1
|
Iranpanah A, Fakhri S, Bahrami G, Majnooni MB, Gravandi MM, Taghavi S, Badrbani MA, Amirian R, Farzaei MH. Protective effect of a hydromethanolic extract from Fraxinus excelsior L. bark against a rat model of aluminum chloride-induced Alzheimer's disease: Relevance to its anti-inflammatory and antioxidant effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117708. [PMID: 38181932 DOI: 10.1016/j.jep.2024.117708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fraxinus excelsior L. (FE), commonly known as the ash, belongs to the Oleaceae family and has shown several pharmacological and biological properties, such as antioxidant, immunomodulatory, neuroprotective, and anti-inflammatory effects. It has also attracted the most attention toward neuroinflammation. Moreover, FE bark and leaves have been used to treat neurological disorders, aging, neuropathic pain, urinary complaints, and articular pain in traditional and ethnomedicine. Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder resulting from the involvement of amyloid-beta, metal-induced oxidative stress, and neuroinflammation. AIM OF THE STUDY The objective of the current study was to assess the neuroprotective effects of hydromethanolic extract from FE bark in an AlCl3-induced rat model of AD. MATERIALS AND METHODS The maceration process was utilized to prepare the hydromethanolic extract of FE bark, and characterized by LC-MS/MS. To assess the anti-AD effects of the FE extract, rats were categorized into five different groups, AlCl3; normal control; FE-treated groups at 50, 100, and 200 mg/kg. Passive avoidance learning test, Y-maze, open field, and elevated plus maze behavioral tests were evaluated on days 7 and 14 to analyze the cognitive impairments. Zymography analysis, biochemical tests, and histopathological changes were also followed in different groups. RESULTS LC-MS/MS analysis indicated the presence of coumarins, including isofraxidin7-O-diglucoside in the methanolic extract of FE as a new isofraxidin derivative in this genus. FE significantly improved memory and cognitive function, maintained weight, prevented neuronal damages, and preserved the hippocampus's histological features, as demonstrated by behavioral tests and histopathological analysis. FE increased anti-inflammatory MMP-2 activity, whereas it decreased that of inflammatory MMP-9. Moreover, FE increased plasma antioxidant capacity by enhancing CAT and GSH while decreasing nitrite levels in the serum of treated groups. In comparison between the treated groups, the rats that received high doses of the FE extract (200 mg/kg) showed the highest therapeutic effect. CONCLUSION FE rich in coumarins could be an effective anti-AD adjunct agent, passing through antioxidant and anti-inflammatory pathways. These results encourage further studies for the development of this extract as a promising agent in preventing, managing, or treating AD and related diseases.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Bagher Majnooni
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sara Taghavi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mehdi Azadi Badrbani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
3
|
AbouElhassan KM, Sarhan HA, Hussein AK, Taye A, Ahmed YM, Safwat MA. Brain Targeting of Citicoline Sodium via Hyaluronic Acid-Decorated Novel Nano-Transbilosomes for Mitigation of Alzheimer's Disease in a Rat Model: Formulation, Optimization, in vitro and in vivo Assessment. Int J Nanomedicine 2022; 17:6347-6376. [PMID: 36540376 PMCID: PMC9759982 DOI: 10.2147/ijn.s381353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the furthermost advanced neurodegenerative disorders resulting in cognitive and behavioral impairment. Citicoline sodium (CIT) boosts the brain's secretion of acetylcholine, which aids in membrane regeneration and repair. However, it suffers from poor blood-brain barrier (BBB) permeation, which results in lower levels of CIT in the brain. PURPOSE This study targeted to encapsulate CIT into novel nano-platform transbilosomes decorated with hyaluronic acid CIT-HA*TBLs to achieve enhanced drug delivery from the nose to the brain. METHODS A method of thin-film hydration was utilized to prepare different formulae of CIT-TBLs using the Box-Behnken design. The optimized formula was then hyuloranated via integration of HA to form the CIT-HA*TBLs formula. Furthermore, AD induction was performed by aluminum chloride (Alcl3), animals were allocated, and brain hippocampus tissue was isolated for ELISA and qRT-PCR analysis of malondialdehyde (MDA), nuclear factor kappa B (NF-kB), and microRNA-137 (miR-137) coupled with immunohistochemical amyloid-beta (Aβ1-42) expression and histopathological finding. RESULTS The hyuloranated CIT-HA*TBLs formula, which contained the following ingredients: PL (300 mg), Sp 60 (43.97 mg), and SDC (20 mg). They produced spherical droplets at the nanoscale (178.94 ±12.4 nm), had a high entrapment efficiency with 74.92± 5.54%, had a sustained release profile of CIT with 81.27 ±3.8% release, and had ex vivo permeation of CIT with 512.43±19.58 μg/cm2. In vivo tests showed that CIT-HA*TBL thermogel dramatically reduces the hippocampus expression of miR-137 and (Aβ1-42) expression, boosting cholinergic neurotransmission and decreasing MDA and NF-kB production. Furthermore, CIT-HA*TBLs thermogel mitigate histopathological damage in compared to the other groups. CONCLUSION Succinctly, the innovative loading of CIT-HA*TBLs thermogel is a prospectively invaluable intranasal drug delivery system that can raise the efficacy of CIT in Alzheimer's management.
Collapse
Affiliation(s)
- Kariman M AbouElhassan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Yasmin M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
4
|
Wang M, Lin F, Zhang X, Zhang M, Yan T, Wu B, Du Y, He B, Jia Y. Combination of Alpinia Oxyphylla Fructus and Schisandra Chinensis Fructus ameliorates aluminum-induced Alzheimer's disease via reducing BACE1 expression. J Chem Neuroanat 2022; 126:102180. [PMID: 36306920 DOI: 10.1016/j.jchemneu.2022.102180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
Being the most common form of dementia, Alzheimer's disease (AD) has a series of modifiable risk factors, including metal ions represented by aluminium. Aluminium (Al) exhibits its neurotoxic effects, especially mainly by affecting amyloid-β protein (Aβ) aggregation and Tau hyperphosphorylation. As reported in our previous study, the combination of Alpinia Oxyphylla Fructus and Schisandra Chinensis Fructus (AS) had a neuroprotective effect. This study aimed to evaluate the anti-AD effect of AS and the mechanism by which AS reduces the neurotoxic effect of Al. Firstly, we used aluminium-maltol (Al(mal)3) to construct a mouse model of AD and performed oral administration of AS, followed by behavioral experiments, and we collected the mouse brain for immunohistochemistry analysis. In vivo results showed that AS significantly improved Al-induced cognitive decline in mice, and reduced the levels of Aβ1-42 and P-Tau in the brain, which further proved the anti-AD effect of AS. Then, in order to explore the mechanism by which AS reduced Aβ1-42, Al-induced PC12 cells were used for the in vitro experiments. Compared with other ratios, the ratio of Alpinia Oxyphylla Fructus: Schisandra Chinensis Fructus (AO:SC) = 1:2 could better improve the cell viability and reduce the Aβ1-42 level. According to western blot and quantitative real-time polymerase chain reaction (qPCR) results, AS ameliorated the pathological process by downregulating the expression of β-secretase (BACE1), rather than by reducing the expression of amyloid precursor protein (APP) or Tau. These results suggest that AS ameliorated Al-induced AD by affecting the expression of BACE1 and reducing the level of Aβ1-42, thereby exerting a neuroprotective effect. Combined with previous studies, this study shows that AS has potential for further research and development in AD treatment.
Collapse
Affiliation(s)
- Mengshi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| | - Fei Lin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| | - Xiaoying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| | - Ming Zhang
- Shenyang Women's and Children's Hospital, No. 87 Danan Street, Shenyang, PR China.
| | - Tingxu Yan
- School of Functional Food and wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| | - Bo Wu
- School of Functional Food and wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| | - Yiyang Du
- School of Functional Food and wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| | - Bosai He
- School of Functional Food and wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| | - Ying Jia
- School of Functional Food and wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China.
| |
Collapse
|
5
|
Secades JJ, Gareri P. Citicoline: pharmacological and clinical review, 2022 update. Rev Neurol 2022; 75:S1-S89. [PMID: 36544369 PMCID: PMC10548480 DOI: 10.33588/rn.75s05.2022311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 12/24/2022]
Abstract
This review is based on the previous one published in 2016 (Secades JJ. Citicoline: pharmacological and clinical review, 2016 update. Rev Neurol 2016; 63 (Supl 3): S1-S73), incorporating 176 new references, having all the information available in the same document to facilitate the access to the information in one document. This review is focused on the main indications of the drug, as acute stroke and its sequelae, including the cognitive impairment, and traumatic brain injury and its sequelae. There are retrieved the most important experimental and clinical data in both indications.
Collapse
Affiliation(s)
- Julio J. Secades
- Departamento Médico. Grupo Ferrer, S.A. Barcelona, EspañaDepartamento MédicoDepartamento MédicoBarcelonaEspaña
| | - Pietro Gareri
- Center for Cognitive Disorders and Dementia - Catanzaro Lido. ASP Catanzaro. Catanzaro, ItaliaCenter for Cognitive Disorders and Dementia - Catanzaro LidoCenter for Cognitive Disorders and Dementia - Catanzaro LidoCatanzaroItalia
| |
Collapse
|
6
|
Arianto AT, Soetrisno S, Purwoko P, Indarto D. The Effect of Remifentanil, MgSO4, or Remifentanil-MgSO4 as Neuroprotectors on BDNF, MAC, and Caspase-3 Levels in Wistar Rats with Traumatic Brain Injury. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND: Traumatic brain injury (TBI) can lead to cell death and neurologic dysfunction. Meanwhile, Remifentanyl is an opioid with potent analgesia, while magnesium sulfate (MgSO4) has antinociceptive properties that can prevent hemodynamic instability during laryngoscopy.
AIM: This study aims to examine the effect of remifentanil, MgSO4 and their combination on BDNF, MAC, and Caspase-3 levels in Wistar rat models with TBI.
METHODOLOGY: An experimental study was conducted on 30 male Wistar rats which were randomly divided into five groups. The control group (G1) received normal saline, the induced group (G2) received normal saline after TBI induction using the modified Feeney method, and the treated group (G3, G4, and G5) received remifentanil, MgSO4, and their combination after TBI induction. The rats’ brain tissues were analyzed for BDNF, MAC, and Caspase-3 levels using ELISA. The data were analyzed statistically with ANOVA followed by post hoc Multiple Comparison Test (p < 0.05).
RESULTS: Treatment with remifentanil, MgSO4 or the combination of both in TBI subjects reduced MAC and Caspase-3 but increased the BDNF level. The post hoc multiple comparisons showed significant differences in all groups except groups 3 and 5 in terms of MAC (p = 0.190) and Caspase-3 (p = 0.999). The combination of remifentanil-MgSO4 increased BDNF levels significantly.
CONCLUSION: The administration of remifentanil, MgSO4 , or their combination can serve as a neuroprotector in Wistar rat models with TBI by lowering MAC and Caspase-3 as well as increasing BDNF levels.
Collapse
|
7
|
Walia V, Kaushik D, Mittal V, Kumar K, Verma R, Parashar J, Akter R, Rahman MH, Bhatia S, Al-Harrasi A, Karthika C, Bhattacharya T, Chopra H, Ashraf GM. Delineation of Neuroprotective Effects and Possible Benefits of AntioxidantsTherapy for the Treatment of Alzheimer's Diseases by Targeting Mitochondrial-Derived Reactive Oxygen Species: Bench to Bedside. Mol Neurobiol 2021; 59:657-680. [PMID: 34751889 DOI: 10.1007/s12035-021-02617-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is considered the sixth leading cause of death in elderly patients and is characterized by progressive neuronal degeneration and impairment in memory, language, etc. AD is characterized by the deposition of senile plaque, accumulation of fibrils, and neurofibrillary tangles (NFTs) which are responsible for neuronal degeneration. Amyloid-β (Aβ) plays a key role in the process of neuronal degeneration in the case of AD. It has been reported that Aβ is responsible for the production of reactive oxygen species (ROS), depletion of endogenous antioxidants, increase in intracellular Ca2+ which further increases mitochondria dysfunctions, oxidative stress, release of pro-apoptotic factors, neuronal apoptosis, etc. Thus, oxidative stress plays a key role in the pathogenesis of AD. Antioxidants are compounds that have the ability to counteract the oxidative damage conferred by ROS. Therefore, the antioxidant therapy may provide benefits and halt the progress of AD to advance stages by counteracting neuronal degeneration. However, despite the beneficial effects imposed by the antioxidants, the findings from the clinical studies suggested inconsistent results which might be due to poor study design, selection of the wrong antioxidant, inability of the molecule to cross the blood-brain barrier (BBB), treatment in the advanced state of disease, etc. The present review insights into the neuroprotective effects and limitations of the antioxidant therapy for the treatment of AD by targeting mitochondrial-derived ROS. This particular article will certainly help the researchers to search new avenues for the treatment of AD by utilizing mitochondrial-derived ROS-targeted antioxidant therapies.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ravinder Verma
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, 122103, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Saurabh Bhatia
- School of Health Science University of Petroleum and Energy Studies, Dehrandun, Uttarkhand, 248007, India
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mouz, P.O. Box 33, Nizwa, Oman
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, The Nilgiris, Ooty, 643001, Tamil Nadu, India
| | - Tanima Bhattacharya
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Hsieh SW, Chen JC, Chen NC, Jhang KM, Wang W, Yang YH. Real-world Evaluation of Tolerability, Safety and Efficacy of Rivastigmine Oral Solution in Patients with Mild to Moderate Alzheimer's Disease Dementia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2021; 19:459-469. [PMID: 34294615 PMCID: PMC8316665 DOI: 10.9758/cpn.2021.19.3.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of this study is to investigate the safety, tolerability and efficacy of titrating dose of rivastigmine oral solution in patients with mild to moderate Alzheimer's disease (AD) in Taiwan. METHODS We recruited 108 mild to moderate AD patients with RivastⓇ (rivastigmine oral solution 2 mg/ml) treatment for 52 weeks. We recorded the demographic characteristics, initial cognition by mini-mental state examination (MMSE), initial global status by clinical dementia rating (CDR) with CDR-Sum of Boxes (CDR-SB), initial dose, and titrating dose at each visit. We investigated the adherence, proportion of possible side effects, optimal dose, and time to optimal dose. We demonstrated the proportion of cognitive decline and its possible risk factors. RESULTS During the course, 9 patients discontinued the rivastigmine oral solution due to poor compliance or preference. Twelve out of 99 patients (12.1%) reported possible side effects. Among 87 patients, the mean age was 77.2 ± 9.0 years ago with female predominant (65.2%). The optimal dose was 3.6 ± 1.4 ml in average and 4 ml (n = 31, 35.6%) in mode. The duration to optimal dose was 12.5 ± 10.2 weeks and 24 weeks (n = 35, 40.2%) in mode. It presented 25% with cognitive decline in MMSE, 27% with global function decline in CDR and 63% with global function decline in CDR-SB. CONCLUSION We demonstrated the clinical experience of rivastigmine oral solution in mild to moderate AD patients. It suggested rivastigmine oral solution 4ml is the optimal dose with 24 weeks to the optimal dose for at least one third of patients.
Collapse
Affiliation(s)
- Sun-Wung Hsieh
- Department of Neurology, Kaohsiung Municipal Siao-Gang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Cheng Chen
- Department of Neurology, China Medical University Hsinchu Hospital, Taichung, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Ming Jhang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Wenfu Wang
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Holistic Wellness, Ming Dao University, Changhua, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Taiwan
- Department of and Master’s Program in Neurology, Faculty of Medicine, Kaohsiung Medical University, Taiwan
- Chinese Mentality Protection Association, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Gromova OA, Torshin IY, Grishina TR, Demidov VI, Bogacheva TE. [Molecular and clinical aspects of the effect of cytidyndiphosphocholine on cognitive functions]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:88-97. [PMID: 34184483 DOI: 10.17116/jnevro202112105188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Systematization of the array of publications on cytidyldiphosphocholine (CDP-choline). MATERIAL AND METHODS Systematic computer analysis of all currently available publications on CDP-choline (1750 publications in PUBMED) using the topological theory of big data analysis. RESULTS CDP-choline is essential for acetylcholine biosynthesis, phospholipid metabolism, and DNA methylation. The article describes the effects of CDP-choline on acetylcholinergic and other types of neurotransmission, anti-inflammatory, neuroprotective and neurotrophic effects of CDP-choline. Also, the paper presents the effects of the molecule on lipid metabolism and gene expression within the post-genomic paradigm (in particular, an increase in the expression of nicotinic and muscarinic acetylcholine receptors). The results of fundamental and clinical studies of CDP-choline in the treatment of cognitive impairments associated with cerebral ischemia and neurodegeneration are presented. CONCLUSION The pharmacological effects of CDP-choline are mediated through multiple molecular mechanisms that contribute to the nootropic action of this molecule.
Collapse
Affiliation(s)
- O A Gromova
- Institute of Pharmacoinformatics of the Federal Research Center «Informatics and Control» RAS, Moscow, Russia.,Center for storing and analyzing big data of the National Center for Digital Economy of the Federal State Budgetary Educational Institution of Higher Education «Lomonosov Moscow State University», Moscow, Russia
| | - I Yu Torshin
- Institute of Pharmacoinformatics of the Federal Research Center «Informatics and Control» RAS, Moscow, Russia.,Center for storing and analyzing big data of the National Center for Digital Economy of the Federal State Budgetary Educational Institution of Higher Education «Lomonosov Moscow State University», Moscow, Russia
| | - T R Grishina
- Ivanovo State Medical Academy of the Ministry of Health of Russia, Ivanovo, Russia
| | - V I Demidov
- Ivanovo State Medical Academy of the Ministry of Health of Russia, Ivanovo, Russia
| | - T E Bogacheva
- Ivanovo State Medical Academy of the Ministry of Health of Russia, Ivanovo, Russia
| |
Collapse
|