1
|
Liu H, Fan S, Zhang X, Yuan Y, Zhong W, Wang L, Wang C, Zhou Z, Zhang S, Geng Y, Peng G, Wang Y, Zhang K, Yan Q, Luo Y, Shi K, Zhong Z. Antibiotic-resistant characteristics and horizontal gene transfer ability analysis of extended-spectrum β-lactamase-producing Escherichia coli isolated from giant pandas. Front Vet Sci 2024; 11:1394814. [PMID: 39132438 PMCID: PMC11310934 DOI: 10.3389/fvets.2024.1394814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/09/2024] [Indexed: 08/13/2024] Open
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) is regarded as one of the most important priority pathogens within the One Health interface. However, few studies have investigated the occurrence of ESBL-EC in giant pandas, along with their antibiotic-resistant characteristics and horizontal gene transfer abilities. In this study, we successfully identified 12 ESBL-EC strains (8.33%, 12/144) out of 144 E. coli strains which isolated from giant pandas. We further detected antibiotic resistance genes (ARGs), virulence-associated genes (VAGs) and mobile genetic elements (MGEs) among the 12 ESBL-EC strains, and the results showed that 13 ARGs and 11 VAGs were detected, of which bla CTX-M (100.00%, 12/12, with 5 variants observed) and papA (83.33%, 10/12) were the most prevalent, respectively. And ISEcp1 (66.67%, 8/12) and IS26 (66.67%, 8/12) were the predominant MGEs. Furthermore, horizontal gene transfer ability analysis of the 12 ESBL-EC showed that all bla CTX-M genes could be transferred by conjugative plasmids, indicating high horizontal gene transfer ability. In addition, ARGs of rmtB and sul2, VAGs of papA, fimC and ompT, MGEs of ISEcp1 and IS26 were all found to be co-transferred with bla CTX-M. Phylogenetic analysis clustered these ESBL-EC strains into group B2 (75.00%, 9/12), D (16.67%, 2/12), and B1 (8.33%, 1/12), and 10 sequence types (STs) were identified among 12 ESBL-EC (including ST48, ST127, ST206, ST354, ST648, ST1706, and four new STs). Our present study showed that ESBL-EC strains from captive giant pandas are reservoirs of ARGs, VAGs and MGEs that can co-transfer with bla CTX-M via plasmids. Transmissible ESBL-EC strains with high diversity of resistance and virulence elements are a potential threat to humans, animals and surrounding environment.
Collapse
Affiliation(s)
- Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Siping Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | | | - Yu Yuan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Wenhao Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on the Giant-Panda, Ya'an, Sichuan, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Kun Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Keyun Shi
- Jiangsu Yixing People’s Hospital, Yixing, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
2
|
Umeda K, Anraku M, Yamaguchi T, Nakamura H, Kawahara R. Genetic characterization of KHM-1 metallo-β-lactamase-producing Enterobacterales isolates from inpatient sources in Osaka, Japan. J Glob Antimicrob Resist 2024; 37:48-52. [PMID: 38430961 DOI: 10.1016/j.jgar.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVES KHM-1-metallo-β-lactamase-producing Enterobacterales strains, of which only a few have been found, were isolated from four inpatients in Osaka, Japan during 2016 to 2020. We compared whole genomes of the four KHM-1-producing isolates, including one Enterobacter hormaechei subsp. hoffmannii, one Escherichia coli, and two Citrobacter freundii. METHODS These isolates were characterized by whole-genome sequencing, comparative analysis of blaKHM-1-encoding plasmids with earlier reported plasmids, and antimicrobial susceptibility tests. RESULTS Multilocus sequence typing classified the E. hormaechei subsp. hoffmannii isolate to ST78, the E. coli isolate to ST354, and the two C. freundii isolates to ST95. These isolates harboured various antimicrobial resistance genes aside from blaKHM-1 on their chromosomes and plasmids. In all four isolates, blaKHM-1 was located on 137 kbp to 213 kbp plasmids of IncC replicon type. Although there were common resistance genes such as blaKHM-1-ISEc68, class I integron cassette, and fosG, the four blaKHM-1-encoding plasmids were distinguishable into two lineages based on differences of the resistance gene components and their surrounding regions. CONCLUSION Because no epidemiological contact was observed among the inpatients, the blaKHM-1-encoding IncC plasmids might have spread horizontally to multiple bacterial species through repeated recombination and insertion.
Collapse
Affiliation(s)
- Kaoru Umeda
- Division of Microbiology, Bacteriology Section, Osaka Institute of Public Health, Nakamichi, Osaka, Japan.
| | - Masaki Anraku
- Division of Microbiology, Bacteriology Section, Osaka Institute of Public Health, Nakamichi, Osaka, Japan
| | - Takahiro Yamaguchi
- Division of Microbiology, Bacteriology Section, Osaka Institute of Public Health, Nakamichi, Osaka, Japan
| | - Hiromi Nakamura
- Division of Microbiology, Bacteriology Section, Osaka Institute of Public Health, Nakamichi, Osaka, Japan
| | - Ryuji Kawahara
- Division of Microbiology, Bacteriology Section, Osaka Institute of Public Health, Nakamichi, Osaka, Japan
| |
Collapse
|
3
|
Misumi W, Magome A, Okuhama E, Uchimura E, Tamamura-Andoh Y, Watanabe Y, Kusumoto M. CTX-M-55-type ESBL-producing fluoroquinolone-resistant Escherichia coli sequence type 23 repeatedly caused avian colibacillosis in Kagoshima Prefecture, Japan. J Glob Antimicrob Resist 2023; 35:325-331. [PMID: 37918785 DOI: 10.1016/j.jgar.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVES The production of expanded-spectrum beta-lactamases (ESBLs) and fluoroquinolone resistance in Enterobacteriaceae has become a global concern. The aim of this study was to investigate the spread of ESBL-producing and fluoroquinolone-resistant avian pathogenic Escherichia coli (APEC) in Kagoshima, a prefecture with the largest amount of poultry in Japan. METHODS The antimicrobial susceptibility and genetic characteristics of 228 APEC strains isolated from 57 farms in Kagoshima Prefecture, Japan, between 2005 and 2017 were analysed. Information about the companies with hatcheries connected to the farms was also collected, and the epidemiologic relatedness of APEC strains and the processes of adopting chicks were compared. RESULTS Seven CTX-M-type ESBL genes, blaCTX-M-1, blaCTX-M-2, blaCTX-M-14, blaCTX-M-15, blaCTX-M-25, blaCTX-M-55, and blaCTX-M-65, were found in 60 (26.3%) of the 228 APEC strains. The ciprofloxacin-resistant strains belonged to 10 different sequence types (ST10, ST23, ST93, ST155, ST156, ST350, ST359, ST602, ST648, and ST9479), and the two ST602 strains showed remarkably high ciprofloxacin resistance (MIC: 128 µg/mL) and had amino acid mutations in GyrA (S83L and D87N), ParC (S80I), and ParE (E460A). A CTX-M-55-type ESBL-producing fluoroquinolone-resistant Og78-ST23 strain was isolated multiple times over two years on a farm. Furthermore, epidemiologically closely related strains were isolated from different farms that used the same common hatcheries. CONCLUSIONS APEC is often transferred from hatcheries to farms via healthy chicks, and the prudent use of antimicrobials and careful monitoring of resistant strains on poultry farms and hatcheries are important in preventing the selection and spread of high-risk APEC strains such as CTX-M-55-type ESBL-producing Og78-ST23.
Collapse
Affiliation(s)
- Wakako Misumi
- Kagoshima Central Livestock Hygiene Service Center, Hioki, Kagoshima, Japan; Soo Livestock Hygiene Service Center, Shibushi, Kagoshima, Japan
| | - Asami Magome
- Kagoshima Central Livestock Hygiene Service Center, Hioki, Kagoshima, Japan
| | - Erina Okuhama
- Miyazaki Livestock Hygiene Service Center, Sadowara, Miyazaki, Japan
| | - Eriko Uchimura
- Kagoshima Central Livestock Hygiene Service Center, Hioki, Kagoshima, Japan; Kimotsuki Livestock Hygiene Service Center, Kanoya, Kagoshima, Japan
| | - Yukino Tamamura-Andoh
- Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yoichiro Watanabe
- Kagoshima Central Livestock Hygiene Service Center, Hioki, Kagoshima, Japan
| | - Masahiro Kusumoto
- Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan; Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan.
| |
Collapse
|
4
|
Seo KW, Do KH, Jung CM, Lee SW, Lee YJ, Lim SK, Lee WK. Comparative genetic characterisation of third-generation cephalosporin-resistant Escherichia coli isolated from integrated and conventional pig farm in Korea. J Glob Antimicrob Resist 2023; 34:74-82. [PMID: 37394034 DOI: 10.1016/j.jgar.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES Pig-farming systems consist of integrated or conventional farms, and many antimicrobials are used to treat bacterial infections. The objective of this study was to compare characteristics of third-generation cephalosporin resistance and extended-spectrum β-lactamase (ESBL)/pAmpC β-lactamase-producing Escherichia coli between integrated and conventional farms. METHODS Third-generation cephalosporin-resistant E. coli was collected from integrated and conventional pig farms from 2021 to 2022. Polymerase chain reaction and DNA sequencing were performed for the detection of β-lactamase-encoding genes, molecular analysis, and identification of genetic relationships. To determine the transferability of β-lactamase genes, conjugation assays were conducted. RESULTS Antimicrobial resistance rates were higher in conventional farms than in integrated farms; ESBL- and pAmpC-lactamase-producing E. coli rates were higher in conventional farms (9.8%) than in integrated farms (3.4%). Fifty-two (6.5%) isolates produced ESBL/pAmpC β-lactamase genes. Isolates from integrated farms harboured CTX-15 (3 isolates), CTX-55 (9 isolates), CTX-229 (1 isolate), or CMY-2 (1 isolate) genes; isolates from conventional farms harboured CTX-1 (1 isolate), CTX-14 (6 isolates), CTX-15 (2 isolates), CTX-27 (3 isolates), CTX-55 (14 isolates), CTX-229 (1 isolate), and CMY-2 (11 isolates) genes. Of the 52 ESBL/pAmpC β-lactamase-producing E. coli isolates, class 1 integrons with 11 different gene cassette arrangements were detected in 39 (75.0%) isolates, and class 2 integrons were detected in 3 isolates. The most common sequence type in both integrated and conventional farms was ST5229, followed by ST101, and then ST10. CONCLUSION Third-generation cephalosporin-resistant patterns and molecular characteristics differed between integrated and conventional farms. Our findings suggest that continuous monitoring of third-generation cephalosporin resistance on pig farms is necessary to prevent the dissemination of resistant isolates.
Collapse
Affiliation(s)
- Kwang Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Chang Min Jung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Onnuri Animals Hospital, Cheonan, Korea
| | - Seong Won Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Boehringer Ingelheim Animal Health Korea Ltd., Seoul, Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Korea
| | - Suk-Kyung Lim
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon, Korea
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; GutBiomeTech, Cheongju, Korea.
| |
Collapse
|
5
|
Mattioni Marchetti V, Hrabak J, Bitar I. Fosfomycin resistance mechanisms in Enterobacterales: an increasing threat. Front Cell Infect Microbiol 2023; 13:1178547. [PMID: 37469601 PMCID: PMC10352792 DOI: 10.3389/fcimb.2023.1178547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial resistance is well-known to be a global health and development threat. Due to the decrease of effective antimicrobials, re-evaluation in clinical practice of old antibiotics, as fosfomycin (FOS), have been necessary. FOS is a phosphonic acid derivate that regained interest in clinical practice for the treatment of complicated infection by multi-drug resistant (MDR) bacteria. Globally, FOS resistant Gram-negative pathogens are raising, affecting the public health, and compromising the use of the antibiotic. In particular, the increased prevalence of FOS resistance (FOSR) profiles among Enterobacterales family is concerning. Decrease in FOS effectiveness can be caused by i) alteration of FOS influx inside bacterial cell or ii) acquiring antimicrobial resistance genes. In this review, we investigate the main components implicated in FOS flow and report specific mutations that affect FOS influx inside bacterial cell and, thus, its effectiveness. FosA enzymes were identified in 1980 from Serratia marcescens but only in recent years the scientific community has started studying their spread. We summarize the global epidemiology of FosA/C2/L1-2 enzymes among Enterobacterales family. To date, 11 different variants of FosA have been reported globally. Among acquired mechanisms, FosA3 is the most spread variant in Enterobacterales, followed by FosA7 and FosA5. Based on recently published studies, we clarify and represent the molecular and genetic composition of fosA/C2 genes enviroment, analyzing the mechanisms by which such genes are slowly transmitting in emerging and high-risk clones, such as E. coli ST69 and ST131, and K. pneumoniae ST11. FOS is indicated as first line option against uncomplicated urinary tract infections and shows remarkable qualities in combination with other antibiotics. A rapid and accurate identification of FOSR type in Enterobacterales is difficult to achieve due to the lack of commercial phenotypic susceptibility tests and of rapid systems for MIC detection.
Collapse
Affiliation(s)
- Vittoria Mattioni Marchetti
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Jaroslav Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Ibrahim Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| |
Collapse
|
6
|
Nakano R, Nakano A, Nishisouzu R, Hikosaka K, Suzuki Y, Kamoshida G, Tansho-Nagakawa S, Endo S, Kasahara K, Ono Y, Yano H. Genetic relatedness of third-generation cephalosporin-resistant Escherichia coli among livestock, farmers, and patients in Japan. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
7
|
de Jesus Bertani AM, Vieira T, Reis AD, Dos Santos CA, de Almeida EA, Camargo CH, Casas MRT. Whole genome sequence analysis of the first reported isolate of Salmonella Agona carrying blaCTX-M-55 gene in Brazil. Sci Rep 2023; 13:2299. [PMID: 36759682 PMCID: PMC9911770 DOI: 10.1038/s41598-023-29599-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
This study analyzes the genomic findings of the first report of Salmonella isolate carrying the blaCTX-M-55 gene, recovered from a bacteremic patient from Brazil. A bacterial isolate positive for the blaCTX-M-55 gene was submitted to antimicrobial susceptibility testing by disk diffusion and epsilometric test. Whole genome sequencing was performed using Illumina technology. Conjugation assay was performed; plasmid sizes determined by S1-PFGE and plasmid content were investigated by hybrid assembly after MinION long reads sequencing. Isolate 288_18 was identified as sequence type ST13, resistant to ampicillin, cefotaxime, ceftazidime, cefepime, ceftriaxone, and aztreonam. A transferable IncFII plasmid sized approximately 67 kb was found to carry the blaTEM-1 and blaCTX-M-55 in a module consisting of IS26-blaTEM-1B-WbuC-blaCTX-M-55-IS26. In addition, an 117 kb IncI1plasmid was also identified in the 288_18 isolate, but without additional resistance genes. To the best of our knowledge, this is the first report of blaCTX-M-55 in Salmonella isolated from human infection in Brazil. The occurrence of blaCTX-M-55 in the IncFII epidemic plasmid in a relevant clinical human isolate of Salmonella Agona underscores the urgent need for enhanced and effective continuous surveillance for controlling its dissemination.
Collapse
Affiliation(s)
| | - Thais Vieira
- Bacteriology Division, Instituto Adolfo Lutz, 351, Doutor Arnaldo Avenue, São Paulo, Brazil
| | - Alex Domingos Reis
- Bacteriology Division, Instituto Adolfo Lutz, 351, Doutor Arnaldo Avenue, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
8
|
Genomic insights of high-risk clones of ESBL-producing Escherichia coli isolated from community infections and commercial meat in southern Brazil. Sci Rep 2022; 12:9354. [PMID: 35672430 PMCID: PMC9174282 DOI: 10.1038/s41598-022-13197-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
During a microbiological and genomic surveillance study conducted to investigate the molecular epidemiology of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli from community-acquired urinary tract infections (UTI) and commercial meat samples, in a Brazilian city with a high occurrence of infections by ESBL-producing bacteria, we have identified the presence of CTX-M (-2, -14, -15, -24, -27 and -55)-producing E. coli of international clones ST38, ST117, ST131 and ST354. The ST131 was more prevalent in human samples, and worryingly the high-risk ST131-C1-M27 was identified in human infections for the first time. We also detected CTX-M-55-producing E. coli ST117 from meat samples (i.e., chicken and pork) and human infections. Moreover, the clinically relevant CTX-M-24-positive E. coli ST354 clone was detected for the first time in human samples. In summary, our results highlight a potential of commercialized meat as a reservoir of high-priority E. coli lineages in the community, whereas the identification of E. coli ST131-C1-M27 indicates that novel pandemic clones have emerged in Brazil, constituting a public health issue.
Collapse
|
9
|
Guo S, Aung KT, Leekitcharoenphon P, Tay MYF, Seow KLG, Zhong Y, Ng LC, Aarestrup FM, Schlundt J. Prevalence and genomic analysis of ESBL-producing Escherichia coli in retail raw meats in Singapore. J Antimicrob Chemother 2021; 76:601-605. [PMID: 33331642 DOI: 10.1093/jac/dkaa461] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/05/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES To determine the prevalence and genetic characteristics of ESBL-producing Escherichia coli in retail raw meats from Singapore markets. METHODS A total of 634 raw meat (chicken, pork and beef) samples were collected from markets in Singapore during June 2017-October 2018. The samples were enriched overnight and then incubated on Brilliance™ ESBL Agar. Presumptive ESBL isolates were confirmed using the double-disc synergy test. Confirmed ESBL-producing E. coli were sent for WGS and bioinformatic analysis was performed. RESULTS The prevalence of ESBL-producing E. coli in chicken, pork and beef meats was 51.2% (109/213), 26.9% (58/216) and 7.3% (15/205), respectively. A total of 225 ESBL-producing E. coli were isolated from 184 samples. β-Lactam resistance genes were detected in all isolates. After β-lactam resistance genes, the most common antimicrobial resistance genes detected were aminoglycoside resistance genes (92.4%). One hundred and seventy-two (76.4%), 102 (45.3%) and 52 (23.1%) isolates carried blaCTX-M genes, blaTEM genes and blaSHV genes, respectively. blaCTX-M-55 (57/225, 25.3%) and blaCTX-M-65 (40/225, 17.8%) were the most frequent ESBL genes. Colistin resistance genes (including mcr-1, mcr-3 and mcr-5) were found in 15.6% of all isolates. CONCLUSIONS This study indicates that ESBL-producing E. coli are widely found in retail raw meats, especially chicken, in Singapore. Occurrence of MDR (resistance to at least three classes of antimicrobial) and colistin resistance genes in retail raw meat suggests potential food safety and public health risks.
Collapse
Affiliation(s)
- Siyao Guo
- Nanyang Technological University Food Technology Centre (NAFTEC), 62 Nanyang Drive, 637459, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Kyaw Thu Aung
- Nanyang Technological University Food Technology Centre (NAFTEC), 62 Nanyang Drive, 637459, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.,School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.,Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Helios Block #06-05/08, 138667, Singapore.,National Centre for Food Science, Singapore Food Agency, 52 Jurong Gateway Road, JEM Office Tower, #14-01, 608550, Singapore
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Moon Y F Tay
- Nanyang Technological University Food Technology Centre (NAFTEC), 62 Nanyang Drive, 637459, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Kelyn L G Seow
- Nanyang Technological University Food Technology Centre (NAFTEC), 62 Nanyang Drive, 637459, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Yang Zhong
- Nanyang Technological University Food Technology Centre (NAFTEC), 62 Nanyang Drive, 637459, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Lee Ching Ng
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.,Environmental Health Institute, National Environment Agency, 11 Biopolis Way, Helios Block #06-05/08, 138667, Singapore
| | - Frank Møller Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Joergen Schlundt
- Nanyang Technological University Food Technology Centre (NAFTEC), 62 Nanyang Drive, 637459, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
10
|
Yossapol M, Yamamoto M, Sugiyama M, Odoi JO, Omatsu T, Mizutani T, Ohya K, Asai T. Association between the blaCTX-M-14-harboring Escherichia coli Isolated from Weasels and Domestic Animals Reared on a University Campus. Antibiotics (Basel) 2021; 10:432. [PMID: 33924433 PMCID: PMC8069031 DOI: 10.3390/antibiotics10040432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial-resistant (AMR) bacteria affect human and animal health worldwide. Here, CTX-M-14-producing Escherichia coli isolates were isolated from Siberian weasels (Mustela sibirica) that were captured on a veterinary campus. To clarify the source of bacteria in the weasels, we examined the domestic animals reared in seven facilities on the campus. Extended-spectrum β-lactamase (ESBL)-producing E. coli were isolated on deoxycholate hydrogen sulfide lactose agar, containing cephalexin (50 μg/mL) or cefotaxime (2 μg/mL), and were characterized with antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), replicon typing, and β-lactamase typing analyses. Next-generation sequencing of the ESBL-encoding plasmids was also performed. CTX-M-14 producers isolated from both domestic animals and weasels were classified into six clusters with seven PFGE profiles. The PFGE and antimicrobial resistance profiles were characterized by the animal facility. All CTX-M-14 plasmids belonged to the IncI1 type with a similar size (98.9-99.3 kb), except for one plasmid that was 105.5 kb in length. The unweighted pair group method with arithmetic mean (UPGMA) revealed that the CTX-M-14 plasmid in the weasel isolates might have the same origin as the CTX-M-14 plasmid in the domestic animals. Our findings shed further light on the association of antimicrobial resistance between wild and domestic animals.
Collapse
Affiliation(s)
- Montira Yossapol
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
- Bioveterinary Research Unit, Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham 44000, Thailand
| | - Miku Yamamoto
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
| | - Michiyo Sugiyama
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
| | - Justice Opare Odoi
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo 1838538, Japan; (T.O.); (T.M.)
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo 1838538, Japan; (T.O.); (T.M.)
| | - Kenji Ohya
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
| | - Tetsuo Asai
- Department of Applied Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 5011193, Japan; (M.Y.); (M.Y.); (M.S.); (J.O.O.); (K.O.)
- Education and Research Center for Food Animal Health, Gifu University, Gifu 5011193, Japan
| |
Collapse
|
11
|
Misumi W, Funamori T, Hamada K, Iwamoto J, Fujisono S, Chitose K, Kusumoto M. Association between antimicrobial treatment and resistance of pathogenic Escherichia coli isolated from diseased swine in Kagoshima Prefecture, Japan. J Vet Med Sci 2021; 83:358-369. [PMID: 33431756 PMCID: PMC8025414 DOI: 10.1292/jvms.20-0338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenic Escherichia coli is an important cause of diarrhea, edema disease, and septicemia in swine. In Japan, the volume of antimicrobial drugs used for animals is highest in swine, but information about the prevalence of antimicrobial-resistant bacteria is confined to apparently healthy animals. In the present study, we determined the O serogroups, virulence factors, and antimicrobial resistance of 360 E. coli isolates from swine that died of disease in Kagoshima Prefecture, Japan, between 1999 and 2017. The isolates of the predominant serogroups O139, OSB9, O149, O8, and O116 possessed virulence factor genes typically found in diarrheagenic E. coli. We further found five strains of third-generation cephalosporin-resistant E. coli that each produced an extended-spectrum β-lactamase encoded by blaCTX-M-14, blaCTX-M-15, blaCTX-M-24, blaCTX-M-61, or blaSHV-12. In 218 swine with a clear history of antimicrobial drug use, we further analyzed associations between the use of antimicrobials for the treatment of diseased swine and the isolation of resistant E. coli. We found significant associations between antimicrobial use and selection of resistance to the same class of antimicrobials, such as the use of ceftiofur and resistance to cefotaxime, cefazolin, or ampicillin, the use of aminoglycosides and resistance to streptomycin, and the use of phenicols and resistance to chloramphenicol. A significant association between antimicrobial use and the resistance of E. coli isolates to structurally unrelated antimicrobials, such as the use of ceftiofur and resistance to chloramphenicol, was also observed.
Collapse
Affiliation(s)
- Wakako Misumi
- Kagoshima Central Livestock Hygiene Service Center, 1678 Yuda, Higashiichiki, Hioki, Kagoshima 899-2201, Japan
| | - Taruho Funamori
- Hiroshima Western Livestock Hygiene Service Center, 1-15 Saijogojo, Higashi-Hiroshima, Hiroshima 739-0013, Japan
| | - Kyohei Hamada
- Fukuoka Chuo Livestock Hygiene Service Center, 4-14-5 Hakozakifuto, Higashi-ku, Fukuoka 812-0051, Japan
| | - Jiro Iwamoto
- Kagoshima Central Livestock Hygiene Service Center, 1678 Yuda, Higashiichiki, Hioki, Kagoshima 899-2201, Japan
| | - Shoichiro Fujisono
- Kagoshima Central Livestock Hygiene Service Center, 1678 Yuda, Higashiichiki, Hioki, Kagoshima 899-2201, Japan
| | - Kenichi Chitose
- Kagoshima Central Livestock Hygiene Service Center, 1678 Yuda, Higashiichiki, Hioki, Kagoshima 899-2201, Japan
| | - Masahiro Kusumoto
- Division of Bacterial and Parasitic Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
12
|
Ramos S, Silva V, Dapkevicius MDLE, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P. Escherichia coli as Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production. Animals (Basel) 2020; 10:ani10122239. [PMID: 33260303 PMCID: PMC7761174 DOI: 10.3390/ani10122239] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary This revision is about the problem of Escherichia coli as a commensal and pathogenic bacterium among food-producing animals and health implications. Escherichia coli may play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tract; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. The majority of E. coli strains are commensals inhabiting the intestinal tract of humans and warm-blooded animals and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. All over the word, antibiotic resistance is commonly detected among commensal bacteria from food-producing animals, raising important questions on the potential impact of antibiotic use in animals and the possible transmission of these resistant bacteria to humans through the food chain. The use, in food-producing animals, of antibiotics that are critically important in human medicine has been implicated in the emergence of new forms of resistant bacteria, including new strains of multidrug-resistant foodborne bacteria, such as extended spectrum β-lactamase (ESBL)-producing E. coli. Abstract Escherichia coli are facultative, anaerobic Gram-negative rods with many facets. Within resistant bacterial populations, they play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tracts; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. Thus, the prevalence of antimicrobial resistance in these commensal bacteria (or others, such as enterococci) can be a good indicator for the selective pressure caused by the use of antimicrobial agents, providing an early warning of the emergence of antimicrobial resistance in pathogens. As many as 90% of E. coli strains are commensals inhabiting the intestinal tracts of humans and warm-blooded animals. As a commensal, it lives in a mutually beneficial association with its hosts and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. In humans, it is the prominent cause of enteritis, community- and hospital-acquired urinary tract infection (UTI), septicemia, postsurgical peritonitis, and other clinical infections, such as neonatal meningitis, while, in farm animals, it is more prominently associated with diarrhea. On a global scale, E. coli can be considered the most important human pathogen, causing severe infection along with other major bacterial foodborne agents, such as Salmonella spp. and Campylobacter. Thus, the importance of resistance in E. coli, typically considered a benign commensal, should not be underestimated.
Collapse
Affiliation(s)
- Sónia Ramos
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain;
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
- Correspondence: ; Tel./Fax: +351-259-350-466
| |
Collapse
|
13
|
Genetic Determinants of Resistance to Extended-Spectrum Cephalosporin and Fluoroquinolone in Escherichia coli Isolated from Diseased Pigs in the United States. mSphere 2020; 5:5/5/e00990-20. [PMID: 33115839 PMCID: PMC8534314 DOI: 10.1128/msphere.00990-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fluoroquinolones and cephalosporins are critically important antimicrobial classes for both human and veterinary medicine. We previously found a drastic increase in enrofloxacin resistance in clinical Escherichia coli isolates collected from diseased pigs from the United States over 10 years (2006 to 2016). However, the genetic determinants responsible for this increase have yet to be determined. The aim of the present study was to identify and characterize the genetic basis of resistance against fluoroquinolones (enrofloxacin) and extended-spectrum cephalosporins (ceftiofur) in swine E. coli isolates using whole-genome sequencing (WGS). blaCMY-2 (carried by IncA/C2, IncI1, and IncI2 plasmids), blaCTX-M (carried by IncF, IncHI2, and IncN plasmids), and blaSHV-12 (carried by IncHI2 plasmids) genes were present in 87 (82.1%), 19 (17.9%), and 3 (2.83%) of the 106 ceftiofur-resistant isolates, respectively. Of the 110 enrofloxacin-resistant isolates, 90 (81.8%) had chromosomal mutations in gyrA, gyrB, parA, and parC genes. Plasmid-mediated quinolone resistance genes [qnrB77, qnrB2, qnrS1, qnrS2, and aac-(6)-lb′-cr] borne on ColE, IncQ2, IncN, IncF, and IncHI2 plasmids were present in 24 (21.8%) of the enrofloxacin-resistant isolates. Virulent IncF plasmids present in swine E. coli isolates were highly similar to epidemic plasmids identified globally. High-risk E. coli clones, such as ST744, ST457, ST131, ST69, ST10, ST73, ST410, ST12, ST127, ST167, ST58, ST88, ST617, ST23, etc., were also found in the U.S. swine population. Additionally, the colistin resistance gene (mcr-9) was present in several isolates. This study adds valuable information regarding resistance to critical antimicrobials with implications for both animal and human health. IMPORTANCE Understanding the genetic mechanisms conferring resistance is critical to design informed control and preventive measures, particularly when involving critically important antimicrobial classes such as extended-spectrum cephalosporins and fluoroquinolones. The genetic determinants of extended-spectrum cephalosporin and fluoroquinolone resistance were highly diverse, with multiple plasmids, insertion sequences, and genes playing key roles in mediating resistance in swine Escherichia coli. Plasmids assembled in this study are known to be disseminated globally in both human and animal populations and environmental samples, and E. coli in pigs might be part of a global reservoir of key antimicrobial resistance (AMR) elements. Virulent plasmids found in this study have been shown to confer fitness advantages to pathogenic E. coli strains. The presence of international, high-risk zoonotic clones provides worrisome evidence that resistance in swine isolates may have indirect public health implications, and the swine population as a reservoir for these high-risk clones should be continuously monitored.
Collapse
|
14
|
Pungpian C, Sinwat N, Angkititrakul S, Prathan R, Chuanchuen R. Presence and Transfer of Antimicrobial Resistance Determinants in Escherichia coli in Pigs, Pork, and Humans in Thailand and Lao PDR Border Provinces. Microb Drug Resist 2020; 27:571-584. [PMID: 32898454 DOI: 10.1089/mdr.2019.0438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate antimicrobial resistance (AMR) characteristics of Escherichia coli isolates from pig origin (including pigs, pig carcass, and pork) and humans in Thailand and Lao People's Democratic Republic (PDR) border provinces. The majority of the E. coli isolates from Thailand (69.7%) and Lao PDR (63.3%) exhibited multidrug resistance. Class 1 integrons with resistance gene cassettes were common (n = 43), of which the most predominant resistance gene cassette was aadA1. The percentage of extended-spectrum beta-lactamase (ESBL) producers was 3.4 in Thailand and 3.2 in Lao PDR. The ESBL genes found were blaCTX-M14, blaCTX-M27, and blaCTX-M55, of which blaCTX-M55 was the most common (58.6%). Ser-83-Leu and Asp-87-Asn were the predominant amino acid changes in GyrA of ciprofloxacin-resistant isolates. Twenty-two percent of all isolates were positive for qnrS. Class 1 integrons carrying aadA1 from pigs (n = 1) and ESBL genes (blaCTX-M55 and blaCTX-M14) from pigs (n = 2), pork (n = 1), and humans (n = 7) were located on conjugative plasmids. Most plasmids (29.3%) were typed in the IncFrepB group. In conclusion, AMR E. coli are common in pig origin and humans in these areas. The findings confirm AMR as One Health issue, and highlight the need for comprehensive and unified collaborations within and between sectors on research and policy.
Collapse
Affiliation(s)
- Chanika Pungpian
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nuananong Sinwat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakornpathom, Thailand
| | - Sunpetch Angkititrakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Huang YH, Kuan NL, Yeh KS. Characteristics of Extended-Spectrum β-Lactamase-Producing Escherichia coli From Dogs and Cats Admitted to a Veterinary Teaching Hospital in Taipei, Taiwan From 2014 to 2017. Front Vet Sci 2020; 7:395. [PMID: 32766294 PMCID: PMC7378734 DOI: 10.3389/fvets.2020.00395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/02/2020] [Indexed: 11/13/2022] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) are enzymes that mediate resistance to newer β-lactam antibiotics, including extended-spectrum cephalosporins and monobactams. The production of ESBL is primarily plasmid mediated, and such plasmids often comprise the genes that encode resistance to other classes of antimicrobials, such as aminoglycosides and fluoroquinolones. Therefore, ESBL-producing microorganisms leave clinicians with limited therapeutic options in both human and veterinary medicine. Compared with human medicine, information regarding ESBL-producing microorganisms is limited in veterinary medicine. We screened for ESBL-producing Escherichia coli in dogs and cats admitted to National Taiwan University Veterinary Hospital, Taipei, from 2014 to 2017 and further analyzed the genotypes and phylogenetic traits of these ESBL producers. Double disk tests specified by the Clinical and Laboratory Standards Institute were performed on 283 E. coli isolates and revealed a total of 65 E. coli (54 from dogs and 11 from cats) with the ESBL phenotype (22.8%). blaCTX−M−1group and blaCTX−M−2group were the most commonly identified ESBL gene groups. blaCTX−M−55 was the main ESBL gene within the blaCTX−M−1group, whereas the blaCTX−M−2group contained only blaCTX−M−124. The ESBL-producing E. coli were all resistant to ampicillin. The resistance rate to ceftiofur, doxycycline, enrofloxacin, and ciprofloxacin was 93.8, 73.8, 80, and 78.5%, respectively. Of the antibiotics tested, greater sensitivity to imipenem and gentamicin was noted. Multilocus sequence typing indicated that ST457, ST131, and ST648 were the most common sequence types. Our study identified eight ST131/O25b isolates, which is a global zoonotic clone of public health concern. The major ESBL genes of these clones were blaCTX−M−174 and blaCTX−M−194. Because companion animals such as dogs and cats are in close contact with humans, the characterization of ESBL producers originating from them is crucial from the perspective of both public health and veterinary medicine.
Collapse
Affiliation(s)
- Yi-Hsuan Huang
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Nan-Ling Kuan
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.,Biology Division, Animal Health Research Institute, New Taipei City, Taiwan
| | - Kuang-Sheng Yeh
- Department of Veterinary Medicine, School of Veterinary Medicine, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.,National Taiwan University Veterinary Hospital, Taipei, Taiwan
| |
Collapse
|
16
|
Arakawa Y. Systematic research to overcome newly emerged multidrug-resistant bacteria. Microbiol Immunol 2020; 64:231-251. [PMID: 32068266 DOI: 10.1111/1348-0421.12781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/05/2020] [Accepted: 02/08/2020] [Indexed: 11/30/2022]
Abstract
In the 1980s, I found that the chromosomal β-lactamase of Klebsiella pneumoniae LEN-1 showed a very high similarity to the R-plasmid-mediated penicillinase TEM-1 on the amino acid sequence level, and this strongly suggested the origination of TEM-1 from the chromosomal penicillinases of K. pneumoniae or related bacteria. Moreover, the chromosomal K1 β-lactamase (KOXY) of Klebsiella oxytoca was found to belong to the class A β-lactamases that include LEN-1 and TEM-1, although KOXY can hydrolyze cefoperazone (CPZ) like the chromosomal AmpC-type cephalosporinases of various Enterobacteriaceae that can hydrolyze several cephalosporins including CPZ. Furthermore, my collaborators and I found plural novel serine-type β-lactamases, such as MOX-1, SHV-24, TEM-91, CTX-M-64, CMY-9, CMY-19, GES-3, GES-4, and TLA-3, mediated by plasmids. Besides these serine-type β-lactamases, we also first identified exogenously acquired metallo-β-lactamases (MBLs), IMP-1 and SMB-1, in imipenem-resistant Serratia marcescens, and the IMP-1-producing S. marcescens TN9106 became the index case for carbapenemase-producing Enterobacteriaceae. I developed the sodium mercaptoacetic acid (SMA)-disk test for the simple identification of MBL-producing bacteria. We were also the first to identify a variety of plasmid-mediated 16S ribosomal RNA methyltransferases, RmtA, RmtB, RmtC, and NpmA, from various Gram-negative bacteria that showed very high levels of resistance to a wide range of aminoglycosides. Furthermore, we first found plasmid-mediated quinolone efflux pump (QepA) and fosfomycin-inactivating enzymes (FosA3 and FosK). We also first characterized penicillin reduced susceptible Streptococcus agalactiae, macrolide-resistant Mycoplasma pneumoniae, as well as Campylobacter jejuni, and Helicobacter pylori, together with carbapenem-resistant Haemophilus influenzae. We constructed a PCR-based open reading frame typing method for rapid identification of Acinetobacter baumannii international clones.
Collapse
Affiliation(s)
- Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
17
|
Saeki M, Sato T, Furuya D, Yakuwa Y, Sato Y, Kobayashi R, Ono M, Nirasawa S, Tanaka M, Nakafuri H, Nakae M, Shinagawa M, Asanuma K, Yanagihara N, Yokota SI, Takahashi S. Clonality investigation of clinical Escherichia coli isolates by polymerase chain reaction-based open-reading frame typing method. J Infect Chemother 2020; 26:38-42. [DOI: 10.1016/j.jiac.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/14/2019] [Accepted: 06/30/2019] [Indexed: 11/28/2022]
|
18
|
Bitrus AA, Mshelia PA, Kwoji ID, Goni MD, Jajere SM. Extended-spectrum beta-lactamase and ampicillin Class C beta lactamase-producing Escherichia coli from food animals: A review. INTERNATIONAL JOURNAL OF ONE HEALTH 2019. [DOI: 10.14202/ijoh.2019.65-75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Antimicrobial resistance has gained global notoriety due to its public health concern, the emergence of multiple drug-resistant bacteria, and lack of new antimicrobials. Extended-spectrum beta-lactamase (ESBL)/ampicillin Class C (AmpC)- producing Escherichia coli and other zoonotic pathogens can be transmitted to humans from animals either through the food chain, direct contact or contamination of shared environments. There is a surge in the rate of resistance to medically important antibiotics such as carbapenem, ESBL, aminoglycosides, and fluoroquinolones among bacteria of zoonotic importance. Factors that may facilitate the occurrence, persistence and dissemination of ESBL/AmpC-Producing E. coli in humans and animal includes; 1). o ral administration of antimicrobials to humans primarily (by physician and health care providers) and secondarily to animals, 2). importation of parent stock and day-old chickens, 3). farm management practice and lack of water acidification in poultry, 4). contamination of feed, water and environment, 5). contamination of plants with feces of animals. Understanding these key factors will help reduce the level of resistance, thereby boosting the therapeutic effectiveness of antimicrobial agents in the treatment of animal and human infections. This review highlights the occurrence, risk factors, and public health importance of ESBL/AmpC-beta-lactamase producing E. coli isolated from livestock.
Collapse
Affiliation(s)
- Asinamai Athliamai Bitrus
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, University of Jos, P.M. B 2084 Jos, Plateau, Nigeria
| | - Peter Anjili Mshelia
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, P.M.B 1069 Maiduguri, Borno, Nigeria
| | - Iliya Dauda Kwoji
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Maiduguri, P.M.B 1069 Maiduguri, Borno, Nigeria
| | - Mohammed Dauda Goni
- Department of Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Saleh Mohammed Jajere
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno, Nigeria; Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Kikuchi K, Lee K, Ueno H, Tomari K, Kobori S, Kaetsu A, Matsui M, Suzuki S, Sekizuka T, Kuroda M, Miyazaki M, Ohnishi M. Enterohaemorrhagic Escherichia coli O121:H19 acquired an extended-spectrum β-lactamase gene during the development of an outbreak in two nurseries. Microb Genom 2019; 5. [PMID: 31215859 PMCID: PMC6700663 DOI: 10.1099/mgen.0.000278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is an important human pathogen worldwide. Although serotype O157 is currently the most dominant and important EHEC strain, serotypes O26, O111, O91, O103 and O121 are also recognized as serious pathogens that affect public health. EHEC outbreaks often occur in nurseries and elderly care facilities. In 2012, a nursery outbreak of EHEC O121 occurred during which the bacterium acquired a plasmid-borne extended-spectrum β-lactamase (ESBL) gene. ESBL-producing E. coli O86 was concurrently isolated from one of the EHEC patients. Therefore, we investigated the isolates by whole-genome sequence (WGS) analysis to elucidate the transmission dynamics of the EHEC strains and the ESBL plasmid. According to WGS-based phylogeny, all 17 EHEC O121 isolates were clonal, while E. coli O86 was genetically distant from the EHEC O121 isolates. The complete sequence of an ESBL plasmid encoding the CTX-M-55 β-lactamase was determined using S1-PFGE bands, and subsequent mapping of the WGS reads confirmed that the plasmid sequences from EHEC O121 and E. coli O86 were identical. Furthermore, conjugation experiments showed that the plasmid was capable of conjugative transfer. These results support the hypothesis that EHEC O121 acquired an ESBL-producing plasmid from E. coli O86 during the outbreak. This report demonstrates the importance of implementing preventive measures during EHEC outbreaks to control both secondary infection and the spread of antimicrobial resistance factors.
Collapse
Affiliation(s)
- Koji Kikuchi
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Ueno
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Kentaro Tomari
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Sumie Kobori
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | | | - Mari Matsui
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satowa Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motonobu Miyazaki
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
20
|
Zhang CZ, Ding XM, Lin XL, Sun RY, Lu YW, Cai RM, Webber MA, Ding HZ, Jiang HX. The Emergence of Chromosomally Located bla CTX-M-55 in Salmonella From Foodborne Animals in China. Front Microbiol 2019; 10:1268. [PMID: 31231347 PMCID: PMC6560199 DOI: 10.3389/fmicb.2019.01268] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/22/2019] [Indexed: 12/02/2022] Open
Abstract
The emergence and increase in prevalence of resistance to cephalosporins amongst isolates of Salmonella from food animals imposes a public health threat. The aim of the present study was to investigate the prevalence and characteristics of CTX-M-producing Salmonella isolates from raw meat and food animals. 27 of 152 (17.76%) Salmonella isolates were ESBL-positive including 21/70 (30%) from food animals and 6/82 (7.32%) from raw meat. CTX-M-55 was the most prevalent ESBL type observed (12/27, 44.44%). 7 of 12 CTX-M-55-positive Salmonella isolates were Salmonella Indiana, 2 were Salmonella Typhimurium, 2 were Salmonella Chester, and the remaining isolate was not typeable. Eight CTX-M-55-positive Salmonella isolates were highly resistant to fluoroquinolones (MICCIP = 64 ug/mL) and co-harbored aac(6’)-Ib-cr and oqxAB. Most of the CTX-M-55 positive isolates (11/12) carried blaCTX-M-55 genes on the chromosome, with the remaining isolate carrying this gene on a transferable 280 kb IncHI2 plasmid. A chromosomal blaCTX-M-55 gene from one isolate transferred onto a 250 kb IncHI2 plasmid which was subsequently conjugated into recipient strain J53. PFGE and MLST profiles showed a wide range of strain types were carrying blaCTX-M-55. Our study demonstrates the emergence and prevalence of foodborne Salmonella harboring a chromosomally located blaCTX-M-55 in China. The co-existence of PMQR genes with blaCTX-M-55 in Salmonella isolates suggests co-selection and dissemination of resistance to both fluoroquinolones and cephalosporins in Salmonella via the food chain in China represents a public health concern.
Collapse
Affiliation(s)
- Chuan-Zhen Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Min Ding
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ling Lin
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue-Wei Lu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Run-Mao Cai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Huan-Zhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hong-Xia Jiang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Faccone D, Moredo FA, Giacoboni GI, Albornoz E, Alarcón L, Nievas VF, Corso A. Multidrug-resistant Escherichia coli harbouring mcr-1 and bla CTX-M genes isolated from swine in Argentina. J Glob Antimicrob Resist 2019; 18:160-162. [PMID: 30926466 DOI: 10.1016/j.jgar.2019.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Multidrug-resistant Escherichia coli isolates recovered from food-producing animals are a global public-health concern, especially those with transferable mechanisms of antimicrobial resistance such as extended-spectrum β-lactamase (ESBL) and mcr-1 genes. Here we report for the first time E. coli recovered from diarrhoeic and healthy pigs harbouring blaCTX-M and/or mcr-1 from Argentinean farms. METHODS During 2017, a total of 34 E. coli were recovered from 31 faecal samples from diarrhoeic piglets and healthy fattening pigs from five pig farms in three Argentinean provinces. Antimicrobial susceptibility was evaluated by agar diffusion and resistance genes were identified by PCR. Multiplex PCR was applied to screen for ST69, ST73, ST95 and ST131 clones. Genetic relationships were evaluated by XbaI-PFGE. RESULTS A high diversity of resistance profiles was observed (20 profiles among 34 isolates), and 71% of isolates were multidrug-resistant. Resistance to third-generation cephalosporins (3GCs) was observed in 28 isolates and was associated with blaCTX-M (24), blaCMY (3) and blaPER-2 (1) genes. blaCTX-M alleles were grouped by specific PCR as follow: 17 blaCTX-M-8/25; 4 blaCTX-M-1/15; 2 blaCTX-M-2; and 1 blaCTX-M-9/14. Twelve isolates were positive for mcr-1, of which six were also resistant to 3GCs and were positive for blaCTX-M-8/25 (4), blaCTX-M-1/15 (1) or blaCMY (1). High genetic diversity was observed, discriminating 29 profiles. One ST131 and two ST95 human-associated clones were detected. CONCLUSION Here we describe E. coli isolates recovered from diarrhoeic piglets and healthy fattening pigs harbouring ESBL and/or mcr-1 genes. 3GC resistance was mainly associated with CTX-M, in particular with blaCTX-M-8/25 alleles.
Collapse
Affiliation(s)
- Diego Faccone
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas-ANLIS 'Dr Carlos G. Malbrán', Av. Velez Sarsfield 563 (C1282AFF), Ciudad Autónoma de Buenos Aires (CABA), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB), CABA, Argentina
| | - Fabiana A Moredo
- Departamento de Microbiología, Facultad de Ciencias Veterinarias, UNLP, Calle 60 y 118 (CC296), CP 1900, La Plata, Buenos Aires Province, Argentina
| | - Gabriela I Giacoboni
- Departamento de Microbiología, Facultad de Ciencias Veterinarias, UNLP, Calle 60 y 118 (CC296), CP 1900, La Plata, Buenos Aires Province, Argentina
| | - Ezequiel Albornoz
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas-ANLIS 'Dr Carlos G. Malbrán', Av. Velez Sarsfield 563 (C1282AFF), Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Laura Alarcón
- Cátedra de Medicina Porcina, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV-UNLP), La Plata, Buenos Aires Province, Argentina
| | - Victorio F Nievas
- Departamento de Microbiología, Facultad de Ciencias Veterinarias, UNLP, Calle 60 y 118 (CC296), CP 1900, La Plata, Buenos Aires Province, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas-ANLIS 'Dr Carlos G. Malbrán', Av. Velez Sarsfield 563 (C1282AFF), Ciudad Autónoma de Buenos Aires (CABA), Argentina.
| |
Collapse
|
22
|
Pig farm environment as a source of beta-lactamase or AmpC-producing Klebsiella pneumoniae and Escherichia coli. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1387-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
23
|
Lucas P, Jouy E, Le Devendec L, de Boisséson C, Perrin-Guyomard A, Jové T, Blanchard Y, Touzain F, Kempf I. Characterization of plasmids harboring blaCTX-M genes in Escherichia coli from French pigs. Vet Microbiol 2018; 224:100-106. [DOI: 10.1016/j.vetmic.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/29/2022]
|