76
|
Kumar S, Dwivedi A, Kumar R, Pandey AK. Preliminary Evaluation of Biological Activities and Phytochemical Analysis of Syngonium podophyllum Leaf. NATIONAL ACADEMY SCIENCE LETTERS 2015; 38:143-146. [DOI: 10.1007/s40009-014-0318-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
|
10 |
1 |
77
|
Riadi Y, Afzal O, Kumar S, Varadharajan V, Geesi MH. Synthesis of novel ( R)-carvone-tagged thiazolidinone as anticancer leads: characterization, in vitro antiproliferative evaluation and in silico studies. J Biomol Struct Dyn 2024:1-14. [PMID: 38523573 DOI: 10.1080/07391102.2024.2331095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] [Imported: 01/16/2025]
Abstract
This work describes the successful synthesis of a series of three novel thiazolidinone-carvone-O-alkyl hybrids through a two-step approach involving heterocyclization and O-alkylation reactions. Comprehensive structural characterization of the obtained products was achieved using NMR and HRMS spectroscopic techniques. This study assessed in vitro antiproliferative activity of synthesized thiazolidinone-carvone-O-alkyl hybrids (5a-c) against various human cancer cell lines, viz. HT-1080 (fibrosarcoma), A-549 (lung cancer), MCF-7 (breast cancer) and MDA-MB-231 (breast cancer). MTT assay revealed promising results for compounds 5b and 5c, demonstrating good antiproliferative activity against A-549 and MCF-7 cell lines comparable to the positive control, Doxorubicin. Compound 5a, harbouring an O-acetoxy group, displayed limited anticancer activity against MCF-7 and MDA-MB-231 cells, with IC50 values of 69.33 ± 0.42 µM and >100 µM, respectively. Docking results confirmed that the compounds 5a-c binds at the active site of p21 with docking scores -2.0, -4.8, and -7.0 kcal/mol, respectively. Compound 5a-c also showed good binding potential against Bcl2 protein with docking score of -4.9, -6.0, -5.5 kcal/mol, respectively. Furthermore, binding energy analysis and dynamics simulation studies of compounds towards p21 and Bcl2 yielded promising results. In PAK4 assay, compound 5c showed comparable potency (IC50 6.76 µM) with the standard control UC2288 (IC50 6.40 µM), while in BCL-2 TR-FRET assay, 5c exhibited good inhibition (IC50 1.78 µM) as compared to Venetoclax (IC50 0.016 µM). In conclusion, compounds 5a-c could be used as a structural framework for the discovery of novel therapeutics to combat different types of cancer.
Collapse
|
|
1 |
|
78
|
Verma M, Kapoor N, Senapati S, Singh O, Bhadoria AS, Khetarpal P, Kumar S, Bansal K, Ranjan R, Kakkar R, Kalra S. Comprehending the Epidemiology and Aetiology of Childhood Obesity: Integrating Life Course Approaches for Prevention and Intervention. Diabetes Ther 2025; 16:1177-1206. [PMID: 40299281 PMCID: PMC12085512 DOI: 10.1007/s13300-025-01734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025] [Imported: 05/15/2025] Open
Abstract
INTRODUCTION Childhood obesity is defined as a medical condition characterised by abnormally high amounts of body fat relative to lean body mass, which increases the risk of adverse health outcomes among children and adolescents from birth to 18 years. The prevalence of childhood obesity, which has serious healthcare implications, is surging, together with its healthcare burden. In this review we explore the intricate interplay of hereditary, environmental, behavioural, cultural and metabolic factors contributing to the global increase in childhood obesity rates. We examine the influence of prenatal factors, genetic predispositions and epigenetic mechanisms on obesity susceptibility and treatment strategies, emphasising the importance of a multilevel life course framework to understand the multifactorial causes of obesity. METHODS This narrative review examines the epidemiology, burden, aetiology and impact of childhood obesity by focusing on published literature and the efficacy of multilevel interventions. Comprehensive algorithms are provided to illustrate the causes of childhood obesity through the lens of a multilevel life course framework, taking into consideration individual, family, community and societal factors. RESULTS Genetic predispositions, including inherited tendencies towards emotional eating, metabolic variations and body fat distribution, significantly influence a child's obesity risk. Environmental factors, such as limited access to nutritious food, sedentary behaviour, insufficient opportunities for physical activity and obesogenic environments, contribute to the increasing prevalence of childhood obesity. Prenatal influences, including maternal hyperglycaemia and nutritional exposures, lead to epigenetic alterations that predispose children to obesity and metabolic disorders. The social environment, including parental influences, cultural norms and peer dynamics, shapes children's dietary habits and physical activity levels. Additionally, the review highlights the importance of early detection of metabolic alterations associated with paediatric obesity and insulin resistance and the potential for epigenetic mechanisms as therapeutic targets. Recommendations are made for tailored medical nutrition therapy, screening for syndromic obesity and multilevel interventions targeting individual and societal factors. CONCLUSIONS This review underscores the necessity of a comprehensive, multilevel approach that integrates genetic, environmental, behavioural and cultural factors along with lifestyle modifications and public health initiatives to address the complex and multifaceted issue of childhood obesity effectively. Targeted interventions across the life course, policy reforms, community engagement and technological innovations are recommended to mitigate obesity risks and promote long-term health. An infographic is available for this article. INFOGRAPHIC.
Collapse
|
Review |
1 |
|
79
|
Shuaib M, Kumar S. Ectopic expression of tumor suppressive miR-181c-5p downregulates oncogenic Notch signaling in MDA-MB-231 cells. Pathol Res Pract 2024; 253:155017. [PMID: 38101160 DOI: 10.1016/j.prp.2023.155017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] [Imported: 01/16/2025]
Abstract
Triple negative breast cancer (TNBC) is a very invasive subtype of breast cancer (BCa), this is accounted for 15-20% of all BCa cases. TNBC patients have very limited therapy option due to lack of effective targets and patients shows the worse survival. Therefore, present study has tried to introduce the target based therapy by studying the tumor suppressive role of miR-181c-5p on oncogenic Notch1 signaling. Transient transfection, bioinformatics, qRT-PCR, Notch1 luciferase assay and western blotting techniques were utilized to study the effect of induced expression of miR-181c-5p on oncogenic Notch1 signaling in MDA-MB-231 cells. Results shows that miR-181c-5p mimic increase the expression of miR-181c-5p by 45.26% and 75.96% in 24 and 48 h incubation, respectively (p < 0.0003) in transfected cells. The miR-181c-5p binds at NOTCH1 3' UTR target binding site with a minimum free energy of - 26.0 kcal/mol. The AGO protein showed significant interaction with the miR-181c-5p and miR-181c-5p-NOTCH1 complex. Decreased expression of NOTCH1 by 32.88% and 45.87% (p < 0.0001); and HES1 expression by 14.06% and 53.24% (p < 0.0001) was observed in 24 and 48 h transfected cells respectively. Notch1 promoter luciferase activity was reduced by 25.72% and 46.98% in 24 and 48 h miRNA-mimic transfected cells. Western blot analysis also showed significant reduction in NOTCH1 and HES1 proteins expression. In conclusion, present study suggests that the forced expression of tumor suppressive miR-181c-5p negatively regulates oncogenic Notch1 signaling in TNBC. Negative regulation of Notch1 signaling via miR-181c-5p mimic could be a hopeful therapeutic strategy in TNBC patient treatment.
Collapse
|
|
1 |
|
80
|
Singh AK, Prajapati KS, Kumar S. Discovery of anticancer compound possessing potential to bind γ-secretase catalytic subunit and inhibit notch promoter activity. J Biomol Struct Dyn 2024:1-16. [PMID: 38345058 DOI: 10.1080/07391102.2024.2315323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 01/16/2025] [Imported: 01/16/2025]
Abstract
Gamma secretase (GS) is an important therapeutic target in anticancer drug discovery. Increased GS activity activates notch signaling pathway which is associated with cancer stemness and drug resistance in cancer cells. A total of 69,075 natural and their derivative compounds were screened to identify the lead compound on the basis of in silico GS catalytic domain binding potential and in vitro selective anticancer efficacy. STOCK1N-23234 showed higher dock score (-11.82) compared to DAPT (-9.2) in molecular docking experiment and formed hydrogen bond with the key amino acid (Asp385) involve in catalysis process. Molecular dynamics (MD) simulation parameters (RMSD, RMSF, Rg, SASA and hydrogen bond formation) revealed that the STOTCK1N-23234 formed structurally and energetically stable complex with the GS catalytic domain with lower binding energy (-22.79 kcal/mol) compared to DAPT (-16.22 kcal/mol). STOCK1N-23234 showed better toxicity (up to 60%) against colon and breast cancer cells (HCT-116 and MDA-MB-453) at 1-70 µM concentration. Interestingly, STOCK1N-23234 did not showed cytotoxicity against human normal breast cells (MCF-10A). STOCK1N-23234 treatment significantly decreased sphere formation, notch promoter activity, and transcription of notch target genes (Hes-1 and Hey-1) in HCT-116 cells derived colonosphere. Confocal microscopy revealed that STOTCK1N-23234 treatment at test concentration induced apoptosis related morphological changes, reduced mitochondria membrane potential and increased reactive oxygen species production in HCT-116 cells compared to non-treated cells. In conclusion, STOCK1N-23234 is a novel lead natural anticancer compound which requires in depth validation in cancer preclinical models.
Collapse
|
|
1 |
|
81
|
Fayez S, Bruhn T, Feineis D, Assi LA, Kushwaha PP, Kumar S, Bringmann G. Correction: Naphthylisoindolinone alkaloids: the first ring-contracted naphthylisoquinolines, from the tropical liana Ancistrocladus abbreviatus, with cytotoxic activity. RSC Adv 2022; 12:30321. [PMID: 36337954 PMCID: PMC9589400 DOI: 10.1039/d2ra90105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] [Imported: 01/16/2025] Open
Abstract
[This corrects the article DOI: 10.1039/D2RA05758A.].
Collapse
|
Published Erratum |
3 |
|
82
|
Kumar S, Chaudhri S. Recent update on IGF-1/IGF-1R signaling axis as a promising therapeutic target for triple-negative breast cancer. Pathol Res Pract 2024; 263:155620. [PMID: 39357179 DOI: 10.1016/j.prp.2024.155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] [Imported: 01/16/2025]
Abstract
Insulin-like growth factor 1/Insulin-like growth factor 1-receptor (IGF-1/IGF-1R) pathway is highly breast cancer subtype context-dependent. Triple-negative breast cancer (TNBC) is an aggressive, highly metastatic cancer showing early recurrence and poor prognosis. High expression of IGF-1 and its receptor IGF-1R, their interaction, autophosphorylation, and activation of intracellular signaling cascades have been significantly associated with TNBC pathophysiology. In the last five to seven years, marvelous work has been done to explore the role of IGF-1/IGF-1R axis in TNBC. In the present review, starting from the general introduction to IGF-1/IGF-1R pathway an up-to-date discussion was focused on its role in TNBC pathophysiology. Further we discussed the up/down stream molecular events of IGF-1/IGF-1R axis, clinical relevance of IGF-1 and IGF-1R levels in TNBC patients, anti-TNBC therapy and possible way-out for IGF-1/IGF-1R axis mediate therapy resistance in TNBC. Combination therapy strategy has been researched to overcome direct IGF-1/IGF-1R pathway inhibition mediated therapy resistance and produced promising results in the management of TNBC. The understanding of up/downstream of the IGF-1/IGF-1R axis provide immense focus on the pathway as a therapeutic target. It is expected within the next decade to determine its potentiality, or lack thereof, for TNBC treatment.
Collapse
|
Review |
1 |
|
83
|
Maalmarugan J, Divya R, Ganesan H, Patel RP, Singh AK, Kumar S, Vimalan M, Kannan KS, Dineshkumar B. Synthesis, characterizations of D32DMBC-crystals for applications in biomedical, tribological, electronic filters and in device constructions by theory and practice. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS 2022. [DOI: https://doi.org/10.1142/s0218863523500194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The single crystalline diethyl 3,3[Formula: see text]-[(2,4-dichlorophenyl)methylidene]bis(1H-indole-2-carboxylate) (D32DMBC) samples are fully grown-up in a proper and in a successful manner by the prevailing slowly evaporating methodology. The lattice cell frameworks by XRD modus operandi also corroborated that the D32DMBC crystal system is monoclinic in nature. The structural properties by a conceptual way authenticate the elucidation and also the proper vindication for bond parameters. The nano influx is 3.2768 micron and the film-coated influx of 2.9977 microns as a mid-value between the macro as well as the nano assessment is suitable for electronic filters by D32DMBC crystals, and also used for tribological-coated utility as well as in frequency multipliers. Diabetes mellitus is the repetitive disease in the way of life and sustaining approach of D32DMBC — organic crystals are properly, accurately experimented by the use of the software pertaining to the D32DMBC by docking effect. The affinity inhibitory activity of A74DME and exploratory molecule of D32DMBC are [Formula: see text]8.1[Formula: see text]kJ/mole and [Formula: see text]8.4[Formula: see text]kJ/mole correspondingly. The computational effect of Hirshfeld portrays the internal/external fields as well as the electron higher/lower profile in the shape index proviso for optical utility identification and proper electronic utility.
Collapse
|
|
3 |
|
84
|
Discovery of Natural Anti-Apoptotic Protein Inhibitor Using Molecular Docking and MM-GBSA Approach: An Anticancer Intervention. BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY 2023; 13:473. [DOI: 10.33263/briac135.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] [Imported: 01/16/2025]
Abstract
Apoptosis is a programmed molecular phenomenon in normal cells, and "evading apoptosis" is a hallmark of cancer. Overexpression of anti-apoptotic BCL-2 promotes cancer cell survival, leading to tumor formation, its maintenance and progression, and further chemoresistance. Therefore, BCL-2 is considered an exciting drug target in clinical studies. The Cip/Kip family protein p21, which acts as an inhibitor of cyclin-CDK complexes, can also exert anti-apoptotic function and thus be involved in cancer initiation and progression. Preliminary research suggests that Piper chaba phytochemical(s) possess anticancer activity, but the underlying mechanism is yet to be established. For the first time, we explored Piper chaba phytochemicals for their anti-apoptotic protein (BCL-2 and p21) inhibition potential using molecular docking and MM-GBSA experiments. UC2288 and Venetoclax were known standards for BCL-2 and p21 proteins, respectively. We also explored the pharmacokinetics and drug-likeness properties of lead molecules using the SwissADME web tool. A total of 45 P. chaba phytochemicals were identified from published literature and docked at the drug-binding site of target proteins. Chabamide F, Piperchabaoside B, Piperundecalidiene, and Chabamide G showed ≥ binding affinity (-9.0 kcal/mole) than UC2288, while Brachystamide B showed lower binding affinity (-9.7 kcal/mole) than Venetoclax. MM-GBSA results revealed Chabamide F has a higher binding affinity for p21 than the standard compound. Therefore, P. chaba phytoconstituents qualify for further experiments on the drug discovery process to target anti-apoptosis proteins in cancer cells.
Collapse
|
|
2 |
|
85
|
Kumar R, Kushwaha PP, Singh AK, Kumar S, Pandey AK. Anti-proliferative, apoptosis inducing, and antioxidant potential of Callistemon lanceolatus bark extracts: an in vitro and in silico study. Med Oncol 2023; 40:169. [PMID: 37156972 DOI: 10.1007/s12032-023-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] [Imported: 01/16/2025]
Abstract
The present study reports anticancer and antioxidant activities of Callistemon lanceolatus bark extracts. Anticancer activity was studied against MDA-MB-231 cells. Antioxidant assessment of the chloroform and methanol extracts showed considerable free radical scavenging, metal ion chelating, and reducing power potential. Chloroform extract exhibited potent inhibition of cancer cell proliferation in MTT assay (IC50 9.6 μg/ml) and promoted programmed cell death. Reactive oxygen species (ROS) generation, mitochondria membrane potential (MMP) disruption ability, and nuclear morphology changes were studied using H2-DCFDA, JC-1, and Hoechst dyes, respectively, using confocal microscopy. Apoptotic cells exhibited fragmented nuclei, increased ROS generation, and altered MMP in dose- and time-dependent manner. Chloroform extract upregulated the BAX-1 and CASP3 mRNA expression coupled with downregulation of BCL-2 gene. Further, in silico docking of phytochemicals present in C. lanceolatus with anti-apoptotic Bcl-2 protein endorsed apoptosis by its inhibition and thus corroborated the experimental findings. Obatoclax, a known inhibitor of Bcl-2 was used as a reference compounds.
Collapse
|
|
2 |
|
86
|
Sharma B, Sethi B, Raj S, Poddar R, Prasad A, Sharma SR. Exploration of molecular interactions between scoparone and associated compounds with Constitutive androstane receptor (CAR) leading to gallstone prevention: an in silico investigation. J Biomol Struct Dyn 2024; 42:960-976. [PMID: 37096767 DOI: 10.1080/07391102.2023.2198010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/25/2023] [Indexed: 04/26/2023] [Imported: 01/16/2025]
Abstract
Scoparone (6, 7 dimethylesculetin) is a biologically active compound derived from the herb Artemisia capillaris having anti-inflammatory, anti-lipemic, and anti-allergic roles. Activation of the constitutive androstane receptor (CAR) in primary hepatocytes of both wild-type and humanized CAR mice by scoparone, accelerates bilirubin and cholesterol clearance in vivo. This can prevent gallstones which is a dreaded gastrointestinal disease. To date, surgery is regarded as the gold standard for treating gallstones. The molecular interactions between scoparone and CAR leading to gallstone prevention are not yet explored. In this study, we have analyzed these interactions through an insilico approach. After extracting the CAR structures (mice and human) from the protein databank and 6, 7-dimethylesuletin from PubChem, energy minimization of both the receptors was done to make them stable followed by docking. Next, a simulation was performed to stabilize the docked complexes. Through docking, H-bonds and pi-pi interactions were found in the complexes, which imply a stable interaction, thus activating the CAR. A similarity search for scoparone was performed and the selected compounds were docked with the CAR receptors. Esculentin acetate and scopoletin acetate interacted with human CAR through pi-alkyl and H-bond respectively. While Fraxidin methyl ether, fraxinol methyl ether, and 6, 7 diethoxycoumarin interacted with mice CAR through H-bond and Pi-Pi T-shaped bonds. The selected complexes were simulated further. Our results are in accordance with the hypothesis in the literature. We have also analyzed the drug likeliness, absorption, non-carcinogenicity, and other properties of scoparone which can support further in vivo studies.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
1 |
|
87
|
Maurya SK, Chaudhri S, Kumar S, Gupta S. Repurposing of Metabolic Drugs Metformin and Simvastatin as an Emerging Class of Cancer Therapeutics. Pharm Res 2025; 42:49-67. [PMID: 39775614 DOI: 10.1007/s11095-024-03811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] [Imported: 02/02/2025]
Abstract
Metabolic alterations are commonly associated with various cancers and are recognized as contributing factors to cancer progression, invasion, and metastasis. Drug repurposing, a strategy in drug discovery, utilizes existing knowledge to recommend established drugs for new indications based on clinical data or biological evidence. This approach is considered a less risky alternative to traditional drug development. Metformin, a biguanide, is a product of Galega officinalis (French lilac) primarily prescribed for managing type 2 diabetes, is recognized for its ability to reduce hepatic glucose production and enhance insulin sensitivity, particularly in peripheral tissues such as muscle. It also improves glucose uptake and utilization while decreasing intestinal glucose absorption. Statins, first isolated from the fungus Penicillium citrinum is another class of medication mainly used to lower cholesterol levels in individuals at risk for cardiovascular diseases, work by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is essential for cholesterol biosynthesis in the liver. Metformin is frequently used in conjunction with statins to investigate their potential synergistic effects. Combination of metformin and simvastatin has gathered much attention in cancer research because of its potential advantages for cancer prevention and treatment. In this review, we analyze the effects of metformin and simvastatin, both individually and in combination, on key cancer hallmarks, and how this combination affects the expression of biomolecules and associated signaling pathways. We also summarize preclinical research, including clinical trials, on the efficacy, safety, and potential applications of repurposing metformin and simvastatin for cancer therapy.
Collapse
|
Review |
1 |
|
88
|
Kumar S, Pandey AK. Potential Molecular Targeted Therapy for Unresectable Hepatocellular Carcinoma. Curr Oncol 2023; 30:1363-1380. [PMID: 36826066 PMCID: PMC9955633 DOI: 10.3390/curroncol30020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] [Imported: 01/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers, representing a serious worldwide health concern. The recurrence incidence of hepatocellular carcinoma (HCC) following surgery or ablation is as high as 70%. Thus, the clinical applicability of standard surgery and other locoregional therapy to improve the outcomes of advanced HCC is restricted and far from ideal. The registered trials did not identify a treatment that prolonged recurrence-free survival, the primary outcome of the majority of research. Several investigator-initiated trials have demonstrated that various treatments extend patients' recurrence-free or overall survival after curative therapies. In the past decade, targeted therapy has made significant strides in the treatment of advanced HCC. These targeted medicines produce antitumour effects via specific signals, such as anti-angiogenesis or advancement of the cell cycle. As a typical systemic treatment option, it significantly improves the prognosis of this fatal disease. In addition, the combination of targeted therapy with an immune checkpoint inhibitor is redefining the paradigm of advanced HCC treatment. In this review, we focused on the role of approved targeted medicines and potential therapeutic targets in unresectable HCC.
Collapse
|
Review |
2 |
|
89
|
Singh B, Prajapati KS, Kumar A, Patel S, Kumar S, Jaitak V. Chemical Composition, In vitro and In silico Evaluation of Essential Oil from Ocimum tenuiflorum and Coriandrum sativum Linn for Lung Cancer. Curr Comput Aided Drug Des 2024; 20:628-639. [PMID: 37653637 DOI: 10.2174/1573409920666230831144716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] [Imported: 01/16/2025]
Abstract
BACKGROUND Medicinal plants play an essential role in everyday life; plants highly contain therapeutic phytoconstituents commonly used to treat various diseases. This paper discusses the Chemical composition, In vitro antiproliferative activity and In silico study of essential oil extracted from Ocimum tenuiflorum (family Lamiaceae) and Coriandrum sativum (family Apiaceae). OBJECTIVE In present study GC-MS was used to identify the chemical constituents from O. tenuiflorum and C. sativum. In vitro antiproliferative activity was performed on A549 cancer cell lines. In silico study was performed by Schrodinger's maestro software to identify chemical constituents in both plants as potential EGFR inhibitors for the treatment of lung cancer. METHODS The essential oil was extracted by hydro distillation from aerial parts of O. tenuiflorum and C. sativum. The volatile oil sample was analyzed by (GC-MS) Gas Chromatography- Mass Spectrometry. Different chemical constituents were identified based on the retention index and compared with the NIST library. The oil samples from O. tenuiflorum and C. sativum was also evaluated for antiproliferative activity against human lung cancer A549 cell lines. In silico study was performed by Schrodinger maestro software against EGFR (PDB ID 5HG8). RESULTS O. tenuiflorum essential oil contains Eugenol (42.90%), 2-β-Elemene (25.98%), β- Caryophyllene (19.12%) are the major constituents. On the other side, C. sativum contains nnonadecanol- 1 (16.37%), decanal (12.37%), dodecanal (12.27%), 2-Dodecanal (9.67%), Phytol (8.81%) as the major constituents. Both the oils have shown in vitro antiproliferative activity against human lung cancer cell lines A549 having IC50 values of 38.281 μg/ml (O. tenuiflorum) and 74.536 μg/ml (C. sativum). Molecular interactions of constituents hydro distilled from two oils was analysed by schrodinger maestro software against EGFR (PDB ID 5HG8). CONCLUSION The oil sample extracted from O. tenuiflorum showed more antiproliferative activity than C. sativum. In silico study showed that two chemical constituents, namely di-isobutyl phthalate (-7.542 kcal/mol) and dibutyl phthalate (-7.181 kcal/mol) from O. tenuiflorum and one diethyl phthalate (-7.224 kcal/mol) from C. sativum having more docking score than standard Osimertinib which indicates the effectiveness of oils for lung cancer.
Collapse
|
|
1 |
|
90
|
Prajapati KS, Kumar S. Kurarinone targets JAK2-STAT3 signaling in colon cancer-stem-like cells. Cell Biochem Funct 2024; 42:e3959. [PMID: 38390770 DOI: 10.1002/cbf.3959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] [Imported: 01/16/2025]
Abstract
Natural compounds are known to regulate stemness/self-renewal properties in colon cancer cells at molecular level. In the present study, we first time studied the colon cancer stem-like cells targeting potential of Kurarinone (KU) and explored the underlying mechanism. Cytotoxic potential of KU was checked in colon cancer cells. Colonosphere formation assay was performed to check the spheroid formation reduction potential of KU in HCT-116 cells by using phase-contrast microscopy. Stemness/self-renewal marker expression was studied at mRNA and protein levels in colonosphere. The qRT-PCR, western blot analysis, and flow cytometer techniques were used to assess the effect of KU treatment on cell cycle progression and apoptosis induction in colon cancer cells and colonosphere. Further, effect of KU treatment on pSTAT3 status and its nuclear translocation was also studied. KU treatment significantly decreased HCT-116 cell proliferation and reduced sphere formation potential at IC30 (8.71 µM) and IC50 (20.34 µM) concentrations compared to respective vehicle-treated groups, respectively. KU exposure significantly reduced the expression of CD44, c-Myc, Bmi-1, and Sox2 stemness/self-renewal markers in colonosphere in a dose-dependent manner. KU treatment inhibits JAK2-STAT3 signaling pathway by reducing pSTAT3 levels and its nuclear translocation in HCT-116 cells and colonosphere at IC50 concentration. KU treatment significantly decreased the expression of CCND1 and CDK4 cell cycle-specific markers and arrested the HCT-116 cells and colonosphere in G1-phase. Further, KU treatment increased Bax/Bcl-2 ratio, apoptotic cell population, cleaved caspase 3, and PARP-1 in HCT-116 cells and colonosphere. In conclusion, KU treatment decreases stemness/self-renewal, induces cell cycle arrest and apoptosis in HCT-116 colonosphere by down-regulating CD44-JAK2-STAT3 axis. Thus, targeting stemness/self-renewal and other cancer hallmark(s) by KU through CD44/JAK2/STAT3 signaling pathway might be a novel strategy to target colon cancer stem-like cells.
Collapse
|
|
1 |
|
91
|
El Khatabi K, Kumar S, El-Mernissi R, Singh AK, Ajana MA, Lakhlifi T, Bouachrine M. Novel Eubacterium rectale inhibitor from Coriandrum sativum L. for possible prevention of colorectal cancer: a computational approach. J Biomol Struct Dyn 2023; 41:8402-8416. [PMID: 36264092 DOI: 10.1080/07391102.2022.2134210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/03/2022] [Indexed: 10/24/2022] [Imported: 01/16/2025]
Abstract
This research aims to screen out the effective bioactive compounds from Coriander (Coriandrum sativum L.), which may be novel potential inhibitors of Eubacterium rectale for the prevention of colorectal cancer (CRC). A series of 8 coriander-derived chemical compounds previously assessed for their anti-inflammatory, antioxidant, and antidiabetic activities were tested against Carbohydrate ABC transporter substrate-binding protein and compared to the standard inhibitor Acarbose, to support their use as novel Eubacterium rectale inhibitors. Herein, these derivatives were submitted to a thorough analysis of docking studies, in which detailed interactions of the selected phytocompounds with carbohydrate ABC transporter substrate-binding protein were revealed. Molecular docking analysis recommends Rutin, Gallocatechin, and Epigallocatechin as the most potential Eubacterium rectale inhibitors among the eight selected phytochemical compounds. Subsequently, the stability of the three selected phytochemical complexes was checked using molecular dynamics (MD) simulation at 100 ns and Molecular Mechanics combined with Poisson-Boltzmann Surface Area (MM-PBSA). The results show quite good stability for Rutin and Gallocatechin. In silico ADMET prediction was performed on the selected compounds, and the findings revealed a reasonably good ADMET profile for both Rutin and Gallocatechin. The current findings predict that Gallocatechin could be a better CRC preventive natural compound, and, further in vitro, in vivo and clinical studies may confirm its therapeutic potential.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
2 |
|
92
|
Singh AK, Kumar S. Naringin dihydrochalcone potentially binds to catalytic domain of matrix metalloproteinase-2: molecular docking, MM-GBSA, and molecular dynamics simulation approach. Nat Prod Res 2022. [DOI: https://doi.org/10.1080/14786419.2022.2118746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
|
3 |
|
93
|
Kumar S, Pandey AK. Pharmacological potential of serially extracted Solanum xanthocarpum fruit extracts and their phytochemical characterization. JOURNAL OF HERBS, SPICES & MEDICINAL PLANTS 2022; 28:427-441. [DOI: 10.1080/10496475.2022.2079793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 02/08/2023]
|
|
3 |
|
94
|
Nayak J, Prajapati KS, Kumar S, Sahoo SK, Kumar R. Synthesis of thiolated chlorogenic acid-capped silver nanoparticles for the effective dual action towards antimicrobial and anticancer therapy. Colloid Polym Sci 2022. [DOI: https://doi.org/10.1007/s00396-022-05010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
|
3 |
|
95
|
Mohanty S, Bhadane R, Kumar S. Bioinformatics insights into CENP-T and CENP-W protein-protein interaction disruptive amino acid substitution in the CENP-T-W complex. J Cell Biochem 2023; 124:1870-1885. [PMID: 37943107 DOI: 10.1002/jcb.30495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] [Imported: 01/16/2025]
Abstract
Kinetochores are multi-protein assemblies present at the centromere of the human chromosome and play a crucial role in cellular mitosis. The CENP-T and CENP-W chains form a heterodimer, which is an integral part of the inner kinetochore, interacting with the linker DNA on one side and the outer kinetochore on the other. Additionally, the CENP-T-W dimer interacts with other regulatory proteins involved in forming inner kinetochores. The specific roles of different amino acids in the CENP-W at the protein-protein interaction (PPI) interface during the CENP-T-W dimer formation remain incompletely understood. Since cell division goes awry in diseases like cancer, this CENP-T-W partnership is a potential target for new drugs that could restore healthy cell division. We employed molecular docking, binding free energy calculations, and molecular dynamics (MD) simulations to investigate the disruptive effects of amino acids substitutions in the CENP-W chain on CENP-T-W dimer formation. By conducting a molecular docking study and analysing hydrogen bonding interactions, we identified key residues in CENP-W (ASN-46, ARG-53, LEU-83, SER-86, ARG-87, and GLY-88) for further investigation. Through site-directed mutagenesis and subsequent binding free energy calculations, we refined the selection of mutant. We chose four mutants (N46K, R53K, L83K, and R87E) of CENP-W to assess their comparative potential in forming CENP-T-W dimer. Our analysis from 250 ns long revealed that the substitution of LEU83 and ARG53 residues in CENP-W with the LYS significantly disrupts the formation of CENP-T-W dimer. In conclusion, LEU83 and ARG53 play a critical role in CENP-T and CENP-W dimerization which is ultimately required for cellular mitosis. Our findings not only deepen our understanding of cell division but also hint at exciting drug-target possibilities.
Collapse
|
|
2 |
|
96
|
Shuaib M, Singh AK, Gupta S, Alasmari AF, Alqahtani F, Kumar S. Designing of neoepitopes based vaccine against breast cancer using integrated immuno and bioinformatics approach. J Biomol Struct Dyn 2024; 42:8624-8637. [PMID: 37584493 DOI: 10.1080/07391102.2023.2247081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023] [Imported: 01/16/2025]
Abstract
Cancer is characterized by genetic instability due to accumulation of somatic mutations in the genes which generate neoepitopes (mutated epitopes) for targeting by Cytotoxic T lymphocytes (CTL). Breast cancer has a high transformation rate with unique composition of mutational burden and neoepitopes load that open a platform to designing a neoepitopes-based vaccine. Neoepitopes-based therapeutic cancer vaccines designed by neoantigens have shown to be feasible, nontoxic, and immunogenic in cancer patients. Stimulation of CTL by neoepitope-based vaccine of self-antigenic proteins plays a key role in distinguishing cancer cells from normal cells and selectively targets only malignant cells. A neoepitopes-based vaccine to combat breast cancer was designed by combining immunology and bioinformatics approaches. The vaccine construct was assembled by the fusion of CTL neoepitopes, helper sequences (used for better separation of the epitopes), and adjuvant together with linkers. The neoepitopes were identified from somatic mutations in the MUC16, TP53, RYR2, F5, DNAH17, ASPM, and ABCA13 self-antigenic proteins. The vaccine construct was undertaken to study the immune simulations (IS), physiochemical characteristics (PP), molecular docking (MD) and simulations, and cloning in appropriate vector. Together, these parameters establish safety, stability, and a strong binding affinity against class I MHC molecules capable of inducing a complete immune response against breast cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
|
|
1 |
|
97
|
Mohapatra S, Kumar S, Kumar S, Singh AK, Nayak B. Immunodominant conserved moieties on spike protein of SARS-CoV-2 renders virulence factor for the design of epitope-based peptide vaccines. Virusdisease 2023; 34:456-482. [PMID: 38046066 PMCID: PMC10686954 DOI: 10.1007/s13337-023-00852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] [Imported: 01/16/2025] Open
Abstract
UNLABELLED The outbreak of novel SARS-CoV-2 virion has wreaked havoc with a high prevalence of respiratory illness and high transmission due to a vague understanding of the viral antigenicity, augmenting the dire challenge to public health globally. This viral member necessitates the expansion of diagnostic and therapeutic tools to track its transmission and confront it through vaccine development. Therefore, prophylactic strategies are mandatory. Virulent spike proteins can be the most desirable candidate for the computational design of vaccines targeting SARS-CoV-2, followed by the meteoric development of immune epitopes. Spike protein was characterized using existing bioinformatics tools with a unique roadmap related to the immunological profile of SARS-CoV-2 to predict immunogenic virulence epitopes based on antigenicity, allergenicity, toxicity, immunogenicity, and population coverage. Applying in silico approaches, a set of twenty-four B lymphocyte-based epitopes and forty-six T lymphocyte-based epitopes were selected. The predicted epitopes were evaluated for their intrinsic properties. The physico-chemical characterization of epitopes qualifies them for further in vitro and in vivo analysis and pre-requisite vaccine development. This study presents a set of screened epitopes that bind to HLA-specific allelic proteins and can be employed for designing a peptide vaccine construct against SARS-CoV-2 that will confer vaccine-induced protective immunity due to its structural stability. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13337-023-00852-9.
Collapse
|
research-article |
2 |
|
98
|
Vashishth A, Shuaib M, Bansal T, Kumar S. Mycobacterium Tubercular Mediated Inflammation and Lung Carcinogenesis: Connecting Links. OBM GENETICS 2023; 07:1-17. [DOI: 10.21926/obm.genet.2302183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] [Imported: 01/16/2025]
Abstract
Lung cancer is a leading cause of death among all the cancer worldwide and it has the highest occurrence and mortality rates. <em>Mycobacterium</em> <em>tuberculosis</em> (MTB) induced tuberculosis has been known as one of the risk factors for lung carcinogenesis. The exact mechanism of MTB is understood to date. Several research and epidemiological studies about the link between tuberculosis and lung cancer exist. It has been proposed that tuberculosis causes chronic inflammation, which increases the risk of lung cancer by creating a favorable environment. EGFR downstream signaling promotes constitutive activation of TKIs domain due to the mutation in exon 19 and exon 21 (L858R point mutation), which leads to cell proliferation, invasion, metastasis, and angiogenesis, causing lung adenocarcinoma. Several other studies have shown that human monocyte cells infected by MTB enhance the invasion and cause induction of epithelial-mesenchymal transition (EMT) characteristics in lung cancer cell co-culture. This review article has tried to draw a relationship between chronic tuberculosis and lung carcinogenesis.
Collapse
|
|
2 |
|
99
|
Sharma AK, Kumar S, Chashoo G, Saxena AK, Pandey AK. Cell cycle inhibitory activity of Piper longum against A549 cell line and its protective effect against metal-induced toxicity in rats. INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS 2014; 51:358-364. [PMID: 25630105 DOI: pmid/25630105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Anticancer potential of Piper longum fruit against human cancer cell lines (DU-145 prostate, A549 lung, THP-1 leukemia, IGR-OVI-1 ovary and MCF-7 breast) as well as its in vitro and in vivo biochemical efficacy in A1Cl3-induced hepatotoxicity were evaluated in the rats. Dried samples were extracted with several solvents using soxhlet apparatus. Flavonoid content in chloroform, benzene, ethyl alcohol and aqueous extracts of fruit was 19, 14, 12 and 11 μg quercetin equivalent/mg of sample, respectively. Hexane extracts exhibited 90-92% cytotoxicity against most of the test cell lines (A549, THP-1, IGR-OVI-1 and MCF-7), while benzene extract displayed 84-87% cytotoxicity against MCF-7, IGR-OV-1 and THP-1 cell lines. Among extracts, hexane, benzene and acetone extracts demonstrated considerable cytotoxicity (91-95%) against A549 (lung cancer) cell line in Sulforhodamine B dye (SRB) assay. Cell cycle analysis revealed that hexane, benzene and acetone extracts produced 41, 63 and 43% sub-G1 DNA fraction, demonstrating cell cycle inhibitory potential of these extracts against A549 cell line. Chloroform, ethyl alcohol and aqueous extracts displayed 71, 64 and 65% membrane protective activity, respectively in lipid peroxidation inhibition assay. P. longum fruit extracts also ameliorated A1Cl3-induced hepatotoxicity, as indicated by alterations observed in serum enzymes ALP, SGOT and SGPT activity, as well as creatinine and bilirubin contents. In conclusion, study established the cytotoxic and hepatoprotective activity in P. longum extracts.
Collapse
|
|
11 |
|
100
|
Bhatia N, Kumar S, Goyal LD, Thareja S. Optimizing selective estrogen receptor degraders for anticancer drug development. Future Med Chem 2025; 17:637-640. [PMID: 40008677 PMCID: PMC11938951 DOI: 10.1080/17568919.2025.2467615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 02/27/2025] [Imported: 05/03/2025] Open
|
Editorial |
1 |
|