51
|
Duru N, Wolfson B, Zhou Q. Mechanisms of the alternative activation of macrophages and non-coding RNAs in the development of radiation-induced lung fibrosis. World J Biol Chem 2016; 7:231-239. [PMID: 27957248 PMCID: PMC5124699 DOI: 10.4331/wjbc.v7.i4.231] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/17/2016] [Accepted: 10/25/2016] [Indexed: 02/05/2023] Open
Abstract
Radiation-induced lung fibrosis (RILF) is a common side effect of thoracic irradiation therapy and leads to high mortality rates after cancer treatment. Radiation injury induces inflammatory M1 macrophage polarization leading to radiation pneumonitis, the first stage of RILF progression. Fibrosis occurs due to the transition of M1 macrophages to the anti-inflammatory pro-fibrotic M2 phenotype, and the resulting imbalance of macrophage regulated inflammatory signaling. Non-coding RNA signaling has been shown to play a large role in the regulation of the M2 mediated signaling pathways that are associated with the development and progression of fibrosis. While many studies show the link between M2 macrophages and fibrosis, there are only a few that explore their distinct role and the regulation of their signaling by non-coding RNA in RILF. In this review we summarize the current body of knowledge describing the roles of M2 macrophages in RILF, with an emphasis on the expression and functions of non-coding RNAs.
Collapse
|
Minireviews |
9 |
47 |
52
|
Zaidi A. Plasma membrane Ca 2+-ATPases: Targets of oxidative stress in brain aging and neurodegeneration. World J Biol Chem 2010; 1:271-80. [PMID: 21537484 PMCID: PMC3083975 DOI: 10.4331/wjbc.v1.i9.271] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 02/05/2023] Open
Abstract
The plasma membrane Ca2+-ATPase (PMCA) pumps play an important role in the maintenance of precise levels of intracellular Ca2+ [Ca2+]i, essential to the functioning of neurons. In this article, we review evidence showing age-related changes of the PMCAs in synaptic plasma membranes (SPMs). PMCA activity and protein levels in SPMs diminish progressively with increasing age. The PMCAs are very sensitive to oxidative stress and undergo functional and structural changes when exposed to oxidants of physiological relevance. The major signatures of oxidative modification in the PMCAs are rapid inactivation, conformational changes, aggregation, internalization from the plasma membrane and proteolytic degradation. PMCA proteolysis appears to be mediated by both calpains and caspases. The predominance of one proteolytic pathway vs the other, the ensuing pattern of PMCA degradation and its consequence on pump activity depends largely on the type of insult, its intensity and duration. Experimental reduction of PMCA expression not only alters the dynamics of cellular Ca2+ handling but also has a myriad of downstream consequences on various aspects of cell function, indicating a broad role of these pumps. Age- and oxidation-related down-regulation of the PMCAs may play an important role in compromised neuronal function in the aging brain and its several-fold increased susceptibility to neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and stroke. Therapeutic approaches that protect the PMCAs and stabilize [Ca2+]i homeostasis may be capable of slowing and/or preventing neuronal degeneration. The PMCAs are therefore emerging as a new class of drug targets for therapeutic interventions in various chronic degenerative disorders.
Collapse
|
Topic Highlight |
15 |
47 |
53
|
Aureliano M. Recent perspectives into biochemistry of decavanadate. World J Biol Chem 2011; 2:215-25. [PMID: 22031844 PMCID: PMC3202125 DOI: 10.4331/wjbc.v2.i10.215] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/14/2011] [Indexed: 02/05/2023] Open
Abstract
The number of papers about decavanadate has doubled in the past decade. In the present review, new insights into decavanadate biochemistry, cell biology, and antidiabetic and antitumor activities are described. Decameric vanadate species (V10) clearly differs from monomeric vanadate (V1), and affects differently calcium pumps, and structure and function of myosin and actin. Only decavanadate inhibits calcium accumulation by calcium pump ATPase, and strongly inhibits actomyosin ATPase activity (IC50 = 1.4 μmol/L, V10), whereas no such effects are detected with V1 up to 150 μmol/L; prevents actin polymerization (IC50 of 68 μmol/L, whereas no effects detected with up to 2 mmol/L V1); and interacts with actin in a way that induces cysteine oxidation and vanadate reduction to vanadyl. Moreover, in vivo decavanadate toxicity studies have revealed that acute exposure to polyoxovanadate induces different changes in antioxidant enzymes and oxidative stress parameters, in comparison with vanadate. In vitro studies have clearly demonstrated that mitochondrial oxygen consumption is strongly affected by decavanadate (IC50, 0.1 μmol/L); perhaps the most relevant biological effect. Finally, decavanadate (100 μmol/L) increases rat adipocyte glucose accumulation more potently than several vanadium complexes. Preliminary studies suggest that decavanadate does not have similar effects in human adipocytes. Although decavanadate can be a useful biochemical tool, further studies must be carried out before it can be confirmed that decavanadate and its complexes can be used as anticancer or antidiabetic agents.
Collapse
|
Editorial |
14 |
46 |
54
|
Musci G, Polticelli F, Bonaccorsi di Patti MC. Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J Biol Chem 2014; 5:204-215. [PMID: 24921009 PMCID: PMC4050113 DOI: 10.4331/wjbc.v5.i2.204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/19/2014] [Indexed: 02/05/2023] Open
Abstract
Safe trafficking of iron across the cell membrane is a delicate process that requires specific protein carriers. While many proteins involved in iron uptake by cells are known, only one cellular iron export protein has been identified in mammals: ferroportin (SLC40A1). Ceruloplasmin is a multicopper enzyme endowed with ferroxidase activity that is found as a soluble isoform in plasma or as a membrane-associated isoform in specific cell types. According to the currently accepted view, ferrous iron transported out of the cell by ferroportin would be safely oxidized by ceruloplasmin to facilitate loading on transferrin. Therefore, the ceruloplasmin-ferroportin system represents the main pathway for cellular iron egress and it is responsible for physiological regulation of cellular iron levels. The most recent findings regarding the structural and functional features of ceruloplasmin and ferroportin and their relationship will be described in this review.
Collapse
|
Review |
11 |
46 |
55
|
Castiglioni S, Caspani C, Cazzaniga A, Maier JAM. Short- and long-term effects of silver nanoparticles on human microvascular endothelial cells. World J Biol Chem 2014; 5:457-464. [PMID: 25426268 PMCID: PMC4243149 DOI: 10.4331/wjbc.v5.i4.457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/01/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To study the response to silver nanoparticles (Ag NP) of human microvascular endothelial cells, protagonists of angiogenesis.
METHODS: We cultured human microvascular endothelial cells and endothelial colony-forming cells in their corresponding growth medium. Stock solutions of Ag NP were prepared in culture medium and sonicated before use. They were added at different concentrations and for different times to culture media. The toxicity of Ag NP was investigated by measuring the reduction of yellow tetrazolium salt to dark purple formazan (MTT assay) at 575 nm. After staining with trypan blue, cell proliferation was assessed by counting viable cells. The lactate dehydrogenase leakage assay was performed on culture media by following the oxidation of NADH to NAD+ and monitoring the reaction kinetically at 340 nm. Reactive oxygen species production was quantified using 2’-7’-dichlorofluorescein diacetate. The alkaline comet assay was performed after mixing the cells with low melting-point agarose. Electrophoresis was then conducted and the samples were stained with ethidium bromide and analyzed with a fluorescence microscope.
RESULTS: Ag NP are cytotoxic in a dose and time dependent fashion for HMEC. At high concentrations, Ag NP determine loss of membrane integrity as demonstrated by the increased activity of lactate dehydrogenase in the culture medium. Ag NP rapidly stimulate the formation of free radicals. However, pre-incubation with Trolox, apocynin, or N-acetyl-L-cysteine, antioxidants which have different structure and act through different mechanisms, is not sufficient to prevent cytotoxicity. Ag NP also induce DNA damage dose-dependently, as shown by comet assay. When exposed to sublethal concentrations of Ag NP for long times, the cells remain viable but are growth retarded. Interestingly, removal of Ag NP partially rescues cell growth. Also genotoxicity is reversible upon removal of Ag NP from culture medium, suggesting that no permanent modifications occur. It is noteworthy that Ag NP are cytotoxic and genotoxic also for endothelial progenitors, in particular for endothelial colony-forming cells, which participate to angiogenesis.
CONCLUSION: Silver nanoparticles are cytotoxic and genotoxic for human microvascular endothelial cells and might become a useful tool to control excessive angiogenesis.
Collapse
|
Original Article |
11 |
45 |
56
|
Indrasena BSH. Use of thyroglobulin as a tumour marker. World J Biol Chem 2017; 8:81-85. [PMID: 28289520 PMCID: PMC5329716 DOI: 10.4331/wjbc.v8.i1.81] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/22/2016] [Accepted: 01/14/2017] [Indexed: 02/05/2023] Open
Abstract
It is worthwhile to measure serum thyroglobulin (TG) level in thyroid cancer before subjecting patients to surgery for two reasons. Firstly, if the level is high, it may give a clue to the local and metastatic tumour burden at presentation; secondly, if the level is normal, it identifies the patients who are unlikely to show rising TG levels in the presence of thyroid cancer. Those who have high serum TG before surgery will show up recurrence as rising serum TG during the postoperative period. Those who do not have high serum TG before surgery will not show up rising serum TG in the presence of recurrent disease. In the latter situation, normal TG level gives only a false reassurance regarding recurrence of disease. Nevertheless, rising serum TG during the postoperative period must be interpreted cautiously because this could be due to the enlargement of non-cancerous residual thyroid tissue inadvertently left behind during surgery.
Collapse
|
Minireviews |
8 |
45 |
57
|
Paital B, Panda SK, Hati AK, Mohanty B, Mohapatra MK, Kanungo S, Chainy GBN. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J Biol Chem 2016; 7:110-127. [PMID: 26981200 PMCID: PMC4768115 DOI: 10.4331/wjbc.v7.i1.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/30/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to longevity of animals will become very crucial challenge to biologists of the present millennium.
Collapse
|
Review |
9 |
42 |
58
|
Meirelles GV, Perez AM, de Souza EE, Basei FL, Papa PF, Melo Hanchuk TD, Cardoso VB, Kobarg J. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases. World J Biol Chem 2014; 5:141-160. [PMID: 24921005 PMCID: PMC4050109 DOI: 10.4331/wjbc.v5.i2.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/07/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A (NIMA)-related kinases (Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals: (1) centrioles/mitosis; (2) primary ciliary function/ciliopathies; and (3) DNA damage response (DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups’ functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.
Collapse
|
Review |
11 |
41 |
59
|
Kim JY, Lee DY, Lee YJ, Park KJ, Kim KH, Kim JW, Kim WH. Chronic alcohol consumption potentiates the development of diabetes through pancreatic β-cell dysfunction. World J Biol Chem 2015; 6:1-15. [PMID: 25717351 PMCID: PMC4317634 DOI: 10.4331/wjbc.v6.i1.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/29/2014] [Accepted: 12/10/2014] [Indexed: 02/05/2023] Open
Abstract
Chronic ethanol consumption is well established as a major risk factor for type-2 diabetes (T2D), which is evidenced by impaired glucose metabolism and insulin resistance. However, the relationships between alcohol consumption and the development of T2D remain controversial. In particular, the direct effects of ethanol consumption on proliferation of pancreatic β-cell and the exact mechanisms associated with ethanol-mediated β-cell dysfunction and apoptosis remain elusive. Although alcoholism and alcohol consumption are prevalent and represent crucial public health problems worldwide, many people believe that low-to-moderate ethanol consumption may protect against T2D and cardiovascular diseases. However, the J- or U-shaped curves obtained from cross-sectional and large prospective studies have not fully explained the relationship between alcohol consumption and T2D. This review provides evidence for the harmful effects of chronic ethanol consumption on the progressive development of T2D, particularly with respect to pancreatic β-cell mass and function in association with insulin synthesis and secretion. This review also discusses a conceptual framework for how ethanol-produced peroxynitrite contributes to pancreatic β-cell dysfunction and metabolic syndrome.
Collapse
|
Review |
10 |
41 |
60
|
Itamochi H. Targeted therapies in epithelial ovarian cancer: Molecular mechanisms of action. World J Biol Chem 2010; 1:209-20. [PMID: 21537476 PMCID: PMC3083967 DOI: 10.4331/wjbc.v1.i7.209] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/08/2010] [Accepted: 07/15/2010] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is the leading cause of death in women with gynecological cancer. Most patients are diagnosed at an advanced stage and have a poor prognosis. Currently, surgical tumor debulking, followed by platinum- and taxane-based chemotherapy is the standard treatment for advanced ovarian cancer. However, these patients are at great risk of recurrence and emerging drug resistance. Therefore, novel treatment strategies are required to improve outcomes for women with advanced ovarian cancer. A variety of molecular targeted agents, the majority of which are monoclonal antibodies and small-molecule protein-kinase inhibitors, have been explored in the management of ovarian cancer. The targets of these agents include angiogenesis, the human epidermal growth factor receptor family, ubiquitin-proteasome pathway, epigenetic modulators, poly(ADP-ribose) polymerase (PARP), and mammalian target of rapamycin (mTOR) signaling pathway, which are aberrant in tumor tissue. The antiangiogenic agent, bevacizumab, has been reported as the most effective targeted agent and should be included in the standard chemotherapeutic regimen for advanced ovarian cancer. PARP inhibitors, which are mainly used in breast and ovarian cancer susceptibility gene-mutated patients, and mTOR inhibitors are also attractive treatment strategies, either alone or combination with chemotherapy, for ovarian cancer. Understanding the tumor molecular biology and identification of predictive biomarkers are essential steps for selection of the best treatment strategies. This article reviews the molecular mechanisms of the most promising targeted agents that are under early phase clinical evaluation for ovarian cancer.
Collapse
|
Editorial |
15 |
40 |
61
|
Ding WX. Role of autophagy in liver physiology and pathophysiology. World J Biol Chem 2010; 1:3-12. [PMID: 21540988 PMCID: PMC3083930 DOI: 10.4331/wjbc.v1.i1.3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which bulk cytoplasm and superfluous or damaged organelles are enveloped by double membrane structures termed autophagosomes. The autophagosomes then fuse with lysosomes for degradation of their contents, and the resulting amino acids can then recycle back to the cytosol. Autophagy is normally activated in response to nutrient deprivation and other stressors and occurs in all eukaryotes. In addition to maintaining energy and nutrient balance in the liver, it is now clear that autophagy plays a role in liver protein aggregates related diseases, hepatocyte cell death, steatohepatitis, hepatitis virus infection and hepatocellular carcinoma. In this review, I discuss the recent findings of autophagy with a focus on its role in liver pathophysiology.
Collapse
|
Editorial |
15 |
40 |
62
|
Baldwin RM, Morettin A, Côté J. Role of PRMTs in cancer: Could minor isoforms be leaving a mark? World J Biol Chem 2014; 5:115-29. [PMID: 24921003 PMCID: PMC4050107 DOI: 10.4331/wjbc.v5.i2.115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/05/2014] [Accepted: 04/17/2014] [Indexed: 02/05/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) catalyze the methylation of a variety of protein substrates, many of which have been linked to the development, progression and aggressiveness of different types of cancer. Moreover, aberrant expression of PRMTs has been observed in several cancer types. While the link between PRMTs and cancer is a relatively new area of interest, the functional implications documented thus far warrant further investigations into its therapeutic potential. However, the expression of these enzymes and the regulation of their activity in cancer are still significantly understudied. Currently there are nine main members of the PRMT family. Further, the existence of alternatively spliced isoforms for several of these family members provides an additional layer of complexity. Specifically, PRMT1, PRMT2, CARM1 and PRMT7 have been shown to have alternative isoforms and others may be currently unrealized. Our knowledge with respect to the relative expression and the specific functions of these isoforms is largely lacking and needs attention. Here we present a review of the current knowledge of the known alternative PRMT isoforms and provide a rationale for how they may impact on cancer and represent potentially useful targets for the development of novel therapeutic strategies.
Collapse
|
Review |
11 |
39 |
63
|
Bondanese VP, Francisco-Garcia A, Bedke N, Davies DE, Sanchez-Elsner T. Identification of host miRNAs that may limit human rhinovirus replication. World J Biol Chem 2014; 5:437-456. [PMID: 25426267 PMCID: PMC4243148 DOI: 10.4331/wjbc.v5.i4.437] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/01/2014] [Accepted: 10/10/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To test whether the replication of human rhinovirus (HRV) is regulated by microRNAs in human bronchial epithelial cells.
METHODS: For the present study, the human cell line BEAS-2B (derived from normal human bronchial epithelial cells) was adopted. DICER knock-down, by siRNA transfection in BEAS-2B cells, was performed in order to inhibit microRNA maturation globally. Alternatively, antisense oligonucleotides (anti-miRs) were transfected to inhibit the activity of specific microRNAs. Cells were infected with HRV-1B. Viral replication was assessed by measuring the genomic viral RNA by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Association between microRNA-induced-silencing-complex and viral RNA was detected by Ago2 co-immunoprecipitation followed by RT-qPCR. Targetscan v.6 was used to predict microRNA target sites on several HRV strains.
RESULTS: Here, we show that microRNAs affect replication of HRV-1B. DICER knock-down significantly reduced the expression of mature microRNAs in a bronchial epithelial cell line (BEAS-2B) and in turn, increased the synthesis of HRV-1B RNA. Additionally, HRV-1B RNA co-immunoprecipitated with argonaute 2 protein, an important effector for microRNA activity suggesting that microRNAs bind to viral RNA during infection. In order to identify specific microRNAs involved in this interaction, we employed bioinformatics analysis, and selected a group of microRNAs that have been reported to be under-expressed in asthmatic bronchial epithelial cells and were predicted to target different strains of rhinoviruses (HRV-1B, -16, -14, -27). Our results suggest that, out of this group of microRNAs, miR-128 and miR-155 contribute to the innate defense against HRV-1B: transfection of specific anti-miRs increased viral replication, as anticipated in-silico.
CONCLUSION: Taken together, our results suggest that pathological changes in microRNA expression, as already reported for asthma or chronic obstructive pulmonary disease have the potential to affect Rhinovirus replication and therefore may play a role in virus-induced exacerbations.
Collapse
|
Original Article |
11 |
37 |
64
|
Wolfson B, Eades G, Zhou Q. Adipocyte activation of cancer stem cell signaling in breast cancer. World J Biol Chem 2015; 6:39-47. [PMID: 26009703 PMCID: PMC4436905 DOI: 10.4331/wjbc.v6.i2.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment, have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6 (IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activator of transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.
Collapse
|
Minireviews |
10 |
37 |
65
|
Gurevich VV, Gurevich EV. Arrestin-mediated signaling: Is there a controversy? World J Biol Chem 2018; 9:25-35. [PMID: 30595812 PMCID: PMC6305498 DOI: 10.4331/wjbc.v9.i3.25] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/20/2018] [Accepted: 11/03/2018] [Indexed: 02/05/2023] Open
Abstract
The activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase (ERK)1/2 was traditionally used as a readout of signaling of G protein-coupled receptors (GPCRs) via arrestins, as opposed to conventional GPCR signaling via G proteins. Several recent studies using HEK293 cells where all G proteins were genetically ablated or inactivated, or both non-visual arrestins were knocked out, demonstrated that ERK1/2 phosphorylation requires G protein activity, but does not necessarily require the presence of non-visual arrestins. This appears to contradict the prevailing paradigm. Here we discuss these results along with the recent data on gene edited cells and arrestin-mediated signaling. We suggest that there is no real controversy. G proteins might be involved in the activation of the upstream-most MAP3Ks, although in vivo most MAP3K activation is independent of heterotrimeric G proteins, being initiated by receptor tyrosine kinases and/or integrins. As far as MAP kinases are concerned, the best-established role of arrestins is scaffolding of the three-tiered cascades (MAP3K-MAP2K-MAPK). Thus, it seems likely that arrestins, GPCR-bound and free, facilitate the propagation of signals in these cascades, whereas signal initiation via MAP3K activation may be independent of arrestins. Different MAP3Ks are activated by various inputs, some of which are mediated by G proteins, particularly in cell culture, where we artificially prevent signaling by receptor tyrosine kinases and integrins, thereby favoring GPCR-induced signaling. Thus, there is no reason to change the paradigm: Arrestins and G proteins play distinct non-overlapping roles in cell signaling.
Collapse
|
Minireviews |
7 |
34 |
66
|
Villarreal LP, Witzany G. Rethinking quasispecies theory: From fittest type to cooperative consortia. World J Biol Chem 2013; 4:79-90. [PMID: 24340131 PMCID: PMC3856310 DOI: 10.4331/wjbc.v4.i4.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/20/2013] [Accepted: 09/04/2013] [Indexed: 02/05/2023] Open
Abstract
Recent investigations surprisingly indicate that single RNA “stem-loops” operate solely by chemical laws that act without selective forces, and in contrast, self-ligated consortia of RNA stem-loops operate by biological selection. To understand consortial RNA selection, the concept of single quasi-species and its mutant spectra as drivers of RNA variation and evolution is rethought here. Instead, we evaluate the current RNA world scenario in which consortia of cooperating RNA stem-loops (not individuals) are the basic players. We thus redefine quasispecies as RNA quasispecies consortia (qs-c) and argue that it has essential behavioral motifs that are relevant to the inherent variation, evolution and diversity in biology. We propose that qs-c is an especially innovative force. We apply qs-c thinking to RNA stem-loops and evaluate how it yields altered bulges and loops in the stem-loop regions, not as errors, but as a natural capability to generate diversity. This basic competence-not error-opens a variety of combinatorial possibilities which may alter and create new biological interactions, identities and newly emerged self identity (immunity) functions. Thus RNA stem-loops typically operate as cooperative modules, like members of social groups. From such qs-c of stem-loop groups we can trace a variety of RNA secondary structures such as ribozymes, viroids, viruses, mobile genetic elements as abundant infection derived agents that provide the stem-loop societies of small and long non-coding RNAs.
Collapse
|
Review |
12 |
34 |
67
|
Castro-Neto EFD, Cunha RHD, Silveira DXD, Yonamine M, Gouveia TLF, Cavalheiro EA, Amado D, Naffah-Mazzacoratti MDG. Changes in aminoacidergic and monoaminergic neurotransmission in the hippocampus and amygdala of rats after ayahuasca ingestion. World J Biol Chem 2013; 4:141-147. [PMID: 24340137 PMCID: PMC3856309 DOI: 10.4331/wjbc.v4.i4.141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/01/2013] [Accepted: 10/18/2013] [Indexed: 02/05/2023] Open
Abstract
AIM: To evaluate changes in neurotransmission induced by a psychoactive beverage ayahuasca in the hippocampus and amygdala of naive rats.
METHODS: The level of monoamines, their main metabolites and amino acid neurotransmitters concentrations were quantified using high performance liquid chromatography (HPLC). Four groups of rats were employed: saline-treated and rats receiving 250, 500 and 800 mg/kg of ayahuasca infusion (gavage). Animals were killed 40 min after drug ingestion and the structures stored at -80 °C until HPLC assay. The data from all groups were compared using Analysis of variance and Scheffé as post test and P < 0.05 was accepted as significant.
RESULTS: The results showed decreased concentrations of glycine (GLY) (0.13 ± 0.03 vs 0.29 ± 0.07, P < 0.001) and γ-aminobutyric acid (GABA) (1.07 ± 0.14 vs 1.73 ± 0.25, P < 0.001) in the amygdala of rats that received 500 of ayahuasca. Animals that ingested 800 mg/kg of ayahuasca also showed a reduction of GLY level (0.11 ± 0.01 vs 0.29 ± 0.07, P < 0.001) and GABA (0.98 ± 0.06 vs 1.73 ± 0.25, P < 0.001). In the hippocampus, increased GABA levels were found in rats that received all ayahuasca doses: 250 mg/kg (1.29 ± 0.19 vs 0.84 ± 0.21, P < 0.05); 500 mg/kg (2.23 ± 038 vs 084 ± 0.21, P < 0.05) and 800 mg/kg (1.98 ± 0.92 vs 0.84 ± 0.21, P < 0.05). In addition, an increased utilization rate of all monoamines was found in the amygdala after ayahuasca administration in doses: 250 mg/kg (noradrenaline: 0.16 ± 0.02 vs 0.36 ± 0.06, P < 0.01; dopamine: 0.39 ± 0.012 vs 2.39 ± 0.84, P < 0.001; serotonin: 1.02 ± 0.22 vs 4.04 ± 0.91, P < 0.001), 500 mg/kg (noradrenaline: 0.08 ± 0.02 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.33 ± 0.19 vs 2.39 ± 0.84, P < 0.001; serotonin: 0.59 ± 0.08 vs 4.04 ± 0.91, P < 0.001) and 800 mg/kg (noradrenaline: 0.16 ± 0.04 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.84 ± 0.65 vs 2.39 ± 0.84, P < 0.05; serotonin: 0.36 ± 0.02 vs 4.04 ± 0.91, P < 0.001).
CONCLUSION: Our data suggest increased release of inhibitory amino acids by the hippocampus and an increased utilization rate of monoamines by the amygdala after different doses of ayahuasca ingestion.
Collapse
|
Brief Article |
12 |
34 |
68
|
Agrawal S, Chaqour B. MicroRNA signature and function in retinal neovascularization. World J Biol Chem 2014; 5:1-11. [PMID: 24600510 PMCID: PMC3942538 DOI: 10.4331/wjbc.v5.i1.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Ischemic retinopathies are clinically well-defined chronic microvascular complications characterized by gradually progressive alterations in the retinal microvasculature and a compensatory aberrant neovascularization of the eye. The subsequent metabolic deficiencies result in structural and functional alterations in the retina which is highly susceptible to injurious stimuli such as diabetes, trauma, hyperoxia, inflammation, aging and dysplipidemia. Emerging evidence indicates that an effective therapy may require targeting multiple components of the angiogenic pathway. Conceptually, mircoRNA (miRNA)-based therapy provides the rationale basis for an effective antiangiogenic treatment. miRNAs are an evolutionarily conserved family of short RNAs, each regulating the expression of multiple protein-coding genes. The activity of specific miRNAs is important for vascular cell signaling and blood vessel formation and function. Recently, important progress has been made in mapping the miRNA-gene target network and miRNA-mediated gene expression control. Here we highlight the latest findings on angiogenic and antiangiogenic miRNAs and their targets as well as potential implications in ocular neovascular diseases. Emphasis is placed on how specific vascular-enriched miRNAs regulate cell responses to various cues by targeting several factors, receptors and/or signaling molecules in order to maintain either vascular function or dysfunction. Further improvement of our knowledge in not only miRNA specificity, turnover, and transport but also how miRNA sequences and functions can be altered will enhance the therapeutic utility of such molecules.
Collapse
|
Review |
11 |
33 |
69
|
Govindaraju S, Lee BS. Adaptive and maladaptive expression of the mRNA regulatory protein HuR. World J Biol Chem 2013; 4:111-118. [PMID: 24340134 PMCID: PMC3856306 DOI: 10.4331/wjbc.v4.i4.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/31/2013] [Accepted: 11/05/2013] [Indexed: 02/05/2023] Open
Abstract
The RNA-binding proteins involved in regulation of mRNA post-transcriptional processing and translation control the fates of thousands of mRNA transcripts and basic cellular processes. The best studied of these, HuR, is well characterized as a mediator of mRNA stability and translation, and more recently, as a factor in nuclear functions such as pre-mRNA splicing. Due to HuR’s role in regulating thousands of mRNA transcripts, including those for other RNA-binding proteins, HuR can act as a master regulator of cell survival and proliferation. HuR itself is subject to multiple post-translational modifications including regulation of its nucleocytoplasmic distribution. However, the mechanisms that govern HuR levels in the cell have only recently begun to be defined. These mechanisms are critical to cell health, as it has become clear in recent years that aberrant expression of HuR can lead alternately to decreased cell viability or to promotion of pathological proliferation and invasiveness. HuR is expressed as alternate mRNAs that vary in their untranslated regions, leading to differences in transcript stability and translatability. Multiple transcription factors and modulators of mRNA stability that regulate HuR mRNA expression have been identified. In addition, translation of HuR is regulated by numerous microRNAs, several of which have been demonstrated to have anti-tumor properties due to their suppression of HuR expression. This review summarizes the current state of knowledge of the factors that regulate HuR expression, along with the circumstances under which these factors contribute to cancer and inflammation.
Collapse
|
Minireviews |
12 |
33 |
70
|
Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem 2016; 7:1-13. [PMID: 26981193 PMCID: PMC4768113 DOI: 10.4331/wjbc.v7.i1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
Collapse
|
Review |
9 |
32 |
71
|
Zhou JJ, Zheng S, Sun LF, Zheng L. MicroRNA regulation network in colorectal cancer metastasis. World J Biol Chem 2014; 5:301-307. [PMID: 25225598 PMCID: PMC4160524 DOI: 10.4331/wjbc.v5.i3.301] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/19/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Metastasis is a major cause of colorectal cancer-related death. Mechanisms of metastasis remain largely obscure. MicroRNA is one of the most important epigenetic regulators by targeting mRNAs post-transcriptionally. Accumulated evidence has supported its significant role in the metastasis of colorectal cancer, including epithelial-mesenchymal transition and angiogenesis. Dissecting microRNAome potentially identifies specific microRNAs as biomarkers of colorectal cancer metastasis. Better understanding of the complex network of microRNAs in colorectal cancer metastasis provide new insights in the biological process of metastasis and in the potential targets for colorectal cancer therapies and for diagnosis of recurrent and metastatic colorectal cancer.
Collapse
|
Topic Highlight |
11 |
32 |
72
|
Kastner P, Chan S. Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem 2011; 2:108-14. [PMID: 21765975 PMCID: PMC3135856 DOI: 10.4331/wjbc.v2.i6.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/27/2011] [Accepted: 06/03/2011] [Indexed: 02/05/2023] Open
Abstract
Ikaros is a zinc finger transcriptional regulator encoded by the Ikzf1 gene. Ikaros displays crucial functions in the hematopoietic system and its loss of function has been linked to the development of lymphoid leukemia. In particular, Ikaros has been found in recent years to be a major tumor suppressor involved in human B-cell acute lymphoblastic leukemia. Its role in T-cell leukemia, however, has been more controversial. While Ikaros deficiency appears to be very frequent in murine T-cell leukemias, loss of Ikaros appears to be rare in human T-cell acute lymphoblastic leukemia (T-ALL). We review here the evidence linking Ikaros to T-ALL in mouse and human systems.
Collapse
|
Topic Highlight |
14 |
32 |
73
|
Huang YL, Huang WP, Lee H. Roles of sphingosine 1-phosphate on tumorigenesis. World J Biol Chem 2011; 2:25-34. [PMID: 21537487 PMCID: PMC3083992 DOI: 10.4331/wjbc.v2.i2.25] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 02/05/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities. It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P, which is catalyzed by sphingosine kinases. Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors, S1P regulates several physiological and pathological processes, including cell proliferation, migration, angiogenesis and autophagy. These processes are responsible for tumor growth, metastasis and invasion and promote tumor survival. Since ceramide and S1P have distinct functions in regulating in cell fate decision, the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells. Herein, we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.
Collapse
|
Topic Highlight |
14 |
32 |
74
|
Song C, Li Z, Erbe AK, Savic A, Dovat S. Regulation of Ikaros function by casein kinase 2 and protein phosphatase 1. World J Biol Chem 2011; 2:126-31. [PMID: 21765978 PMCID: PMC3135859 DOI: 10.4331/wjbc.v2.i6.126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/29/2011] [Accepted: 05/06/2011] [Indexed: 02/05/2023] Open
Abstract
The Ikaros gene encodes a zinc finger, DNA-binding protein that regulates gene transcription and chromatin remodeling. Ikaros is a master regulator of hematopoiesis and an established tumor suppressor. Moderate alteration of Ikaros activity (e.g. haploinsufficiency) appears to be sufficient to promote malignant transformation in human hematopoietic cells. This raises questions about the mechanisms that normally regulate Ikaros function and the potential of these mechanisms to contribute to the development of leukemia. The focus of this review is the regulation of Ikaros function by phosphorylation/dephosphorylation. Site-specific phosphorylation of Ikaros by casein kinase 2 (CK2) controls Ikaros DNA-binding ability and subcellular localization. As a consequence, the ability of Ikaros to regulate cell cycle progression, chromatin remodeling, target gene expression, and thymocyte differentiation are controlled by CK2. In addition, hyperphosphorylation of Ikaros by CK2 leads to decreased Ikaros levels due to ubiquitin-mediated degradation. Dephosphorylation of Ikaros by protein phosphatase 1 (PP1) acts in opposition to CK2 to increase Ikaros stability and restore Ikaros DNA binding ability and pericentromeric localization. Thus, the CK2 and PP1 pathways act in concert to regulate Ikaros activity in hematopoiesis and as a tumor suppressor. This highlights the importance of these signal transduction pathways as potential mediators of leukemogenesis via their role in regulating the activities of Ikaros.
Collapse
|
Topic Highlight |
14 |
31 |
75
|
Sellars M, Kastner P, Chan S. Ikaros in B cell development and function. World J Biol Chem 2011; 2:132-9. [PMID: 21765979 PMCID: PMC3135860 DOI: 10.4331/wjbc.v2.i6.132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/18/2011] [Accepted: 06/23/2011] [Indexed: 02/05/2023] Open
Abstract
The zinc finger transcription factor, Ikaros, is a central regulator of hematopoiesis. It is required for the development of the earliest B cell progenitors and at later stages for VDJ recombination and B cell receptor expression. Mature B cells rely on Ikaros to set the activation threshold for various stimuli, and to choose the correct antibody isotype during class switch recombination. Thus, Ikaros contributes to nearly every level of B cell differentiation and function.
Collapse
|
Topic Highlight |
14 |
31 |