26
|
Patel K, Singh N, Yadav J, Nayak JM, Sahoo SK, Lata J, Chand D, Kumar S, Kumar R. Polydopamine films change their physicochemical and antimicrobial properties with a change in reaction conditions. Phys Chem Chem Phys 2018; 20:5744-5755. [PMID: 29411802 DOI: 10.1039/c7cp08406d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The morphology and physicochemical properties of polydopamine are not totally inherent and undergo changes with differing reaction conditions like the choice of solvent used for polymerization. The polymerisation of dopamine to polydopamine carried out in different solvents like sodium hydroxide, sodium bicarbonate, PBS and Tris leads to polydopamine with exceptionally different morphological and physicochemical features with each solvent. Additionally, the different physicochemical characteristics and morphologies bestow the polymer films with different extents of antimicrobial activity. Moreover, the findings supported by chemical evidence from X-ray photoelectron spectroscopy reveal that higher antibacterial activities were obtained against E. coli and S. aureus with polydopamine films prepared by Tris and NaOH solvent induced polymerization. The antibacterial activity observed in saline was found to be higher than that in PBS medium for both E. coli and S. aureus. The higher antibacterial activity of polydopamine films prepared in Tris and NaOH solvents was attributed to the covalent incorporation of -OH groups on the surface provided by nucleophilic Tris and NaOH solvents during the polymerisation process. The distinct physicochemical and morphological changes were supported by the results from contact angle measurements, FE-SEM, EDAX, AFM, and XPS analysis. The present finding provides insight into the different chemistry, morphologies and properties of the designed polydopamine films with controlled antibacterial/antifouling properties. Additionally, new insights into the mechanism of formation, physicochemical changes in morphology and properties of polydopamine coatings were revealed.
Collapse
|
|
7 |
21 |
27
|
Kumar S, Kushwaha PP, Gupta S. Emerging targets in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:161-177. [PMID: 35582722 PMCID: PMC8992633 DOI: 10.20517/cdr.2018.27] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
Drug resistance is a complex phenomenon that frequently develops as a failure to chemotherapy during cancer treatment. Malignant cells increasingly generate resistance to various chemotherapeutic drugs through distinct mechanisms and pathways. Understanding the molecular mechanisms involved in drug resistance remains an important area of research for identification of precise targets and drug discovery to improve therapeutic outcomes. This review highlights the role of some recent emerging targets and pathways which play critical role in driving drug resistance.
Collapse
|
Review |
6 |
20 |
28
|
Rana N, Singh AK, Shuaib M, Gupta S, Habiballah MM, Alkhanani MF, Haque S, Reshi MS, Kumar S. Drug Resistance Mechanism of M46I-Mutation-Induced Saquinavir Resistance in HIV-1 Protease Using Molecular Dynamics Simulation and Binding Energy Calculation. Viruses 2022; 14:697. [PMID: 35458427 PMCID: PMC9031992 DOI: 10.3390/v14040697] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-resistance-associated mutation in essential proteins of the viral life cycle is a major concern in anti-retroviral therapy. M46I, a non-active site mutation in HIV-1 protease has been clinically associated with saquinavir resistance in HIV patients. A 100 ns molecular dynamics (MD) simulation and MM-PBSA calculations were performed to study the molecular mechanism of M46I-mutation-based saquinavir resistance. In order to acquire deeper insight into the drug-resistance mechanism, the flap curling, closed/semi-open/open conformations, and active site compactness were studied. The M46I mutation significantly affects the energetics and conformational stability of HIV-1 protease in terms of RMSD, RMSF, Rg, SASA, and hydrogen formation potential. This mutation significantly decreased van der Waals interaction and binding free energy (∆G) in the M46I-saquinavir complex and induced inward flap curling and a wider opening of the flaps for most of the MD simulation period. The predominant open conformation was reduced, but inward flap curling/active site compactness was increased in the presence of saquinavir in M46I HIV-1 protease. In conclusion, the M46I mutation induced structural dynamics changes that weaken the protease grip on saquinavir without distorting the active site of the protein. The produced information may be utilized for the discovery of inhibitor(s) against drug-resistant HIV-1 protease.
Collapse
|
research-article |
3 |
18 |
29
|
Kumar S, Pandey S, Pandey AK. In vitro antibacterial, antioxidant, and cytotoxic activities of Parthenium hysterophorus and characterization of extracts by LC-MS analysis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495154. [PMID: 24895583 PMCID: PMC4033558 DOI: 10.1155/2014/495154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/16/2014] [Indexed: 02/05/2023]
Abstract
Present work reports the biological activities of P. hysterophorus leaf, stem, flower, and root. Dried samples were sequentially extracted with many solvents. Hexane (HX), benzene (BZ), and chloroform (CH) extracts of leaf showed considerable antibacterial activity against Streptococcus mutans (MTCC 497), Proteus vulgaris (MTCC 7299), and Salmonella typhi (MTCC 3917). Flower extracts exhibited presence of higher amount of flavonoids (13.9-59.6 μgQE/mg) followed by leaf, stem, and root. Stem (HX, BZ, and CH), leaf ethanol (ET), and root (HX, BZ, and CH) fractions showed noticeable antioxidant capacity in phosphomolybdate assay. Most of the extracts demonstrated beta carotene bleaching inhibition capability. BZ, ethyl acetate (EA), and ET fractions of leaves, stem aqueous (AQ), and flower EA extracts showed membrane protective activities (40-55%). Middle fractions of the plant parts displayed moderate antihemolytic potential. Most of the flower extracts exhibited cytotoxic activity (80-100%) against lung and colon cancer cell lines. Root (HX and ET) and leaf ET extracts showed considerable inhibition (90-99%) of colon and ovary cancer cell lines. The LC-MS scan demonstrated presence of different compounds showing 3-20 min retention time. The study revealed considerable antibacterial, antioxidant, lipo-protective, antihemolytic, and anticancer potential in all parts of P. hysterophorus.
Collapse
|
research-article |
11 |
18 |
30
|
Prajapati KS, Shuaib M, Gupta S, Kumar S. Withaferin A mediated changes of miRNA expression in breast cancer-derived mammospheres. Mol Carcinog 2022; 61:876-889. [PMID: 35770722 DOI: 10.1002/mc.23440] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023]
Abstract
Breast cancer is a heterogeneous disease consisting of atypical cell populations that share stem cell-like characteristics associated with therapeutic resistance, disease relapse, and poor clinical outcome. MicroRNAs (miRNA), and small noncoding RNA, are pivotal in the regulation of self-renewal, stemness, and cellular differentiation. Withaferin A (WA), a steroidal lactone, is a major bioactive constituent of Withania somnifera (Solanaceae) known for its anticancer properties. In this study, the effect of WA on modulation of miRNA expression in breast cancer-derived mammosphere was assessed utilizing small RNA sequencing. Treatment with WA inhibited MCF-7 and T47D cells derived mammosphere formation with a significant decrease in CD44, EpCAM, Nanog, OCT4, and SOX2 as markers of self-renewal and stemness. Small RNA sequencing demonstrated a total of 395 differentially expressed miRNAs (DEMs) including 194 upregulated and 201 downregulated miRNAs in WA-treated MCF-7 mammospheres. Bioinformatics analysis utilizing the KEGG pathway, Gene Ontology enrichment, protein-protein, and miRNA-mRNA interaction network identified altered expression in a few hub genes viz. AKT1, PTEN, MYC, CCND1, VEGFA, NOTCH1, and IGFR1 associated with DEMs in WA-treated mammospheres. Further quantitative RT-PCR analysis validated the expression of DEMs including miR-549a-5p, miR-1247-5p, miR-124-5p, miR-137-5p, miR-34a-5p, miR-146a-5p, miR-99a-5p, miR-181a-5p, let-7c-5p, and let-7a-5p. In particular, let-7c-5p is designated as a tumor suppressor in breast cancer. An increase in miR-let-7c-5p expression was noted after WA treatment, with a simultaneous decrease in CCND1 and c-MYC at mRNA and protein levels. Taken together, our study demonstrated WA-mediated miRNA expression, in particular, upregulation of miR-let-7c-5p, leads to the inhibition of breast cancer cells derived mammospheres.
Collapse
|
|
3 |
15 |
31
|
Shuaib M, Prajapati KS, Gupta S, Kumar S. Natural Steroidal Lactone Induces G1/S Phase Cell Cycle Arrest and Intrinsic Apoptotic Pathway by Up-Regulating Tumor Suppressive miRNA in Triple-Negative Breast Cancer Cells. Metabolites 2022; 13:29. [PMID: 36676955 PMCID: PMC9863888 DOI: 10.3390/metabo13010029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] [Imported: 01/16/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with minimal treatment options. In the present work, Withaferin A (WA), a natural steroidal lactone found in Withania somnifera (Solanaceae), was studied to deduce the miRNA expression modulation mediated anticancer mode of action in TNBC cells. Small RNA next generation sequencing (NGS) of WA (2 µM) and vehicle (0.1% DMSO)-treated MDA-MB-231 cells revealed a total of 413 differentially expressed miRNAs (DEMs) and demonstrated that WA potentially up-regulates the miR-181c-5p, miR-15a-5p, miR-500b-5p, miR-191-3p, and miR-34a-5p and down-regulates miR-1275, miR-326, miR-1908-5p, and miR-3940-3p among total DEMs. The NGS and qRT-PCR expression analysis revealed a significantly higher expression of miR-181c-5p among the top 10 DEMs. Predicted target genes of the DEMs showed enrichment in cancer-associated gene ontology terms and KEGG signaling pathways. Transient up-expression of mir-181c-5p showed a time-dependent decrease in MDA-MB-231 and MDA-MB-453 cell viability. Co-treatment of miR-181c-5p mimic and WA (at varying concentration) down-regulated cell cycle progression markers (CDK4 and Cyclin D1) at mRNA and protein levels. The treatment induced apoptosis in MDA-MB-231 cells by modulating the expression/activity of Bax, Bcl2, Caspase 3, Caspase 8, Caspase 3/7, and PARP at mRNA and protein levels. Confocal microscopy and Annexin PI assays revealed apoptotic induction in miRNA- and steroidal-lactone-treated MDA-MB-231 cells. Results indicate that the Withaferin A and miRNA mimic co-treatment strategy may be utilized as a newer therapeutic strategy to treat triple-negative breast cancer.
Collapse
|
research-article |
3 |
14 |
32
|
Shuaib M, Prajapati KS, Singh AK, Kushwaha PP, Waseem M, Kumar S. Identification of miRNAs and related hub genes associated with the triple negative breast cancer using integrated bioinformatics analysis and in vitro approach. J Biomol Struct Dyn 2021; 40:11676-11690. [PMID: 34387138 DOI: 10.1080/07391102.2021.1961869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023]
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype generally associated with younger women. Due to the lack of suitable drugable targets in TNBC, the microRNAs are considered as a better hope as therapeutic agents for the management of the disease. In this study, we identified differentially expressed miRNAs (DEMs) and associated hub genes in TNBC microarray data (GSE38167, GSE60714, and GSE10833) using bioinformatics tools. The identified miRNAs and genes were validated in the TNBC cell line model (MDA-MB-231) compared with the normal breast cells (MCF-10A) using the qRT-PCR technique. False-positive DEMs were avoided by comparing the DEMs profile of TNBC and triple positive breast cancer (TPBC) cell line model (BT474) compared with the MCF-10A cells data. In addition, we studied the effect of anticancer phytochemicals on the differential expression of miRNAs and genes in MDA-MB-231 cells. Furthermore, target predictions, functional enrichment and KEGG pathway analysis, mutation and copy number alterations, and overall survival analysis of DEMs in TNBC sample was investigated using standard computational tools. The study identifies first time the association of hsa-miR-1250, has-miR-1273, and has-miR-635 with the TNBC. DEMs showed significant association with the Wnt, ErbB, PI3-Akt and cAMP signaling pathways having clinical implications in TNBC tumorigenesis. The DEMs and hub genes (HOXC6 and ACVR2B) showed survival disadvantages in TNBC patients. In summary, the identified miRNAs and hub genes show important implications in TNBC tumorigenesis and patient survival. We recommend further experimental studies on pathophysiological mechanism of the identified miRNAs and hub genes in TNBC.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
4 |
13 |
33
|
Kumar S, Prajapati KS, Shuaib M, Kushwaha PP, Tuli HS, Singh AK. Five-Decade Update on Chemopreventive and Other Pharmacological Potential of Kurarinone: a Natural Flavanone. Front Pharmacol 2021; 12:737137. [PMID: 34646138 PMCID: PMC8502857 DOI: 10.3389/fphar.2021.737137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 02/05/2023] Open
Abstract
In the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2-62 µM while in vivo efficacy was studied in the range of 20-500 mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-κB, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models.
Collapse
|
Review |
4 |
13 |
34
|
Waseem M, Hussain SR, Kumar S, Serajuddin M, Mahdi F, Sonkar SK, Bansal C, Ahmad MK. Association of MTHFR (C677T) Gene Polymorphism With Breast Cancer in North India. BIOMARKERS IN CANCER 2016; 8:111-117. [PMID: 27721657 PMCID: PMC5040218 DOI: 10.4137/bic.s40446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Breast cancer is one of the most common malignancies in women and is associated with a variety of risk factors. The functional single-nucleotide polymorphism (SNP) C677T in the gene encoding 5,10-methylenetetrahydrofolate reductase (MTHFR) may lead to decreased enzyme activity and affect the chemosensitivity of tumor cells. This study was designed to investigate the association of MTHFR gene polymorphism (SNP) in the pathogenesis of breast cancer among the North Indian women population. MATERIALS AND METHODS Genotyping was performed by polymerase chain reaction (PCR) using genomic DNA, extracted from the peripheral blood of subjects with (275 cases) or without (275 controls) breast cancer. Restriction fragment length polymorphism was used to study C677T polymorphism in the study groups. RESULTS The distribution of MTHFR (C677T) genotype frequencies, ie, CC, TT, and CT, among the patients was 64.7%, 2.18%, and 33.09%, respectively. In the healthy control group, the CC, TT, and CT frequencies were 78.91%, 1.09%, and 20.1%, respectively. The frequencies of C and T alleles were 81.2% and 18.7%, respectively, in the patient subjects, while they were 88.9% and 11.09%, respectively, among the healthy control group. Frequencies of the CT genotype and the T allele were significantly different (P = 0.007 and P = 0.005, respectively) between the control and the case subjects. CONCLUSION This study shows an association of the CT genotype and the T allele of the MTHFR (C667T) gene with increased genetic risk for breast cancer among Indian women.
Collapse
|
research-article |
9 |
13 |
35
|
Patel K, Kushwaha P, Kumar S, Kumar R. Lysine and α-Aminoisobutyric Acid Conjugated Bioinspired Polydopamine Surfaces for the Enhanced Antibacterial Performance of the Foley Catheter. ACS APPLIED BIO MATERIALS 2019; 2:5799-5809. [PMID: 35021573 DOI: 10.1021/acsabm.9b00794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microbial adhesion onto implanted devices was reduced by the immobilization of amino acid lysine and α-aminoisobutyric acid to polydopamine functionalized PET films and Foley catheters. The polydopamine functionalized film was prepared by a dip coating method followed by incorporation of biocompatible amino acids to prepared films. The purpose of development of the modified pDA film is to improve the anti-biofouling and antibacterial activity of the film which can be successfully applied for medical devices. The characterization of modification was done using different techniques such as contact angle measurement, ATR-FTIR, FE-SEM, AFM, and XPS analysis. ATR-FTIR spectroscopy and XPS confirmed the successful amino modification of film. The anti-biofouling and antimicrobial behavior of the prepared surfaces were evaluated using the bacterial attachment and death assay. The resulting coatings repelled bacterial cell attachment and killed clinically applicable Gram-negative and Gram-positive strains. The developed coatings were applied to the Foley catheters to study the antibacterial activity by the log reduction method. The results demonstrate that tested amino acid-modified film increases the antibacterial activity of the catheters and can significantly help in reduction of nosocomial infections.
Collapse
|
|
6 |
12 |
36
|
Kushwaha PP, Kumar R, Neog PR, Behara MR, Singh P, Kumar A, Prajapati KS, Singh AK, Shuaib M, Sharma AK, Pandey AK, Kumar S. Characterization of phytochemicals and validation of antioxidant and anticancer activity in some Indian polyherbal ayurvedic products. VEGETOS 2021; 34:286-299. [DOI: 10.1007/s42535-021-00205-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
|
|
4 |
12 |
37
|
Prajapati KS, Shuaib M, Kushwaha PP, Singh AK, Kumar S. Identification of cancer stemness related miRNA(s) using integrated bioinformatics analysis and in vitro validation. 3 Biotech 2021; 11:446. [PMID: 34631347 PMCID: PMC8460704 DOI: 10.1007/s13205-021-02994-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The stemness property of cells allows them to sustain their lineage, differentiation, proliferation, and regeneration. MicroRNAs are small non-coding RNAs known to regulate the stemness property of cells by regulating the expression of stem cell signaling pathway proteins at mRNA level. Dysregulated miRNA expression and associated stem cell signaling pathways in normal stem cells give rise to cancer stem cells. Thus, the present study was aimed to identify the miRNAs involved in the regulation of major stem cell signaling pathways. The proteins (n = 36) involved in the signaling pathways viz., Notch, Wnt, JAK-STAT, and Hedgehog which is associated with the stemness property was taken into the consideration. The miRNAs, having binding sites for the targeted protein-encoding gene were predicted using an online tool (TargetScan) and the common miRNA among the test pathways were identified using Venn diagram analysis. A total of 22 common miRNAs (including 8 non-studied miRNAs) were identified which were subjected to target predictions, KEGG pathway, and gene ontology (GO) analysis to study their potential involvement in the stemness process. Further, we studied the clinical relevance of the non-studied miRNAs by performing the survival analysis and their expression levels in clinical breast cancer patients using the TCGA database. The identified miRNAs showed overall poor survival in breast cancer patients. The miR-6844 showed significantly high expression in various clinical subgroups of invasive breast cancer patients compared with the normal samples. The expression levels of identified miRNA(s) were validated in breast normal, luminal A, triple-negative, and stem cells in vitro models using qRT-PCR analysis. Further treatment with the phytochemical showed excellent down regulation of the lead miRNA. Overall the study first time reports the association of four miRNAs (miR-6791, miR-4419a, miR-4251 and miR-6844) with breast cancer stemness. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02994-3.
Collapse
|
research-article |
4 |
12 |
38
|
Kushwaha PP, Gupta S, Singh AK, Prajapati KS, Shuaib M, Kumar S. MicroRNA Targeting Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Cancer. Antioxid Redox Signal 2020; 32:267-284. [PMID: 31656079 DOI: 10.1089/ars.2019.7918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Reactive oxygen species (ROS) production occurs primarily in the mitochondria as a by-product of cellular metabolism. ROS are also produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases in response to growth factors and cytokines by normal physiological signaling pathways. NADPH oxidase, a member of NADPH oxidase (NOX) family, utilizes molecular oxygen (O2) to generate ROS such as hydrogen peroxide and superoxide. Imbalance between ROS production and its elimination is known to be the major cause of various human diseases. NOX family proteins are exclusively involved in ROS production, which makes them attractive target(s) for the treatment of ROS-mediated diseases including cancer. Recent Advances: Molecules such as Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2), N-methyl-d-aspartic acid (NMDA) receptors, nuclear factor-kappaB, KRAS, kallistatin, gene associated with retinoic-interferon-induced mortality-19, and deregulated metabolic pathways are involved in ROS production in association with NADPH oxidase. Critical Issues: Therapeutic strategies targeting NADPH oxidases in ROS-driven cancers are not very effective due to its complex regulatory circuit. Tumor suppressor microRNAs (miRNAs) viz. miR-34a, miR-137, miR-99a, and miR-21a-3p targeting NADPH oxidases are predominantly downregulated in ROS-driven cancers. miRNAs also regulate other cellular machineries such as Keap1/Nrf2 pathway and NMDA receptors involved in ROS production and consequently drug resistance. Here, we discuss the structure, function, and metabolic role of NADPH oxidase, NOX family protein-protein interaction, their association with other pathways, and NADPH oxidase alteration by miRNAs. Moreover, we also discuss and summarize studies on NADPH oxidase associated with various malignancies and their therapeutic implications. Future Directions: Targeting NADPH oxidases through miRNAs appears to be a promising strategy for the treatment of ROS-driven cancer.
Collapse
|
Review |
5 |
11 |
39
|
Dey SK, Kumar S, Rani D, Maurya SK, Banerjee P, Verma M, Senapati S. Implications of vitamin D deficiency in systemic inflammation and cardiovascular health. Crit Rev Food Sci Nutr 2023; 64:10438-10455. [PMID: 37350746 DOI: 10.1080/10408398.2023.2224880] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] [Imported: 01/16/2025]
Abstract
Clinical, epidemiological, and molecular studies have sufficiently highlighted the vitality of vitamin D [25(OH)D and 1,25(OH)2D] in human health and wellbeing. Globally, vitamin D deficiency (VDD) has become a public health concern among all age groups. There is a very high prevalence of VDD per the estimates from several epidemiological studies on different ethnic populations. But, population-specific scales do not support these estimates to define VDD clinically and consistent genetic associations. However, clinical studies have shown the relevance of serum vitamin D screening and oral supplementation in improving health conditions, pointing toward a more prominent role of vitamin D in health and wellness. Routinely, the serum concentration of vitamin D is measured to determine the deficiency and is correlated with physiological conditions and clinical symptoms. Recent research points toward a more inclusive role of vitamin D in different disease pathologies and is not just limited to otherwise bone health and overall growth. VDD contributes to the natural history of systemic ailments, including cardiovascular and systemic immune diseases. Considering its significant impact on premature morbidity and mortality, there is a compelling need to comprehensively review and document the direct and indirect implications of VDD in immune system deregulation, systemic inflammatory conditions, and cardio-metabolism. The recommendations from this review call for furthering our research concerning vitamin D and its direct and indirect implications.
Collapse
|
Review |
2 |
10 |
40
|
Kushwaha PP, Rapalli KC, Kumar S. Geminin a multi task protein involved in cancer pathophysiology and developmental process: A review. Biochimie 2016; 131:115-127. [PMID: 27702582 DOI: 10.1016/j.biochi.2016.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023]
Abstract
DNA replicates in a timely manner with each cell division. Multiple proteins and factors are involved in the initiation of DNA replication including a dynamic interaction between Cdc10-dependent transcript (Cdt1) and Geminin (GMNN). A conformational change between GMNN-Cdt1 heterotrimer and heterohexamer complex is responsible for licensing or inhibition of the DNA replication. This molecular switch ensures a faithful DNA replication during each S phase of cell cycle. GMNN inhibits Cdt1-mediated minichromosome maintenance helicases (MCM) loading onto the chromatin-bound origin recognition complex (ORC) which results in the inhibition of pre-replication complex assembly. GMNN modulates DNA replication by direct binding to Cdt1, and thereby alters its stability and activity. GMNN is involved in various stages of development such as pre-implantation, germ layer formation, cell commitment and specification, maintenance of genome integrity at mid blastula transition, epithelial to mesenchymal transition during gastrulation, neural development, organogenesis and axis patterning. GMNN interacts with different proteins resulting in enhanced hematopoietic stem cell activity thereby activating the development-associated genes' transcription. GMNN expression is also associated with cancer pathophysiology and development. In this review we discussed the structure and function of GMNN in detail. Inhibitors of GMNN and their role in DNA replication, repair, cell cycle and apoptosis are reviewed. Further, we also discussed the role of GMNN in virus infected host cells.
Collapse
|
Review |
9 |
10 |
41
|
Singh AK, Verma S, Kushwaha PP, Prajapati KS, Shuaib M, Kumar S, Gupta S. Role of ZBTB7A zinc finger in tumorigenesis and metastasis. Mol Biol Rep 2021; 48:4703-4719. [PMID: 34014468 DOI: 10.1007/s11033-021-06405-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
The zinc finger and BTB (broad-complex, tramtrack and bric a brac) domain containing protein 7A (ZBTB7A) is a pleiotropic transcription factor that plays an important role in various stages of cell proliferation, differentiation, and other developmental processes. ZBTB7A is a member of the POK family that directly and specifically binds to short DNA recognition sites located near their target genes thereby acting as transcriptional activator or repressor. ZBTB7A overexpression has been associated with tumorigenesis and metastasis in various human cancer types, including breast, prostate, lung, ovarian, and colon cancer. However in some instances downregulation of ZBTB7A results in tumor progression, suggesting its role as a tumor suppressor. ZBTB7A is involved with complicated regulatory networks which include protein-protein and protein-nucleic acid interactions. ZBTB7A involvement in cancer progression and metastasis is perhaps enabled through the regulation of various signaling pathways depending on the type and genetic context of cancer. The association of ZBTB7A with other proteins affects cancer aggressiveness, therapeutic resistance and clinical outcome. This review focuses on the involvement of ZBTB7A in various signaling pathways and its role in cancer progression. We will also review the literature on ZBTB7A and cancer which could be potentially explored for its therapeutic implications.
Collapse
|
Review |
4 |
10 |
42
|
Kushwaha PP, Verma S, Kumar S, Gupta S. Role of prostate cancer stem-like cells in the development of antiandrogen resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:459-471. [PMID: 35800367 PMCID: PMC9255247 DOI: 10.20517/cdr.2022.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] [Imported: 01/16/2025]
Abstract
Androgen deprivation therapy (ADT) is the standard of care treatment for advance stage prostate cancer. Treatment with ADT develops resistance in multiple ways leading to the development of castration-resistant prostate cancer (CRPC). Present research establishes that prostate cancer stem-like cells (CSCs) play a central role in the development of treatment resistance followed by disease progression. Prostate CSCs are capable of self-renewal, differentiation, and regenerating tumor heterogeneity. The stemness properties in prostate CSCs arise due to various factors such as androgen receptor mutation and variants, epigenetic and genetic modifications leading to alteration in the tumor microenvironment, changes in ATP-binding cassette (ABC) transporters, and adaptations in molecular signaling pathways. ADT reprograms prostate tumor cellular machinery leading to the expression of various stem cell markers such as Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), Prominin 1 (PROM1/CD133), Indian blood group (CD44), SRY-Box Transcription Factor 2 (Sox2), POU Class 5 Homeobox 1(POU5F1/Oct4), Nanog and ABC transporters. These markers indicate enhanced self-renewal and stemness stimulating CRPC evolution, metastatic colonization, and resistance to antiandrogens. In this review, we discuss the role of ADT in prostate CSCs differentiation and acquisition of CRPC, their isolation, identification and characterization, as well as the factors and pathways contributing to CSCs expansion and therapeutic opportunities.
Collapse
|
Review |
3 |
10 |
43
|
Prajapati KS, Gupta S, Kumar S. Targeting Breast Cancer-Derived Stem Cells by Dietary Phytochemicals: A Strategy for Cancer Prevention and Treatment. Cancers (Basel) 2022; 14:2864. [PMID: 35740529 PMCID: PMC9221436 DOI: 10.3390/cancers14122864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is heterogeneous disease with variable prognosis and therapeutic response. Approximately, 70% of diagnosed breast cancer represents the luminal A subtype. This subpopulation has a fair prognosis with a lower rate of relapse than the other clinical subtypes. Acquisition of stemness in luminal A subtype modifies the phenotype plasticity to accomplish increased aggressiveness and therapeutic resistance. Therefore, targeting luminal A-derived breast cancer stem cells (BCSCs) could be a promising strategy for its prevention and treatment. Extensive studies reveal that dietary phytochemicals have the potential to target BCSCs by modulating the molecular and signal transduction pathways. Dietary phytochemicals alone or in combination with standard therapeutic modalities exert higher efficacy in targeting BCSCs through changes in stemness, self-renewal properties and hypoxia-related factors. These combinations offer achieving higher radio- and chemo- sensitization through alteration in the key signaling pathways such as AMPK, STAT3, NF-ĸB, Hedgehog, PI3K/Akt/mTOR, Notch, GSK3β, and Wnt related to cancer stemness and drug resistance. In this review, we highlight the concept of targeting luminal A-derived BCSCs with dietary phytochemicals by summarizing the pathways and underlying mechanism(s) involved during therapeutic resistance.
Collapse
|
Review |
3 |
10 |
44
|
Kumar S, Senapati S, Bhattacharya N, Bhattacharya A, Maurya SK, Husain H, Bhatti JS, Pandey AK. Mechanism and recent updates on insulin-related disorders. World J Clin Cases 2023; 11:5840-5856. [PMID: 37727490 PMCID: PMC10506040 DOI: 10.12998/wjcc.v11.i25.5840] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] [Imported: 05/15/2025] Open
Abstract
Insulin, a small protein with 51 amino acids synthesized by pancreatic β-cells, is crucial to sustain glucose homeostasis at biochemical and molecular levels. Numerous metabolic dysfunctions are related to insulin-mediated altered glucose homeostasis. One of the significant pathophysiological conditions linked to the insulin associated disorder is diabetes mellitus (DM) (type 1, type 2, and gestational). Insulin resistance (IR) is one of the major underlying causes of metabolic disorders despite its association with several physiological conditions. Metabolic syndrome (MS) is another pathophysiological condition that is associated with IR, hypertension, and obesity. Further, several other pathophysiological disorders/diseases are associated with the insulin malfunctioning, which include polycystic ovary syndrome, neuronal disorders, and cancer. Insulinomas are an uncommon type of pancreatic β-cell-derived neuroendocrine tumor that makes up 2% of all pancreatic neoplasms. Literature revealed that different biochemical events, molecular signaling pathways, microRNAs, and microbiota act as connecting links between insulin disorder and associated pathophysiology such as DM, insuloma, neurological disorder, MS, and cancer. In this review, we focus on the insulin-related disorders and the underlying mechanisms associated with the pathophysiology.
Collapse
|
Review |
2 |
9 |
45
|
Verma S, Prajapati KS, Kushwaha PP, Shuaib M, Kumar Singh A, Kumar S, Gupta S. Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:742-761. [PMID: 35582225 PMCID: PMC8992566 DOI: 10.20517/cdr.2020.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023]
Abstract
Androgen deprivation therapy targeting the androgens/androgen receptor (AR) signaling continues to be the mainstay treatment of advanced-stage prostate cancer. The use of second-generation antiandrogens, such as abiraterone acetate and enzalutamide, has improved the survival of prostate cancer patients; however, a majority of these patients progress to castration-resistant prostate cancer (CRPC). The mechanisms of resistance to antiandrogen treatments are complex, including specific mutations, alternative splicing, and amplification of oncogenic proteins resulting in dysregulation of various signaling pathways. In this review, we focus on the major mechanisms of acquired resistance to second generation antiandrogens, including AR-dependent and AR-independent resistance mechanisms as well as other resistance mechanisms leading to CRPC emergence. Evolving knowledge of resistance mechanisms to AR targeted treatments will lead to additional research on designing more effective therapies for advanced-stage prostate cancer.
Collapse
|
Review |
5 |
9 |
46
|
Singh AK, Shuaib M, Prajapati KS, Kumar S. Rutin Potentially Binds the Gamma Secretase Catalytic Site, Down Regulates the Notch Signaling Pathway and Reduces Sphere Formation in Colonospheres. Metabolites 2022; 12:926. [PMID: 36295828 PMCID: PMC9610901 DOI: 10.3390/metabo12100926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] [Imported: 01/16/2025] Open
Abstract
Rutin, a natural flavonol, can modulate molecular signaling pathways and has considerable potential in cancer treatment. However, little is known about the effect of rutin on the notch signaling pathway (NSP) in cancer and cancer stem-like cells. In this study, we explored the effect of rutin on gamma secretase (GS, a putative notch signaling target) inhibition mediated NICD (Notch Intracellular Domain) production in colon cancer cells. Molecular docking, MM-GBSA, and Molecular dynamics (MD) simulation experiments were performed to check rutin's GS catalytic site binding potential. The HCT-116 colon cancer and cancer stem-like cells (colonospheres) were utilized to validate the in silico findings. The NICD production, notch promoter assay, expression of notch target genes, and cancer stemness/self-renewal markers were studied at molecular levels. The results were compared with the Notch-1 siRNA transfected test cells. The in silico study revealed GS catalytic site binding potential in rutin. The in vitro results showed a decreased NICD formation, an altered notch target gene (E-cad, Hes-1, and Hey-1) expression, and a reduction in stemness/self-renewal markers (CD44, c-Myc, Nanog, and Sox2) in test cells in a time and dose-dependent manner. In conclusion, rutin inhibits the notch signaling pathway and reduces the stemness/self-renewal property in colon cancer cells and the colonospheres by targeting gamma secretase. The clinical efficacy of rutin in combination therapy in colon cancer may be studied in the future.
Collapse
|
research-article |
3 |
9 |
47
|
Waseem M, Ahmad MK, Srivatava VK, Rastogi N, Serajuddin M, Kumar S, Mishra DP, Sankhwar SN, Mahdi AA. Evaluation of miR-711 as Novel Biomarker in Prostate Cancer Progression. Asian Pac J Cancer Prev 2017; 18:2185-2191. [PMID: 28843254 PMCID: PMC5697479 DOI: 10.22034/apjcp.2017.18.8.2185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: MicroRNAs (miRs) are class of small non-coding regulatory RNA aberrantly expressed in various types of malignancies including prostate cancer and serves as potential targets to develop new diagnostic and therapeutic strategies. In this quiet we investigated miRNAs expression profile in benign prostatic hyperplasia (BPH) and prostate cancer (PCa) tissue samples and correlated their expression with clinicopathological parameters. Methodology: The miRNAs expression profile as well as their validation has been done by using Microarray and RT-PCR, respectively. Additionally, we also tried to speculate microRNA-mRNA regulatory module through computational target predictions by using Targetscan, Miranda and MirWalk and obtained results were analysed through DAVID software. Result: We observed that miR-711 is significantly deregulated in BPH and PCa, compared to controls. The lower expression of miR-711 was found to be significantly associated with high Gleason score and metastatic disease. Furthermore, the computational target prediction analysis explored miR-711 association to various cancer cells signalling cascade key molecules associated with cancer cell survival.Conclusion: From our observations we suggest that miR-711 may play a critical role in PCa progression, regulation of various cancer cell survival signalling cascades and that it may be a valuable biomarker for prediction of metastatic disease and poor prognosis in PCa.
Collapse
|
research-article |
8 |
9 |
48
|
Mishra A, Kumar S, Bhargava A, Sharma B, Pandey AK. Studies on in vitro antioxidant and antistaphylococcal activities of some important medicinal plants. Cell Mol Biol (Noisy-le-grand) 2011; 57:16-25. [PMID: 21366958 DOI: 10.1170/t897] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/05/2011] [Indexed: 02/05/2023]
Abstract
Oxidative stress is initiated by free radicals, which seek stability through electron pairing with biological macromolecules in healthy human cells and cause protein and DNA damage along with lipid peroxidation. Many phytochemicals have been found to play as potential antioxidants and antimicrobials. In the present study antioxidant and antistaphylococcal activities of Bauhinia variegata, Tinospora cardifolia and Piper longum have been determined. Total phenolic contents in plant extracts were estimated and different amounts of phenolic contents were found in B. variegata, T. cardifolia and P. longum extracts. The antioxidant activity of the extracts was compared with standard antioxidants such as, BHA, BHT, quercetin, ascorbic acid and propyl gallate. The % scavenging activity gradually increased with increasing concentrations of the test extracts in DPPH radical scavenging assay. Dose dependent antioxidant activity pattern was also observed in phosphomolybdate assay. Antioxidant activity was directly correlated with the amount of total phenolic contents in the extracts. As compared to B. variegata, the extracts from other two plants exhibited higher antioxidant activity. In disc diffusion assays several solvent extracts derived from test plants inhibited the growth of Staphylococcus aureus. Maximum inhibitory efficacy was observed in T. cardifolia extracts. However, the lowest minimum bactericidal concentration (MBC) (0.43 mg/ml) was recorded for ethyl acetate and acetone extracts of P. longum. This study demonstrates notable antioxidant and anti-staphylococcal roles assigned to some plant extracts tested.
Collapse
|
|
14 |
8 |
49
|
Kushwaha PP, Maurya SK, Singh A, Prajapati KS, Singh AK, Shuaib M, Kumar S. <i>Bulbine frutescens</i> phytochemicals as novel ABC-transporter inhibitor: a molecular docking and molecular dynamics simulation study. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 2021. [DOI: 10.20517/2394-4722.2020.92] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
|
4 |
7 |
50
|
Prajapati KS, Singh AK, Kushwaha PP, Shuaib M, Maurya SK, Gupta S, Senapati S, Singh SP, Waseem M, Kumar S. Withaniasomnifera phytochemicals possess SARS-CoV-2 RdRp and human TMPRSS2 protein binding potential. VEGETOS (BAREILLY, INDIA) 2022; 36:701-720. [PMID: 35729946 PMCID: PMC9199469 DOI: 10.1007/s42535-022-00404-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has infected approximately 26 million people and caused more than 6 million deaths globally. Spike (S)-protein on the outer surface of the virus uses human trans-membrane serine protease-2 (TMPRSS2) to gain entry into the cell. Recent reports indicate that human dipeptidyl peptidase-4 inhibitors (DPP4 or CD26) could also be utilized to check the S-protein mediated viral entry into COVID-19 patients. RNA dependent RNA polymerase (RdRp) is another key virulence protein of SARS-CoV-2 life cycle. The study aimed to identify the potential anti-SARS-CoV-2 inhibitors present in Withania somnifera (Solanaceae) using computer aided drug discovery approach. Molecular docking results showed that flavone glycoside, sugar alcohol, and flavonoid present in W. somnifera showed - 11.69, - 11.61, - 10.1, - 7.71 kcal/mole binding potential against S-protein, CD26, RdRp, and TMPRSS2 proteins. The major standard inhibitors of the targeted proteins (Sitagliptin, VE607, Camostat mesylate, and Remdesivir) showed the - 7.181, - 6.6, - 5.146, and - 7.56 kcal/mole binding potential. Furthermore, the lead phytochemicals and standard inhibitors bound and non-bound RdRp and TMPRSS2 proteins were subjected to molecular dynamics (MD) simulation to study the complex stability and change in protein conformation. The result showed energetically favorable and stable complex formation in terms of RMSD, RMSF, SASA, Rg, and hydrogen bond formation. Drug likeness and physiochemical properties of the test compounds exhibited satisfactory results. Taken together, the present study suggests the presence of potential anti-SARS-CoV-2 phytochemicals in W. somnifera that requires further validation in in vitro and in vivo studies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42535-022-00404-4.
Collapse
|
research-article |
3 |
7 |