogues/ghrelin mimetics/ghrelin potentiators. Two studies compared a higher dose of ghrelin with a lower dose of ghrelin, however due to differences in study designs and great diversity in the treatment provided we did not pool the results. In both trials, food intake did not differ between participants on higher-dose and lower-dose ghrelin. None of the included studies assessed data on body weight. One study reported higher adverse events with a higher dose as compared to a lower dose of ghrelin.All studies were at high risk of attrition bias and bias for size of the study. Risk of bias in other domains was unclear or low.We rated the overall quality of the evidence for primary outcomes (food intake, body weight, adverse events) as very low. We downgraded the quality of the evidence due to lack of data, high or unclear risk of bias of the studies and small study size. AUTHORS' CONCLUSIONS There is insufficient evidence to be able to support or refute the use of ghrelin in people with cancer cachexia. Adequately powered randomised controlled trials focusing on evaluation of safety and efficacy of ghrelin in people with cancer cachexia is warranted.
Collapse
Affiliation(s)
- Mahalaqua Nazli Khatib
- Division of Evidence Synthesis; School of Epidemiology and Public Health & Department of Physiology, Datta Meghe Institute of Medical Sciences, Sawangi Meghe, Wardha, Maharashtra, India, 442004
| | | | | | | | | | | | | |
Collapse
|
7
|
Benedict M, Zhang X. Non-alcoholic fatty liver disease: An expanded review. World J Hepatol 2017; 9:715-732. [PMID: 28652891 PMCID: PMC5468341 DOI: 10.4254/wjh.v9.i16.715] [Citation(s) in RCA: 480] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses the simple steatosis to more progressive steatosis with associated hepatitis, fibrosis, cirrhosis, and in some cases hepatocellular carcinoma. NAFLD is a growing epidemic, not only in the United States, but worldwide in part due to obesity and insulin resistance leading to liver accumulation of triglycerides and free fatty acids. Numerous risk factors for the development of NAFLD have been espoused with most having some form of metabolic derangement or insulin resistance at the core of its pathophysiology. NAFLD patients are at increased risk of liver-related as well as cardiovascular mortality, and NAFLD is rapidly becoming the leading indication for liver transplantation. Liver biopsy remains the gold standard for definitive diagnosis, but the development of noninvasive advanced imaging, biochemical and genetic tests will no doubt provide future clinicians with a great deal of information and opportunity for enhanced understanding of the pathogenesis and targeted treatment. As it currently stands several medications/supplements are being used in the treatment of NAFLD; however, none seem to be the "magic bullet" in curtailing this growing problem yet. In this review we summarized the current knowledge of NAFLD epidemiology, risk factors, diagnosis, pathogenesis, pathologic changes, natural history, and treatment in order to aid in further understanding this disease and better managing NAFLD patients.
Collapse
Affiliation(s)
- Mark Benedict
- Mark Benedict, Xuchen Zhang, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xuchen Zhang
- Mark Benedict, Xuchen Zhang, Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
8
|
Characterization of Ghrelin O-Acyltransferase (GOAT) in goldfish (Carassius auratus). PLoS One 2017; 12:e0171874. [PMID: 28178327 PMCID: PMC5298278 DOI: 10.1371/journal.pone.0171874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Ghrelin is the only known hormone posttranslationally modified with an acylation. This modification is crucial for most of ghrelin’s physiological effects and is catalyzed by the polytopic enzyme ghrelin O-acyltransferase (GOAT). The aim of this study was to characterize GOAT in a teleost model, goldfish (Carassius auratus). First, the full-length cDNA sequence was obtained by RT-PCR and rapid amplification of cDNA ends methods. Two highly homologous cDNAs of 1491 and 1413 bp, respectively, named goat-V1 and goat-V2 were identified. Deduced protein sequences (393 and 367 amino acids, respectively) are predicted to present 11 and 9 transmembrane regions, respectively, and both contain two conserved key residues proposed to be involved in catalysis: asparagine 273 and histidine 304. RT-qPCR revealed that both forms of goat mRNAs show a similar widespread tissue distribution, with the highest expression in the gastrointestinal tract and gonads and less but considerable expression in brain, pituitary, liver and adipose tissue. Immunostaining of intestinal sections showed the presence of GOAT immunoreactive cells in the intestinal mucosa, some of which colocalize with ghrelin. Using an in vitro approach, we observed that acylated ghrelin downregulates GOAT gene and protein levels in cultured intestine in a time-dependent manner. Finally, we found a rhythmic oscillation of goat mRNA expression in the hypothalamus, pituitary and intestinal bulb of goldfish fed at midday, but not at midnight. Together, these findings report novel data characterizing GOAT, and offer new information about the ghrelinergic system in fish.
Collapse
|
9
|
Abstract
We are exploring physiological importance of the ghrelin system in vertebrates. This review summarizes current knowledge of the ghrelin system in amphibians. Our study on ghrelin precursor in various amphibians revealed that the third amino acid with acyl modification has changed to threonine (Thr-3) instead of serine (Ser-3) only in the genus, Rana. Functional analyses of the ghrelin receptor in three species of amphibians, Japanese fire belly newt, American bullfrog and Japanese tree frog revealed that ghrelin and GHS-R1a agonists increase intracellular Ca2+ concentration in HEK293 cells expressing each receptor, and that ligand selectivity of ghrelin with Ser-3 and Thr-3 that expected to see in the bullfrog receptor was not found in the two frog receptors, but in the newt receptor. The brain, gastrointestinal tract, kidney and gonad highly express GHS-R1a mRNA. In frogs and newt, fasting did not increase GHS-R1a mRNA expression in the brain, but in the stomach. However, intraperitoneal (IP) injection of ghrelin did not affect food intake. A dehydration treatment increased GHS-R1a mRNA expression in the brain, stomach and ventral skin in the tree frog. However, intracerebroventricular (ICV) injection of ghrelin did not affect water absorption. Ghrelin did not influence gastrointestinal motility in in vitro studies using smooth muscle strips of the bullfrog and newt in vitro. These results suggest that the ghrelin system is present in various amphibians, but little is known about the physiological functions except hypophyseal hormone secretion.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita 565-8565, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Suita 565-8565, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita 565-8565, Japan
| |
Collapse
|