1
|
Huang D, Song F, Luo B, Wang S, Qin T, Lin Z, Hou T, Ma H. Using automatic speckle tracking imaging to measure diaphragm excursion and predict the outcome of mechanical ventilation weaning. Crit Care 2023; 27:18. [PMID: 36639710 PMCID: PMC9840291 DOI: 10.1186/s13054-022-04288-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction The speckle tracking ultrasound is an innovative technology enabling distinct assessment of diaphragmatic movement, yet the relative data are scarce. In this pilot study, we sought to evaluate the predictive value of the weaning outcome of automatic speckle tracking in assessing diaphragm excursion. Methods This is a prospective, multicenter, observational study. A total of 160 critically ill subjects underwent speckle-tracking ultrasonography of the right/left hemidiaphragm before the spontaneous breathing trial. Meanwhile, the diaphragm excursion and velocity values were measured manually by M-mode ultrasound. Patients were divided into weaning-failure and weaning-success groups. The correlation was assessed between automatic and manual measurement, and the diagnostic efficacy of automatic measured excursion and velocity for predicting weaning outcome was analyzed. Results A total of 88 patients completed the follow-up of the weaning outcome. The overall incidence of weaning failure was 43.18%. There was a significant correlation between the automatic measurement of mean excursion and velocity assessed by speckle tracking imaging and manual measurement (R 0.69 and 0.65, respectively). Receiver operating characteristic (ROC) curve analysis showed that the mean excursion and diaphragmatic velocity exhibited high diagnostic values for prolonged weaning [area under the ROC curve (AUROC) 0.824 and 0.786, respectively]. The diaphragmatic excursion showed moderate diagnostic value for predicting both weaning failure and in-hospital death/withdrawal of treatment (AUROC 0.659 and 0.653, respectively). Conclusion Automatic speckle tracking analysis of the diaphragm showed high consistency with conventional manual ultrasound measures. Diaphragmatic excursion and its excursion velocity helped predict mechanical ventilation weaning failure, prolonged weaning, as well as in-hospital adverse outcomes, which served as a reliable tool in guiding clinical weaning strategy. Key message Automatic speckle tracking analysis of the diaphragm showed high consistency with conventional manual ultrasound measures. Diaphragmatic excursion and its excursion velocity helped predict mechanical ventilation weaning failure, prolonged weaning, as well as in-hospital adverse outcomes. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-04288-3.
Collapse
Affiliation(s)
- Daozheng Huang
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 China
- Office of Organ Procurement Organizations, Medical Department, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong China
| | - Feier Song
- Department of Emergency Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 China
| | - Bangjun Luo
- Department of Critical Care Medicine, Guangzhou Panyu Central Hospital, Guangzhou, 510080 China
| | - Shouhong Wang
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 China
| | - Tiehe Qin
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 China
| | - Zhuandi Lin
- Department of Critical Care Medicine, Guangzhou Panyu Central Hospital, Guangzhou, 510080 China
| | - Tieying Hou
- Guangdong Clinical Laboratory Center, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong China
- Medical Department, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 Guangdong China
| | - Huan Ma
- Department of Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080 China
| |
Collapse
|
2
|
Ji T, Feng Z, Sun E, Ng SK, Su L, Zhang Y, Han D, Han-Oh S, Iordachita I, Lee J, Kazanzides P, Bell MAL, Wong J, Ding K. A phantom-based analysis for tracking intra-fraction pancreatic tumor motion by ultrasound imaging during radiation therapy. Front Oncol 2022; 12:996537. [PMID: 36237341 PMCID: PMC9552199 DOI: 10.3389/fonc.2022.996537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeIn this study, we aim to further evaluate the accuracy of ultrasound tracking for intra-fraction pancreatic tumor motion during radiotherapy by a phantom-based study.MethodsTwelve patients with pancreatic cancer who were treated with stereotactic body radiation therapy were enrolled in this study. The displacement points of the respiratory cycle were acquired from 4DCT and transferred to a motion platform to mimic realistic breathing movements in our phantom study. An ultrasound abdominal phantom was placed and fixed in the motion platform. The ground truth of phantom movement was recorded by tracking an optical tracker attached to this phantom. One tumor inside the phantom was the tracking target. In the evaluation of the results, the monitoring results from the ultrasound system were compared with the phantom motion results from the infrared camera. Differences between infrared monitoring motion and ultrasound tracking motion were analyzed by calculating the root-mean-square error.ResultsThe 82.2% ultrasound tracking motion was within a 0.5 mm difference value between ultrasound tracking displacement and infrared monitoring motion. 0.7% ultrasound tracking failed to track accurately (a difference value > 2.5 mm). These differences between ultrasound tracking motion and infrared monitored motion do not correlate with respiratory displacements, respiratory velocity, or respiratory acceleration by linear regression analysis.ConclusionsThe highly accurate monitoring results of this phantom study prove that the ultrasound tracking system may be a potential method for real-time monitoring targets, allowing more accurate delivery of radiation doses.
Collapse
Affiliation(s)
- Tianlong Ji
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ziwei Feng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Edward Sun
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sook Kien Ng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Lin Su
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Dong Han
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sarah Han-Oh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Iulian Iordachita
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Peter Kazanzides
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
- *Correspondence: Kai Ding,
| |
Collapse
|
3
|
Li W, Ye X, Huang Y, Dong Y, Chen X, Yang Y. An integrated ultrasound imaging and abdominal compression device for respiratory motion management in radiation therapy. Med Phys 2022; 49:6334-6345. [PMID: 35950934 DOI: 10.1002/mp.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiotherapy to tumors in the abdomen is challenging because of the significant organ movement and tissue deformation caused by respiration. PURPOSE A motion management strategy that integrated ultrasound (US) imaging with abdominal compression was developed and evaluated, where US was used to real-time monitor organ motion after abdominal compression. METHODS A device that combined a US imaging system and an abdominal compression plate (ACP) was developed. Twenty-one healthy volunteers were involved to evaluate the motion management efficacy. Each volunteer was immobilized on a flat bench by the device. Abdominal US data were successively collected with and without ACP compression and experiments were repeated three times to verify the imaging reproducibility. A template matching algorithm based on normalized cross correlation (NCC) was implemented to track the targets (vessels in the liver, pancreas and stomach) automatically. The matching algorithm was validated by comparing with the manual references. Automatic tracking was judged as failed if the center of mass difference from manual tracking was beyond a failure threshold. Based on the locations obtained through the template matching algorithm, the motion correlation between liver and pancreas/stomach was investigated using Pearson correlation test. Paired Student's t-test was used to analyze the difference between the results without and with ACP compression. RESULTS The liver motion amplitude over all 21 volunteers was significantly (p<0.001) reduced from 14.9 ± 5.5/3.4 ± 1.8 mm in superior-inferior (SI)/anterior-posterior (AP) direction before ACP compression to 7.3 ± 1.5/1.6 ± 0.7 mm after ACP compression. The mean liver motion standard deviation before compression was on average 2.8/1.4 mm in SI/AP direction, and was significantly (p<0.001) reduced to 0.9/0.4 mm after compression. The failure rates of automatic tracking for liver, pancreas and stomach were reduced for failure thresholds of 1-5 mm after applying ACP. The Pearson correlation coefficients between liver and pancreas/stomach were 0.98/0.97 without ACP and 0.96/0.94 with ACP in SI direction, and were 0.68/0.68 and 0.43/0.42 in AP direction. The motion prediction errors for pancreas/stomach with ACP have significantly (p<0.001) reduced to 0.45 ± 0.36/0.52 ± 0.43 mm from 0.69 ± 0.56/0.71 ± 0.66 mm without ACP in SI direction, and to 0.38 ± 0.33/0.39 ± 0.27 mm from 0.44 ± 0.35/0.61 ± 0.59 mm in AP direction. CONCLUSIONS The proposed strategy that combines real-time US imaging and abdominal compression has the potential to reduce the abdominal organ motion while improving both target tracking reliability and motion reproducibility. Furthermore, the observed correlation between liver and pancreas/stomach motion indicates the possibility of indirect pancreas/stomach tracking using liver markers as tracking surrogates. The strategy is expected to provide an alternative for respiratory motion management in the radiation treatment of abdominal tumors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xianjun Ye
- Department of Ultrasound Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yunwen Huang
- Department of Radiation Oncology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuyan Dong
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuemin Chen
- Health Management Center, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yidong Yang
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Department of Radiation Oncology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
4
|
Gao J, Rubin JM, Chen J, O'Dell M. Ultrasound Elastography to Assess Botulinum Toxin A Treatment for Post-stroke Spasticity: A Feasibility Study. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1094-1102. [PMID: 30898386 DOI: 10.1016/j.ultrasmedbio.2018.10.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
The aim of the study was to evaluate the feasibility of using ultrasound elastography to assess the effect of botulinum toxin A (BoNT-A) treatment on post-stroke spasticity of the upper limb. In this prospective study, we performed ultrasound elastography (strain imaging and acoustic radiation force impulse-based shear wave elastography) of the spastic biceps brachii muscle in seven patients (five men and two women, mean age: 45y) who underwent BoNT-A injection treatment for post-stroke spasticity of the upper limb. We measured ultrasound elasticity parameters including axial strain ratio (SR) (SR = muscle strain/reference strain), longitudinal SR and shear wave velocity of the biceps muscle immediately before and 17-30 d (mean: 22 d) after BoNT-A injection. Statistical analyses included a two-tailed paired t-test to examine the difference in ultrasound elasticity parameters of bilateral biceps muscles before and after BoNT-A treatment and a Spearman rank correlation coefficient (rs) to analyze the correlation of ultrasound elasticity parameters to clinical assessment with the Modified Ashworth Scale (MAS) and Tardieu Scale (TS). The difference in ultrasound elasticity parameters before and after BoNT-A treatment was significant (p < 0.05) in the treated spastic muscle. The correlation of ultrasound elasticity parameters with MAS and the angle of catch and range of motion in TS were also significant (rs = 0.55-0.95, p < 0.05). Our results suggest that ultrasound elastography is feasible in assessment of the effectiveness of BoNT-A treatment for post-stroke spasticity of the upper limb.
Collapse
Affiliation(s)
- Jing Gao
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, New York, USA; Rocky Vista University, Ivins, Utah, USA.
| | | | - Johnson Chen
- Department of Radiology, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Michael O'Dell
- Department of Rehabilitation Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
5
|
Dieterich S, Green O, Booth J. SBRT targets that move with respiration. Phys Med 2018; 56:19-24. [PMID: 30527085 DOI: 10.1016/j.ejmp.2018.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022] Open
Abstract
The technology of treating SBRT targets that move with respiration has undergone profound changes over the last 20 years. This review article summarizes modern image guidance to localize the target in real-time to account for intra-fraction motion. The state-of-the art respiratory motion compensation techniques will be discussed, including the determination and application of appropriate margins. This includes compression, gating and breath-hold, including the use of audiovisual feedback to manage motion. Approaches to real-time tracking include the use of hybrid external-internal imaging to build a skin-to-tumor correlation, which can then be tracked with a mobile robot (CyberKnife Synchrony, clinical since 2003) as well as the use of non-ionizing electromagnetic tumor surrogate localization followed by real-time tracking with a moving MLC (in clinical trials in Europe and Australia). Lastly, the clinical application of real-time MRI soft-tissue imaging to deliver adaptive, iso-toxic treatments will be presented.
Collapse
Affiliation(s)
| | - Olga Green
- Washington University St. Louis, United States
| | | |
Collapse
|
6
|
Mori S, Knopf A, Umegaki K. Motion management in particle therapy. Med Phys 2018; 45:e994-e1010. [DOI: 10.1002/mp.12679] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shinichiro Mori
- Research Center for Charged Particle Therapy National Institute of Radiological Sciences Chiba 263‐8555Japan
| | - Antje‐Christin Knopf
- Department of Radiation Oncology University of Groningen University Medical Center Groningen Groningen 9713 GZ The Netherlands
| | - Kikuo Umegaki
- Faculty of Engineering Division of Quantum Science and Engineering Hokkaido University Sapporo 060‐8628 Japan
| |
Collapse
|
7
|
Noorda YH, Bartels LW, Viergever MA, Pluim JPW. Subject-specific liver motion modeling in MRI: a feasibility study on spatiotemporal prediction. Phys Med Biol 2017; 62:2581-2597. [DOI: 10.1088/1361-6560/aa5e96] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Rubin JM, Horowitz JC, Sisson TH, Kim K, Ortiz LA, Hamilton JD. Ultrasound Strain Measurements for Evaluating Local Pulmonary Ventilation. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2525-2531. [PMID: 27520395 PMCID: PMC5497456 DOI: 10.1016/j.ultrasmedbio.2016.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Local lung function is difficult to evaluate, because most lung function estimates are either global in nature (e.g., pulmonary function tests) or require equipment that cannot be used at a patient's bedside, such as computed tomography. Yet, local function measurements would be highly desirable for many reasons. Recently, we were able to track displacements of the lung surface during breathing. We have now extended these results to measuring lung strains during respiration as a means of assessing local lung ventilation. We studied two human volunteers and 14 mice with either normal lung function or experimentally induced pulmonary fibrosis. The differences in strains between the control, normal mice and those with pulmonary fibrosis were significant (p < 0.0001), whereas the strains measured in the human volunteers closely matched linear strains predicted from the literature. It may be possible to use ultrasonography to assess local lung ventilation in a clinical setting.
Collapse
Affiliation(s)
| | | | | | - Kang Kim
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Luis A Ortiz
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
9
|
Goutman SA, Hamilton JD, Swihart B, Foerster B, Feldman EL, Rubin JM. Speckle tracking as a method to measure hemidiaphragm excursion. Muscle Nerve 2016; 55:125-127. [PMID: 27533320 DOI: 10.1002/mus.25380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2016] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Diaphragm excursion measured via ultrasound may be an important imaging outcome measure of respiratory function. We developed a new method for measuring diaphragm movement and compared it to the more traditional M-mode method. METHODS Ultrasound images of the right and left hemidiaphragms were collected to compare speckle tracking and M-mode measurements of diaphragm excursion. Speckle tracking was performed using EchoInsight (Epsilon Imaging, Ann Arbor, Michigan). RESULTS Six healthy subjects without a history of pulmonary diseases were included in this proof-of-concept study. Speckle tracking of the diaphragm is technically possible. Unlike M-mode, speckle tracking carries the advantage of reliable visualization and measurement of the left hemidiaphragm. CONCLUSIONS Speckle tracking accounted for diaphragm movement simultaneously in the cephalocaudad and mediolateral directions, unlike M-mode, which is 1-dimensional. Diaphragm speckle tracking may represent a novel, more robust method for measuring diaphragm excursion, especially for the left hemidiaphragm. Muscle Nerve 55: 125-127, 2017.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan, 48109, USA
| | - James D Hamilton
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Blake Swihart
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan, 48109, USA
| | - Bradley Foerster
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Ann Arbor Veterans Administration Healthcare System, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan, 48109, USA.,A. Alfred Taubman Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan M Rubin
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
O'Shea T, Bamber J, Fontanarosa D, van der Meer S, Verhaegen F, Harris E. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol 2016; 61:R90-137. [PMID: 27002558 DOI: 10.1088/0031-9155/61/8/r90] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.
Collapse
Affiliation(s)
- Tuathan O'Shea
- Joint Department of Physics, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, London SM2 5NG, UK
| | | | | | | | | | | |
Collapse
|
11
|
Rubin JM, Horowitz JC, Sisson TH, Kim K, Ortiz LA, Hamilton JD. Ultrasound Strain Measurements for Evaluating Local Pulmonary Ventilation. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM : [PROCEEDINGS]. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 2015; 2015:10.1109/ULTSYM.2015.0181. [PMID: 26635917 PMCID: PMC4666290 DOI: 10.1109/ultsym.2015.0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Local lung function is difficult to evaluate, because most lung function estimates are either global in nature, e.g. pulmonary function tests, or require equipment that cannot be used at a patient's bedside, such as computed tomograms. Yet, local function measurements would be highly desirable for many reasons. In a recent publication [1], we were able to track displacements of the lung surface during breathing. We have now extended these results to measuring lung strains during respiration as a means of assessing local lung ventilation. We studied two normal human volunteers and 12 mice with either normal lung function or experimentally induced pulmonary fibrosis. The difference in strains between the control, normal mice and those with pulmonary fibrosis was significant (p < 0.02), while the strains measured in the human volunteers closely matched linear strains predicted from the literature. Ultrasonography may be able to assess local lung ventilation.
Collapse
Affiliation(s)
| | | | | | - Kang Kim
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
12
|
Ravichandran L, Wick CA, McClellan JH, Liu T, Tridandapani S. Detection of quiescent cardiac phases in echocardiography data using nonlinear filtering and boundary detection techniques. J Digit Imaging 2015; 27:625-32. [PMID: 24859726 DOI: 10.1007/s10278-014-9702-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We describe an algorithm to detect cardiac quiescence within a heartbeat using nonlinear filtering and boundary detection techniques in echocardiography images. The motivation for detection of these quiescent phases is to provide improved cardiac gating to obtain motion-artifact-free images of the heart at cardiac computed tomography (CT). Currently, cardiac gating is provided through electrocardiography (ECG), which does not provide information about the instantaneous mechanical state of the heart. Our goal is to test if information about the actual mechanical motion of the heart obtained from B-mode echocardiographic data could potentially be used for gating purposes. The nonlinear filtering algorithm presented involves anisotropic diffusion to smoothen the homogeneous regions of the B-mode images while preserving image edges that represent myocardial boundaries. Following this, we detect the boundary of a particular region of interest (ROI) using a thresholding step. The positional changes of this ROI are then observed for quiescent phases over multiple cardiac cycles using the ECG's R-R interval. In a pilot study, seven subjects were imaged in the apical, four-chamber view, and quiescence of the interventricular septum was primarily observed in the diastolic region of the ECG signal. However, the position and length of quiescence vary across multiple heartbeats for the same individual and for different individuals as well. The center of quiescence for the seven patients ranged from 51 to 84 % and did not show a trend with heart rates, which ranged from 54 to 83 beats per minute. The gating intervals based on such analysis of echocardiographic signals could potentially optimize cardiac CT gating.
Collapse
|
13
|
Banerjee J, Klink C, Peters ED, Niessen WJ, Moelker A, van Walsum T. Fast and robust 3D ultrasound registration – Block and game theoretic matching. Med Image Anal 2015; 20:173-83. [DOI: 10.1016/j.media.2014.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 11/03/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
|
14
|
Lediju Bell MA, Sen HT, Iordachita I, Kazanzides P, Wong J. In vivo reproducibility of robotic probe placement for a novel ultrasound-guided radiation therapy system. J Med Imaging (Bellingham) 2014; 1:025001. [PMID: 26158038 DOI: 10.1117/1.jmi.1.2.025001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 11/14/2022] Open
Abstract
Ultrasound can provide real-time image guidance of radiation therapy, but the probe-induced tissue deformations cause local deviations from the treatment plan. If placed during treatment planning, the probe causes streak artifacts in required computed tomography (CT) images. To overcome these challenges, we propose robot-assisted placement of an ultrasound probe, followed by replacement with a geometrically identical, CT-compatible model probe. In vivo reproducibility was investigated by implanting a canine prostate, liver, and pancreas with three 2.38-mm spherical markers in each organ. The real probe was placed to visualize the markers and subsequently replaced with the model probe. Each probe was automatically removed and returned to the same position or force. Under position control, the median three-dimensional reproducibility of marker positions was 0.6 to 0.7 mm, 0.3 to 0.6 mm, and 1.1 to 1.6 mm in the prostate, liver, and pancreas, respectively. Reproducibility was worse under force control. Probe substitution errors were smallest for the prostate (0.2 to 0.6 mm) and larger for the liver and pancreas (4.1 to 6.3 mm), where force control generally produced larger errors than position control. Results indicate that position control is better than force control for this application, and the robotic approach has potential, particularly for relatively constrained organs and reproducibility errors that are smaller than established treatment margins.
Collapse
Affiliation(s)
- Muyinatu A Lediju Bell
- Johns Hopkins University , Laboratory for Computational Sensing and Robotics, Baltimore, Maryland 21218, United States
| | - H Tutkun Sen
- Johns Hopkins University , Laboratory for Computational Sensing and Robotics, Baltimore, Maryland 21218, United States ; Johns Hopkins University , Department of Computer Science, Baltimore, Maryland 21218, United States
| | - Iulian Iordachita
- Johns Hopkins University , Laboratory for Computational Sensing and Robotics, Baltimore, Maryland 21218, United States ; Johns Hopkins University , Department of Mechanical Engineering, Baltimore, Maryland 21218, United States
| | - Peter Kazanzides
- Johns Hopkins University , Laboratory for Computational Sensing and Robotics, Baltimore, Maryland 21218, United States ; Johns Hopkins University , Department of Computer Science, Baltimore, Maryland 21218, United States
| | - John Wong
- Johns Hopkins University , Department of Radiation Oncology, Baltimore, Maryland 21287, United States
| |
Collapse
|
15
|
O'Shea TP, Garcia LJ, Rosser KE, Harris EJ, Evans PM, Bamber JC. 4D ultrasound speckle tracking of intra-fraction prostate motion: a phantom-based comparison with x-ray fiducial tracking using CyberKnife. Phys Med Biol 2014; 59:1701-20. [PMID: 24619097 DOI: 10.1088/0031-9155/59/7/1701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigates the use of a mechanically-swept 3D ultrasound (3D-US) probe for soft-tissue displacement monitoring during prostate irradiation, with emphasis on quantifying the accuracy relative to CyberKnife® x-ray fiducial tracking. An US phantom, implanted with x-ray fiducial markers was placed on a motion platform and translated in 3D using five real prostate motion traces acquired using the Calypso system. Motion traces were representative of all types of motion as classified by studying Calypso data for 22 patients. The phantom was imaged using a 3D swept linear-array probe (to mimic trans-perineal imaging) and, subsequently, the kV x-ray imaging system on CyberKnife. A 3D cross-correlation block-matching algorithm was used to track speckle in the ultrasound data. Fiducial and US data were each compared with known phantom displacement. Trans-perineal 3D-US imaging could track superior-inferior (SI) and anterior-posterior (AP) motion to ≤0.81 mm root-mean-square error (RMSE) at a 1.7 Hz volume rate. The maximum kV x-ray tracking RMSE was 0.74 mm, however the prostate motion was sampled at a significantly lower imaging rate (mean: 0.04 Hz). Initial elevational (right-left; RL) US displacement estimates showed reduced accuracy but could be improved (RMSE <2.0 mm) using a correlation threshold in the ultrasound tracking code to remove erroneous inter-volume displacement estimates. Mechanically-swept 3D-US can track the major components of intra-fraction prostate motion accurately but exhibits some limitations. The largest US RMSE was for elevational (RL) motion. For the AP and SI axes, accuracy was sub-millimetre. It may be feasible to track prostate motion in 2D only. 3D-US also has the potential to improve high tracking accuracy for all motion types. It would be advisable to use US in conjunction with a small (∼2.0 mm) centre-of-mass displacement threshold in which case it would be possible to take full advantage of the accuracy and high imaging rate capability.
Collapse
Affiliation(s)
- Tuathan P O'Shea
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS foundation Trust, Sutton and London, UK
| | | | | | | | | | | |
Collapse
|