1
|
Song D, Peng Q, Chen Y, Zhou X, Zhang F, Li A, Huang D, Wu Q, Ye Y, He H, Wang L, Tang Y. Altered Gut Microbiota Profiles in Sows and Neonatal Piglets Associated with Porcine Epidemic Diarrhea Virus Infection. Sci Rep 2017; 7:17439. [PMID: 29234140 PMCID: PMC5727058 DOI: 10.1038/s41598-017-17830-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] [Imported: 01/11/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is a devastating cause of diarrhea in pigs worldwide. Most of studies have focused on molecular and pathogenic characterization of PEDV, whereas there were limited studies in understanding the role of gut microbiota (GM) in viral-associated diarrhea. Here, using the Illumina MiSeq platform, we examined and compared the impact of PEDV infection on the GM of sows and their piglets less than 10 days old. Our results showed that PEDV caused alternations in the structure and abundance of GM from levels of phylum to genus, and even species. For sows, a significant decrease of observed species was found in diarrheal sows than that in healthy sows (p < 0.05). The unweighted and weighted UniFrac distances also revealed considerable segregations of GM structure among healthy, asymptomatic, and diarrheal sows. For piglets, Bacteroidetes, the dominant bacteria in healthy piglets, were replaced by Firmicutes in asymptomatic and diarrheal piglets. The abundances of Fusobacteria and Proteobacteria were also remarkably increased in asymptomatic piglets and diarrheal piglets when compared to those of the healthy piglets. Our findings demonstrated that PEDV infection caused severe perturbations of GM, reduced probiotic bacteria, and enriched pathogenic bacteria.
Collapse
|
research-article |
8 |
34 |
2
|
Li T, Huang T, Guo C, Wang A, Shi X, Mo X, Lu Q, Sun J, Hui T, Tian G, Wang L, Yang J. Genomic variation, origin tracing, and vaccine development of SARS-CoV-2: A systematic review. Innovation (N Y) 2021; 2:100116. [PMID: 33997827 PMCID: PMC8110321 DOI: 10.1016/j.xinn.2021.100116] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/30/2021] [Indexed: 02/07/2023] [Imported: 01/11/2025] Open
Abstract
COVID-19 has spread globally to over 200 countries with more than 40 million confirmed cases and one million deaths as of November 1, 2020. The SARS-CoV-2 virus, leading to COVID-19, shows extremely high rates of infectivity and replication, and can result in pneumonia, acute respiratory distress, or even mortality. SARS-CoV-2 has been found to continue to rapidly evolve, with several genomic variants emerging in different regions throughout the world. In addition, despite intensive study of the spike protein, its origin, and molecular mechanisms in mediating host invasion are still only partially resolved. Finally, the repertoire of drugs for COVID-19 treatment is still limited, with several candidates still under clinical trial and no effective therapeutic yet reported. Although vaccines based on either DNA/mRNA or protein have been deployed, their efficacy against emerging variants requires ongoing study, with multivalent vaccines supplanting the first-generation vaccines due to their low efficacy against new strains. Here, we provide a systematic review of studies on the epidemiology, immunological pathogenesis, molecular mechanisms, and structural biology, as well as approaches for drug or vaccine development for SARS-CoV-2.
Collapse
|
Review |
4 |
34 |
3
|
Yuan F, Wang L, Fang Y, Wang L. Global SNP analysis of 11,183 SARS-CoV-2 strains reveals high genetic diversity. Transbound Emerg Dis 2021; 68:3288-3304. [PMID: 33207070 PMCID: PMC7753349 DOI: 10.1111/tbed.13931] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023] [Imported: 01/11/2025]
Abstract
Since first identified in December of 2019, COVID-19 has been quickly spreading to the world in few months and COVID-19 cases are still undergoing rapid surge in most countries worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), adapts and evolves rapidly in nature. With the availability of 16,092 SARS-CoV-2 full genomes in GISAID as of 13 May, we removed the poor-quality genomes and performed mutational profiling analysis for the remaining 11,183 viral genomes. Global analysis of all sequences identified all single nucleotide polymorphisms (SNPs) across the whole genome and critical SNPs with high mutation frequency that contributes to five-clade classification of global strains. A total of 119 SNPs were found with 74 non-synonymous mutations, 43 synonymous mutations and two mutations in intergenic regions. Analysis of geographic pattern of mutational profiling for the whole genome reveals differences between each continent. A transition mutation from C to T represents the most mutation types across the genome, suggesting rapid evolution and adaptation of the virus in host. Amino acid (AA) deletions and insertions found across the genome results in changes in viral protein length and potential function alteration. Mutational profiling for each gene was analysed, and results show that nucleocapsid gene demonstrates the highest mutational frequency, followed by Nsp2, Nsp3 and Spike gene. We further focused on non-synonymous mutational distributions on four key viral proteins, spike with 75 mutations, RNA-dependent-RNA-polymerase with 41 mutations, 3C-like protease with 22 mutations and Papain-like protease with 10 mutations. Results show that non-synonymous mutations on critical sites of these four proteins pose great challenge for development of anti-viral drugs and other countering measures. Overall, this study provides more understanding of genetic diversity/variability of SARS-CoV-2 and insights for development of anti-viral therapeutics.
Collapse
|
research-article |
4 |
31 |
4
|
Wang L, Hayes J, Sarver C, Byrum B, Zhang Y. Porcine deltacoronavirus: histological lesions and genetic characterization. Arch Virol 2016; 161:171-175. [PMID: 26475155 PMCID: PMC7087246 DOI: 10.1007/s00705-015-2627-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
First identified in 2012 in a surveillance study in Hong Kong, porcine deltacoronavirus (PDCoV) is a proposed member of the genus Deltacoronavirus of the family Coronaviridae. In February of 2014, PDCoV was detected in pigs with clinical diarrheal symptoms for the first time in the USA. Since then, it has been detected in more than 20 states in the USA and in other countries, including Canada, South Korea, and mainland China. So far, histological lesions in the intestines of pigs naturally infected with PDCoV under field conditions have not been reported. In this report, we describe the characteristic histological lesions in the small intestine that were associated with PDCoV infection, as evidenced by detection of viral nucleic acid by RT-PCR. In addition, we performed genomic analysis to determine the genetic relationship of all PDCoV strains from the four countries. We found that PDCoV mainly caused histological lesions in the small intestines of naturally infected piglets. Sequence analysis demonstrated that the PDCoV strains of different countries are closely related and shared high nucleotide sequence similarity; however, deletion patterns in the spike and 3' untranslated regions are different among the strains from mainland China, Hong Kong, the USA, and South Korea. Our study highlights the fact that continual surveillance is needed to trace the evolution of this virus.
Collapse
|
case-report |
9 |
31 |
5
|
Wang L, Gyimesi ZS, Killian ML, Torchetti M, Olmstead C, Fredrickson R, Terio KA. Detection of SARS-CoV-2 clade B.1.2 in three snow leopards. Transbound Emerg Dis 2022; 69:e3346-e3351. [PMID: 35698174 PMCID: PMC9349399 DOI: 10.1111/tbed.14625] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] [Imported: 01/11/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of seven coronaviruses known to infect humans. Different from other concerned coronavirus and influenza viruses, SARS-CoV-2 has a higher basic reproduction number and thus transmits more efficiently among hosts. Testing animals for SARS-CoV-2 may help decipher virus reservoirs, transmission and pathogenesis. Here, we report the first detection of SARS-CoV-2 in three snow leopards (Panthera uncia) in a zoo in Kentucky in 2020, the first year of the pandemic. Sequence analysis revealed that snow leopard SARS-CoV-2 strains were non-variant B.1.2 lineage and closely correlated with human strains. One snow leopard shed SARS-CoV-2 in faeces up to 4 weeks. Based on clinical signs and viral shedding periods and levels in the three snow leopards, animal-to-animal transmission events could not be excluded. Further testing of SARS-CoV-2 in animals is needed.
Collapse
|
brief-report |
3 |
21 |
6
|
Wang L, Prarat M, Hayes J, Zhang Y. Detection and Genomic Characterization of Senecavirus A, Ohio, USA, 2015. Emerg Infect Dis 2016; 22:1321-1323. [PMID: 27314491 PMCID: PMC4918170 DOI: 10.3201/eid2207.151897] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 01/11/2025] Open
|
Historical Article |
9 |
19 |
7
|
Wang L, Fredrickson R, Duncan M, Samuelson J, Hsiao SH. Bovine Kobuvirus in Calves with Diarrhea, United States. Emerg Infect Dis 2020; 26:176-178. [PMID: 31855534 PMCID: PMC6924891 DOI: 10.3201/eid2601.191227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 01/11/2025] Open
Abstract
We detected bovine kobuvirus (BKV) in calves with diarrhea in the United States. The strain identified is related genetically to BKVs detected in other countries. Histopathologic findings also confirmed viral infection in 2 BKV cases. Our data show BKV is a potential causative agent for diarrhea in calves.
Collapse
|
brief-report |
5 |
18 |
8
|
Allender MC, Adkesson MJ, Langan JN, Delk KW, Meehan T, Aitken‐Palmer C, McEntire MM, Killian ML, Torchetti M, Morales SA, Austin C, Fredrickson R, Olmstead C, Ke R, Smith R, Hostnik ET, Terio K, Wang L. Multi-species outbreak of SARS-CoV-2 Delta variant in a zoological institution, with the detection in two new families of carnivores. Transbound Emerg Dis 2022; 69:e3060-e3075. [PMID: 35839756 PMCID: PMC9349917 DOI: 10.1111/tbed.14662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] [Imported: 01/11/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a worldwide distribution in humans and many other mammalian species. In late September 2021, 12 animals maintained by the Chicago Zoological Society's Brookfield Zoo were observed with variable clinical signs. The Delta variant of SARS-CoV-2 was detected in faeces and nasal swabs by qRT-PCR, including the first detection in animals from the families Procyonidae and Viverridae. Test positivity rate was 12.5% for 35 animals tested. All animals had been vaccinated with at least one dose of a recombinant vaccine designed for animals and all recovered with variable supportive treatment. Sequence analysis showed that six zoo animal strains were closely correlated with 18 human SARS-CoV-2 strains, suggestive of potential human-to-animal transmission events. This report documents the expanding host range of COVID-19 during the ongoing pandemic.
Collapse
|
research-article |
3 |
17 |
9
|
Xu H, Meng F, Huang D, Sheng X, Wang Y, Zhang W, Chang W, Wang L, Qin Z. Genomic and phylogenetic characterization of novel, recombinant H5N2 avian influenza virus strains isolated from vaccinated chickens with clinical symptoms in China. Viruses 2015; 7:887-898. [PMID: 25723387 PMCID: PMC4379553 DOI: 10.3390/v7030887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 02/07/2023] [Imported: 01/11/2025] Open
Abstract
Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA) and matrix (M) genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL) is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.
Collapse
|
research-article |
10 |
17 |
10
|
Wang L, Maddox C, Terio K, Lanka S, Fredrickson R, Novick B, Parry C, McClain A, Ross K. Detection and Characterization of New Coronavirus in Bottlenose Dolphin, United States, 2019. Emerg Infect Dis 2020; 26:1610-1612. [PMID: 32568058 PMCID: PMC7323548 DOI: 10.3201/eid2607.200093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 01/11/2025] Open
Abstract
We characterized novel coronaviruses detected in US bottlenose dolphins (BdCoVs) with diarrhea. These viruses are closely related to the other 2 known cetacean coronaviruses, Hong Kong BdCoV and beluga whale CoV. A deletion in the spike gene and insertions in the membrane gene and untranslated regions were found in US BdCoVs (unrelated to severe acute respiratory syndrome coronavirus 2).
Collapse
|
brief-report |
5 |
8 |
11
|
Wang L, Eggett TE, Lanka S, Fredrickson RL, Li G, Zhang Y, Yoo D, Bowman AS. Development of a triplex real-time RT-PCR assay for detection and differentiation of three US genotypes of porcine hemagglutinating encephalomyelitis virus. J Virol Methods 2019; 269:13-17. [PMID: 30959064 PMCID: PMC7113741 DOI: 10.1016/j.jviromet.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023] [Imported: 01/11/2025]
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a single-stranded, positive-sense RNA virus. PHEV mainly causes two types of clinical manifestations representing vomiting and wasting and encephalomyelitis in piglets. However, our recent findings provide strong evidence that PHEV can also cause respiratory disease in older pigs. Genomic analysis of new PHEV strains identified in our former study further classifies PHEV into three genotypes. Detection and differentiation of these new mutants are critical in monitoring PHEV evolution in the field. In the present study, we report the development of a triplex real-time RT-PCR assay for detection and differentiation of three PHEV genotypes, 1, 2, and 3. Three sets of primers and probes were designed; one set of primers and probe targeting the conserved regions of the 3' end nucleocapsid for detection of all three genotypes and another two sets of primers and probes targeting the regions of NS2 with different patterns of deletions for detection of both genotypes 1 and 3, or genotype 3 only. Genotype 1 was positive when two probe dyes showed signals, genotype 2 was positive when only one probe dye showed a signal, and genotype 3 was positive when all three probes showed signals. The detection limit of the developed triplex real-time RT-PCR was as low as 8 or 9 DNA copies for three sets of primers and probes. The specificity test showed no cross reaction with other porcine viruses. Positive field-samples were correctly typed by this new assay, which was further confirmed by DNA sequencing. The triplex real-time RT-PCR provides a rapid and sensitive method to detect and differentiate all three US genotypes of PHEV from clinical samples.
Collapse
|
research-article |
6 |
4 |
12
|
Mitchell PK, Wang L, Stanhope BJ, Cronk BD, Anderson R, Mohan S, Zhou L, Sanchez S, Bartlett P, Maddox C, DeShambo V, Mani R, Hengesbach LM, Gresch S, Wright K, Mor S, Zhang S, Shen Z, Yan L, Mackey R, Franklin-Guild R, Zhang Y, Prarat M, Shiplett K, Ramachandran A, Narayanan S, Sanders J, Hunkapiller AA, Lahmers K, Carbonello AA, Aulik N, Lim A, Cooper J, Jones A, Guag J, Nemser SM, Tyson GH, Timme R, Strain E, Reimschuessel R, Ceric O, Goodman LB. Multi-laboratory evaluation of the Illumina iSeq platform for whole genome sequencing of Salmonella, Escherichia coli and Listeria. Microb Genom 2022; 8:000717. [PMID: 35113783 PMCID: PMC8942033 DOI: 10.1099/mgen.0.000717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] [Imported: 01/11/2025] Open
Abstract
There is a growing need for public health and veterinary laboratories to perform whole genome sequencing (WGS) for monitoring antimicrobial resistance (AMR) and protecting the safety of people and animals. With the availability of smaller and more affordable sequencing platforms coupled with well-defined bioinformatic protocols, the technological capability to incorporate this technique for real-time surveillance and genomic epidemiology has greatly expanded. There is a need, however, to ensure that data are of high quality. The goal of this study was to assess the utility of a small benchtop sequencing platform using a multi-laboratory verification approach. Thirteen laboratories were provided the same equipment, reagents, protocols and bacterial reference strains. The Illumina DNA Prep and Nextera XT library preparation kits were compared, and 2×150 bp iSeq i100 chemistry was used for sequencing. Analyses comparing the sequences produced from this study with closed genomes from the provided strains were performed using open-source programs. A detailed, step-by-step protocol is publicly available via protocols.io (https://www.protocols.io/view/iseq-bacterial-wgs-protocol-bij8kcrw). The throughput for this method is approximately 4-6 bacterial isolates per sequencing run (20-26 Mb total load). The Illumina DNA Prep library preparation kit produced high-quality assemblies and nearly complete AMR gene annotations. The Prep method produced more consistent coverage compared to XT, and when coverage benchmarks were met, nearly all AMR, virulence and subtyping gene targets were correctly identified. Because it reduces the technical and financial barriers to generating WGS data, the iSeq platform is a viable option for small laboratories interested in genomic surveillance of microbial pathogens.
Collapse
|
brief-report |
3 |
2 |
13
|
Savard C, Ariel O, Fredrickson R, Wang L, Broes A. Detection and genome characterization of bovine kobuvirus (BKV) in faecal samples from diarrhoeic calves in Quebec, Canada. Transbound Emerg Dis 2022; 69:1649-1655. [PMID: 33788413 PMCID: PMC8938984 DOI: 10.1111/tbed.14086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] [Imported: 01/11/2025]
Abstract
Kobuviruses are known to infect the gastrointestinal tract of different animal species. Since its discovery in 2003, bovine kobuvirus (BKV) has been identified in faecal samples from diarrhoeic cattle in many countries, but only recently in North America. Although its possible role as an agent of calf diarrhoea remains to be determined, evidence is mounting. Our study reports for the first time the detection of BKV in faecal samples from diarrhoeic calves raised in Quebec, Canada. BKV was more commonly identified than eight known and common enteric calf pathogens. Further sequence analysis revealed that Canada BKV strain 1,043,507 was more closely correlated with the US BKV IL35164 strain than other BKV strains with complete genome. Continued surveillance and genomic characterization are needed to monitor BKV in the cattle around the world.
Collapse
|
research-article |
3 |
2 |
14
|
Savard C, Provost C, Ariel O, Morin S, Fredrickson R, Gagnon CA, Broes A, Wang L. First report and genomic characterization of a bovine-like coronavirus causing enteric infection in an odd-toed non-ruminant species (Indonesian tapir, Acrocodia indica) during an outbreak of winter dysentery in a zoo. Transbound Emerg Dis 2022; 69:3056-3065. [PMID: 34427399 PMCID: PMC8943714 DOI: 10.1111/tbed.14300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 02/05/2023] [Imported: 01/11/2025]
Abstract
Bovine coronavirus (BCoV) is associated with three distinct clinical syndromes in cattle that is, neonatal diarrhoea, haemorrhagic diarrhoea in adults (the so-called winter dysentery syndrome, WD) and respiratory infections in cattle of different ages. In addition, bovine-like CoVs have been detected in various species including domestic and wild ruminants. However, bovine-like CoVs have not been reported so far in odd-toed ungulates. We describe an outbreak of WD associated with a bovine-like CoV affecting several captive wild ungulates, including Indonesian tapirs (Acrocodia indica) an odd-toed ungulate species (Perissodactyla) which, with even-toed ungulates species (Artiodactyla) form the clade Euungulata. Genomic characterization of the CoV revealed that it was closely related to BCoVs previously reported in America. This case illustrates the adaptability of bovine-like CoVs to new species and the necessity of continued surveillance of bovine-like CoVs in various species.
Collapse
|
research-article |
3 |
2 |
15
|
Li Y, Palomares RA, Liu M, Xu J, Koo C, Granberry F, Locke SR, Habing G, Saif LJ, Wang L, Wang Q. Isolation and Characterization of Contemporary Bovine Coronavirus Strains. Viruses 2024; 16:965. [PMID: 38932257 PMCID: PMC11209117 DOI: 10.3390/v16060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] [Imported: 01/11/2025] Open
Abstract
Bovine coronavirus (BCoV) poses a threat to cattle health worldwide, contributing to both respiratory and enteric diseases. However, few contemporary strains have been isolated. In this study, 71 samples (10 nasal and 61 fecal) were collected from one farm in Ohio in 2021 and three farms in Georgia in 2023. They were screened by BCoV-specific real-time reverse transcription-PCR, and 15 BCoV-positive samples were identified. Among them, five BCoV strains from fecal samples were isolated using human rectal tumor-18 (HRT-18) cells. The genomic sequences of five strains were obtained. The phylogenetic analysis illustrated that these new strains clustered with US BCoVs that have been detected since the 1990s. Sequence analyses of the spike proteins of four pairs of BCoVs, with each pair originally collected from the respiratory and enteric sites of one animal, revealed the potential amino acid residue patterns, such as D1180 for all four enteric BCoVs and G1180 for three of four respiratory BCoVs. This project provides new BCoV isolates and sequences and underscores the genetic diversity of BcoVs, the unknown mechanisms of disease types, and the necessity of sustained surveillance and research for BCoVs.
Collapse
|
research-article |
1 |
|
16
|
Savard C, Wang L. Identification and Genomic Characterization of Bovine Boosepivirus A in the United States and Canada. Viruses 2024; 16:307. [PMID: 38400082 PMCID: PMC10893527 DOI: 10.3390/v16020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] [Imported: 01/11/2025] Open
Abstract
Boosepivirus is a new genus in the Picornaviridae family. Boosepiviruses (BooVs) are genetically classified into three species: A, B, and C. Initially, Boosepivirus A and B were identified in cattle, whereas Boosepivirus C was detected in sheep. Recent evidence showed that Boosepivirus B was detected in sheep and Boosepivirus C was identified in goats, suggesting that Boosepvirus might cross the species barrier to infect different hosts. Different from BooV B, BooV A is less studied. In the present study, we reported identification of two North American BooV A strains from cattle. Genomic characterization revealed that US IL33712 (GenBank accession #PP035161) and Canada 1087562 (GenBank accession #PP035162) BooV A strains are distantly related to each other, and US IL33712 is more closely correlated to two Asian BooV A strains. US-strain-specific insertions, NorthAmerican-strain-specific insertions, and species A-specific insertions are observed and could contribute to viral pathogenicity and host adaptation. Our findings highlight the importance of continued surveillance of BooV A in animals.
Collapse
|
brief-report |
1 |
|
17
|
Leonardi-Cattolica A, Kayastha S, Miller M, Guag J, Tkachenko A, Lowe J, Allender M, Terio K, Wang L. Evaluation of Fecal Sample Pooling for Real-Time RT-PCR Testing SARS-CoV-2 in Animals. Viruses 2024; 16:1651. [PMID: 39599766 PMCID: PMC11599033 DOI: 10.3390/v16111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] [Imported: 01/11/2025] Open
Abstract
During the COVID-19 pandemic, veterinary diagnostic laboratories tested both human and animal samples and needed to ensure that they could accurately perform large numbers of diagnostic tests in a timely manner. Sample pooling, a methodology used effectively for over 80 years as a surveillance tool for screening large numbers of potentially infected individuals, was employed. Given its sensitivity, real-time polymerase chain reaction (PCR) is more suitable for employing this strategy, as compared to other less sensitive testing methods. In this study, we evaluated the capability of detecting SARS-CoV-2 in both 5-sample and 10-sample pools of feces using real-time reverse transcriptase polymerase chain reaction (rRT-PCR) as well as determined the level of sensitivity. A blinded method test (BMT) by an independent laboratory was conducted to assess the five-sample fecal pool. To complement detection capability, the stability of the genome within a PBS fecal suspension was measured under various time and temperature conditions across a 28-day period. Our results showed that the limit of detection for 5-sample and 10-sample fecal pools is 12.8 and 6.4 genome copies in a 25 µL PCR, respectively. The 5-sample and 10-sample pooling resulted in a cycle threshold (Ct) value loss of 2.35 and 3.45, as compared to Ct values of known positive individual samples, but consistent detection was still achieved in pools containing positive samples with an original Ct below 36 and 34, respectively. The simulation of clinical five-sample pooling showed that all positive samples could be detected regardless of the number (1-3) of positive samples in each pool. The BMT results demonstrated excellent sensitivity (100 copies/reaction) in five-sample pools for the detection of SARS-CoV-2 RNA even though a fecal matrix effect was observed. Finally, our results show that the SARS-CoV-2 genome remains stable over a wide range of time and temperature variations. Overall, our findings provide solid data to scale up SARS-CoV-2 testing capacity in veterinary diagnostic laboratories.
Collapse
|
Evaluation Study |
1 |
|