1
|
Tauzin S, Chaigne-Delalande B, Selva E, Khadra N, Daburon S, Contin-Bordes C, Blanco P, Le Seyec J, Ducret T, Counillon L, Moreau JF, Hofman P, Vacher P, Legembre P. The naturally processed CD95L elicits a c-yes/calcium/PI3K-driven cell migration pathway. PLoS Biol 2011; 9:e1001090. [PMID: 21713032 PMCID: PMC3119658 DOI: 10.1371/journal.pbio.1001090] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/11/2011] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Patients affected by chronic inflammatory disorders display high amounts of soluble CD95L. This homotrimeric ligand arises from the cleavage by metalloproteases of its membrane-bound counterpart, a strong apoptotic inducer. In contrast, the naturally processed CD95L is viewed as an apoptotic antagonist competing with its membrane counterpart for binding to CD95. Recent reports pinpointed that activation of CD95 may attract myeloid and tumoral cells, which display resistance to the CD95-mediated apoptotic signal. However, all these studies were performed using chimeric CD95Ls (oligomerized forms), which behave as the membrane-bound ligand and not as the naturally processed CD95L. Herein, we examine the biological effects of the metalloprotease-cleaved CD95L on CD95-sensitive activated T-lymphocytes. We demonstrate that cleaved CD95L (cl-CD95L), found increased in sera of systemic lupus erythematosus (SLE) patients as compared to that of healthy individuals, promotes the formation of migrating pseudopods at the leading edge of which the death receptor CD95 is capped (confocal microscopy). Using different migration assays (wound healing/Boyden Chamber/endothelial transmigration), we uncover that cl-CD95L promotes cell migration through a c-yes/Ca²⁺/PI3K-driven signaling pathway, which relies on the formation of a CD95-containing complex designated the MISC for Motility-Inducing Signaling Complex. These findings revisit the role of the metalloprotease-cleaved CD95L and emphasize that the increase in cl-CD95L observed in patients affected by chronic inflammatory disorders may fuel the local or systemic tissue damage by promoting tissue-filtration of immune cells.
Collapse
|
research-article |
14 |
87 |
2
|
Poissonnier A, Sanséau D, Le Gallo M, Malleter M, Levoin N, Viel R, Morere L, Penna A, Blanco P, Dupuy A, Poizeau F, Fautrel A, Seneschal J, Jouan F, Ritz J, Forcade E, Rioux N, Contin-Bordes C, Ducret T, Vacher AM, Barrow PA, Flynn RJ, Vacher P, Legembre P. CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice. Immunity 2017; 45:209-23. [PMID: 27438772 PMCID: PMC4961226 DOI: 10.1016/j.immuni.2016.06.028] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/10/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022] [Imported: 08/29/2023]
Abstract
CD95 ligand (CD95L) is expressed by immune cells and triggers apoptotic death. Metalloprotease-cleaved CD95L (cl-CD95L) is released into the bloodstream but does not trigger apoptotic signaling. Hence, the pathophysiological role of cl-CD95L remains unclear. We observed that skin-derived endothelial cells from systemic lupus erythematosus (SLE) patients expressed CD95L and that after cleavage, cl-CD95L promoted T helper 17 (Th17) lymphocyte transmigration across the endothelial barrier at the expense of T regulatory cells. T cell migration relied on a direct interaction between the CD95 domain called calcium-inducing domain (CID) and the Src homology 3 domain of phospholipase Cγ1. Th17 cells stimulated with cl-CD95L produced sphingosine-1-phosphate (S1P), which promoted endothelial transmigration by activating the S1P receptor 3. We generated a cell-penetrating CID peptide that prevented Th17 cell transmigration and alleviated clinical symptoms in lupus mice. Therefore, neutralizing the CD95 non-apoptotic signaling pathway could be an attractive therapeutic approach for SLE treatment. CD95-mediated Ca2+ response promotes endothelial transmigration of Th17 cells CD95 interacts with PLCγ1 to induce Ca2+ response and Th17 cell migration Ca2+ response stems from a CD95 region different from death domain Inhibition of the CD95-mediated Ca2+ response alleviates disease in lupus-prone mice
Collapse
|
Journal Article |
8 |
64 |
3
|
Downregulation of ceramide synthase-6 during epithelial-to-mesenchymal transition reduces plasma membrane fluidity and cancer cell motility. Oncogene 2014; 34:996-1005. [PMID: 24632610 DOI: 10.1038/onc.2014.55] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 01/28/2023] [Imported: 08/29/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) promotes cell motility, which is important for the metastasis of malignant cells, and blocks CD95-mediated apoptotic signaling triggered by immune cells and chemotherapeutic regimens. CD95L, the cognate ligand of CD95, can be cleaved by metalloproteases and released as a soluble molecule (cl-CD95L). Unlike transmembrane CD95L, cl-CD95L does not induce apoptosis but triggers cell motility. Electron paramagnetic resonance was used to show that EMT and cl-CD95L treatment both led to augmentation of plasma membrane fluidity that was instrumental in inducing cell migration. Compaction of the plasma membrane is modulated, among other factors, by the ratio of certain lipids such as sphingolipids in the membrane. An integrative analysis of gene expression in NCI tumor cell lines revealed that expression of ceramide synthase-6 (CerS6) decreased during EMT. Furthermore, pharmacological and genetic approaches established that modulation of CerS6 expression/activity in cancer cells altered the level of C16-ceramide, which in turn influenced plasma membrane fluidity and cell motility. Therefore, this study identifies CerS6 as a novel EMT-regulated gene that has a pivotal role in the regulation of cell migration.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
63 |
4
|
Le Gallo M, Poissonnier A, Blanco P, Legembre P. CD95/Fas, Non-Apoptotic Signaling Pathways, and Kinases. Front Immunol 2017; 8:1216. [PMID: 29021794 PMCID: PMC5623854 DOI: 10.3389/fimmu.2017.01216] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] [Imported: 08/29/2023] Open
Abstract
Endothelial cells lining new blood vessels that develop during inflammatory disorders or cancers act as doors that either allow or block access to the tumor or inflamed organ. Recent data show that these endothelial cells in cancer tissues and inflamed tissues of lupus patients overexpress CD95L, the biological role of which is a subject of debate. The receptor CD95 (also named Fas or apoptosis antigen 1) belongs to the tumor necrosis factor (TNF) receptor superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance. Because mutations of this receptor or its ligand lead to autoimmune disorders such as systemic lupus erythematosus (SLE) and cancers, CD95 and CD95L were initially thought to play a role in immune homeostasis and tumor elimination via apoptotic signaling pathways. However, recent data reveal that CD95 also evokes non-apoptotic signals, promotes inflammation, and contributes to carcinogenesis; therefore, it is difficult to dissect its apoptotic effects from its non-apoptotic effects during pathogenesis of disease. CD95L is cleaved by metalloproteases and so exists in two different forms: a transmembrane form and a soluble ligand (s-CD95L). We recently observed that the soluble ligand is overexpressed in serum from patients with triple-negative breast cancer or SLE, in whom it contributes to disease severity by activating non-apoptotic signaling pathways and promoting either metastatic dissemination or accumulation of certain T cell subsets in damaged organs. Here, we discuss the roles of CD95 in modulating immune functions via induction of mainly non-apoptotic signaling pathways.
Collapse
|
Review |
8 |
56 |
5
|
Fouqué A, Debure L, Legembre P. The CD95/CD95L signaling pathway: a role in carcinogenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:130-41. [PMID: 24780723 DOI: 10.1016/j.bbcan.2014.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 11/18/2022] [Imported: 08/29/2023]
Abstract
Apoptosis is a fundamental process that contributes to tissue homeostasis, immune responses, and development. The receptor CD95, also called Fas, is a member of the tumor necrosis factor receptor (TNF-R) superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance, and various lineages of malignant cells exhibit loss-of-function mutations in this pathway; therefore, CD95 was initially classified as a tumor suppressor gene. However, more recent data indicate that in different pathophysiological contexts, this receptor can transmit non-apoptotic signals, promote inflammation, and contribute to carcinogenesis. A comparison with the initial molecular events of the TNF-R signaling pathway leading to non-apoptotic, apoptotic, and necrotic pathways reveals that CD95 is probably using different molecular mechanisms to transmit its non-apoptotic signals (NF-κB, MAPK, and PI3K). As discussed in this review, the molecular process by which the receptor switches from an apoptotic function to an inflammatory role is unknown. More importantly, the biological functions of these signals remain elusive.
Collapse
|
Review |
11 |
31 |
6
|
Guégan JP, Ginestier C, Charafe-Jauffret E, Ducret T, Quignard JF, Vacher P, Legembre P. CD95/Fas and metastatic disease: What does not kill you makes you stronger. Semin Cancer Biol 2019; 60:121-131. [PMID: 31176682 DOI: 10.1016/j.semcancer.2019.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] [Imported: 08/29/2023]
Abstract
CD95 (also known as Fas) is the prototype of death receptors; however, evidence suggests that this receptor mainly implements non-apoptotic signaling pathways such as NF-κB, MAPK, and PI3K that are involved in cell migration, differentiation, survival, and cytokine secretion. At least two different forms of CD95 L exist. The multi-aggregated transmembrane ligand (m-CD95 L) is cleaved by metalloproteases to release a homotrimeric soluble ligand (s-CD95 L). Unlike m-CD95 L, the interaction between s-CD95 L and its receptor CD95 fails to trigger apoptosis, but instead promotes calcium-dependent cell migration, which contributes to the accumulation of inflammatory Th17 cells in damaged organs of lupus patients and favors cancer cell invasiveness. Novel inhibitors targeting the pro-inflammatory roles of CD95/CD95 L may provide attractive therapeutic options for patients with chronic inflammatory disorders or cancer. This review discusses the roles of the CD95/CD95 L pair in cell migration and metastasis.
Collapse
|
Review |
6 |
29 |
7
|
Fouqué A, Lepvrier E, Debure L, Gouriou Y, Malleter M, Delcroix V, Ovize M, Ducret T, Li C, Hammadi M, Vacher P, Legembre P. The apoptotic members CD95, BclxL, and Bcl-2 cooperate to promote cell migration by inducing Ca(2+) flux from the endoplasmic reticulum to mitochondria. Cell Death Differ 2016; 23:1702-16. [PMID: 27367565 PMCID: PMC5041197 DOI: 10.1038/cdd.2016.61] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 12/16/2022] [Imported: 08/29/2023] Open
Abstract
Metalloprotease-processed CD95L (cl-CD95L) is a soluble cytokine that implements a PI3K/Ca(2+) signaling pathway in triple-negative breast cancer (TNBC) cells. Accordingly, high levels of cl-CD95L in TNBC women correlate with poor prognosis, and administration of this ligand in an orthotopic xenograft mouse model accelerates the metastatic dissemination of TNBC cells. The molecular mechanism underlying CD95-mediated cell migration remains unknown. Here, we present genetic and pharmacologic evidence that the anti-apoptotic molecules BclxL and Bcl-2 and the pro-apoptotic factors BAD and BID cooperate to promote migration of TNBC cells stimulated with cl-CD95L. BclxL was distributed in both endoplasmic reticulum (ER) and mitochondrion membranes. The mitochondrion-localized isoform promoted cell migration by interacting with voltage-dependent anion channel 1 to orchestrate Ca(2+) transfer from the ER to mitochondria in a BH3-dependent manner. Mitochondrial Ca(2+) uniporter contributed to this flux, which favored ATP production and cell migration. In conclusion, this study reveals a novel molecular mechanism controlled by BclxL to promote cancer cell migration and supports the use of BH3 mimetics as therapeutic options not only to kill tumor cells but also to prevent metastatic dissemination in TNBCs.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
25 |
8
|
Guidicelli G, Chaigne-Delalande B, Dilhuydy MS, Pinson B, Mahfouf W, Pasquet JM, Mahon FX, Pourquier P, Moreau JF, Legembre P. The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells. PLoS One 2009; 4:e5493. [PMID: 19430526 PMCID: PMC2675064 DOI: 10.1371/journal.pone.0005493] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/15/2009] [Indexed: 01/20/2023] [Imported: 08/29/2023] Open
Abstract
Background The amount of inosine monophosphate dehydrogenase (IMPDH), a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP), is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA) are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42. Methodology/Principal Findings Herein, we strengthened the essential role played by this small GTPase in the necrotic signal by silencing Cdc42 and by the ectopic expression of a constitutive active mutant of Cdc42. Since resistance to apoptosis is an essential step for the tumorigenesis process, we next examined the effect of the MPA–mediated necrotic signal on different tumor cells demonstrating various mechanisms of resistance to apoptosis (Bcl2-, HSP70-, Lyn-, BCR-ABL–overexpressing cells). All tested cells remained sensitive to MPA–mediated necrotic signal. Furthermore, inhibition of IMPDH activity in Chronic Lymphocytic Leukemia cells was significantly more efficient at eliminating malignant cells than apoptotic inducers. Conclusions/Significance These findings indicate that necrosis and apoptosis are split signals that share few if any common hub of signaling. In addition, the necrotic signaling pathway induced by depletion of the cellular amount of GTP/GDP would be of great interest to eliminate apoptotic-resistant tumor cells.
Collapse
MESH Headings
- Apoptosis/drug effects
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Guanosine Diphosphate/metabolism
- Guanosine Triphosphate/metabolism
- Humans
- IMP Dehydrogenase/antagonists & inhibitors
- IMP Dehydrogenase/metabolism
- Jurkat Cells
- K562 Cells
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/metabolism
- Lymphocytes/pathology
- Lymphocytes/ultrastructure
- Microscopy, Electron
- Mutation
- Mycophenolic Acid/pharmacology
- Necrosis/chemically induced
- RNA, Small Interfering/genetics
- Signal Transduction/drug effects
- Transfection
- Tumor Cells, Cultured
- cdc42 GTP-Binding Protein/genetics
- cdc42 GTP-Binding Protein/metabolism
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
22 |
9
|
Edmond V, Ghali B, Penna A, Taupin JL, Daburon S, Moreau JF, Legembre P. Precise mapping of the CD95 pre-ligand assembly domain. PLoS One 2012; 7:e46236. [PMID: 23049989 PMCID: PMC3457997 DOI: 10.1371/journal.pone.0046236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] [Imported: 08/29/2023] Open
Abstract
Pre-association of CD95 at the plasma membrane is mandatory for efficient death receptor signaling. This homotrimerization occurs through self-association of an extracellular domain called the pre-ligand assembly domain (PLAD). Using novel molecular and cellular tools, we confirmed that CD95-PLAD is necessary to promote CD95 multimerization and plays a pivotal role in the transmission of apoptotic signals. However, while a human CD95 mutant deleted of the previously described PLAD domain (amino acids 1 to 66) fails to interact with its wild-type counterpart and trigger autonomous cell death, deletion of amino acids 1 to 42 does not prevent homo- or hetero (human/mouse)-oligomerization of CD95, and thus does not alter transmission of the apoptotic signal. Overall, these findings indicate that the region between amino acids 43 to 66 corresponds to the minimal motif involved in CD95 homotypic interaction and is necessary to convey an efficient apoptotic signal. Interfering with this PLAD may represent a new therapeutic strategy for altering CD95-induced apoptotic and non-apoptotic signals.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
15 |
10
|
Guégan JP, Pollet J, Ginestier C, Charafe-Jauffret E, Peter ME, Legembre P. CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. iScience 2021; 24:103538. [PMID: 34917906 PMCID: PMC8666665 DOI: 10.1016/j.isci.2021.103538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] [Imported: 08/29/2023] Open
Abstract
CD95 expression is preserved in triple-negative breast cancers (TNBCs), and CD95 loss in these cells triggers the induction of a pro-inflammatory program, promoting the recruitment of cytotoxic NK cells impairing tumor growth. Herein, we identify a novel interaction partner of CD95, Kip1 ubiquitination-promoting complex protein 2 (KPC2), using an unbiased proteomic approach. Independently of CD95L, CD95/KPC2 interaction contributes to the partial degradation of p105 (NF-κB1) and the subsequent generation of p50 homodimers, which transcriptionally represses NF-κB-driven gene expression. Mechanistically, KPC2 interacts with the C-terminal region of CD95 and serves as an adaptor to recruit RelA (p65) and KPC1, which acts as E3 ubiquitin-protein ligase promoting the degradation of p105 into p50. Loss of CD95 in TNBC cells releases KPC2, limiting the formation of the NF-κB inhibitory homodimer complex (p50/p50), promoting NF-κB activation and the production of pro-inflammatory cytokines, which might contribute to remodeling the immune landscape in TNBC cells.
Collapse
|
research-article |
4 |
14 |
11
|
Qadir AS, Guégan JP, Ginestier C, Chaibi A, Bessede A, Charafe-Jauffret E, Macario M, Lavoué V, Rouge TDLM, Law C, Vilker J, Wang H, Stroup E, Schipma MJ, Bridgeman B, Murmann AE, Ji Z, Legembre P, Peter ME. CD95/Fas protects triple negative breast cancer from anti-tumor activity of NK cells. iScience 2021; 24:103348. [PMID: 34816102 PMCID: PMC8593563 DOI: 10.1016/j.isci.2021.103348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 11/04/2022] [Imported: 08/29/2023] Open
Abstract
The apoptosis inducing receptor CD95/Fas has multiple tumorigenic activities. In different genetically engineered mouse models tumor-expressed CD95 was shown to be critical for cell growth. Using a combination of immune-deficient and immune-competent mouse models, we now establish that loss of CD95 in metastatic triple negative breast cancer (TNBC) cells prevents tumor growth by modulating the immune landscape. CD95-deficient, but not wild-type, tumors barely grow in an immune-competent environment and show an increase in immune infiltrates into the tumor. This growth reduction is caused by infiltrating NK cells and does not involve T cells or macrophages. In contrast, in immune compromised mice CD95 k.o. cells are not growth inhibited, but they fail to form metastases. In summary, we demonstrate that in addition to its tumor and metastasis promoting activities, CD95 expression by tumor cells can exert immune suppressive activities on NK cells, providing a new target for immune therapy.
Collapse
|
research-article |
4 |
10 |
12
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] [Imported: 08/29/2023] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
|
review-article |
3 |
5 |
13
|
Le Gallo M, de la Motte Rouge T, Poissonnier A, Lavoué V, Tas P, Leveque J, Godey F, Legembre P. Tumor analysis: freeze-thawing cycle of triple-negative breast cancer cells alters tumor CD24/CD44 profiles and the percentage of tumor-infiltrating immune cells. BMC Res Notes 2018; 11:401. [PMID: 29925435 PMCID: PMC6011598 DOI: 10.1186/s13104-018-3504-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/12/2018] [Indexed: 01/05/2023] [Imported: 08/29/2023] Open
Abstract
OBJECTIVE The use of novel methods to characterize living tumor cells relies on well-conceived biobanks. Herein, we raised the question of whether the composition of fresh and freeze/thawed dissociated tumor samples is comparable in terms of quantitative and qualitative profiling. RESULTS Breast cancer is a heterogeneous disease, encompassing luminal A and B, basal/triple-negative breast cancer (TNBC), and ERBB2-like tumors. We examined living cells dissociated from TNBC and found that a classical freeze/thaw protocol leads to a marked reduction in the number of CD45-CD44LowCD24Low tumor cells. This, in turn, changed the percentage of tumor cells with certain CD44/CD24 expression patterns and changed the percentage of tumor-infiltrating immune cells. These cryopreservation-driven alterations in cellular phenotype make it impossible to compare fresh and frozen samples from the same patient directly. Moreover, the freeze/thaw process changed the transcriptomic signatures of triple-negative cancer stem cells in such a manner that hierarchical clustering no longer ranked them according to expected inter-individual differences. Overall, this study suggests that all analyses of living tumor cells should be conducted only using freshly dissociated tumors if we are to generate a robust scoring system for prognostic/predictive markers.
Collapse
|
Journal Article |
7 |
5 |
14
|
Fouqué A, Legembre P. Study of the CD95-Mediated Non-apoptotic Signaling Pathway: PI3K. Methods Mol Biol 2017; 1557:103-110. [PMID: 28078586 DOI: 10.1007/978-1-4939-6780-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] [Imported: 08/29/2023]
Abstract
CD95 is a plasma membrane receptor that belongs to the TNF receptor family (Itoh and Nagata, J Biol Chem 268(15):10932-10937, 1993; Trauth et al., Science 245(4915):301-305, 1989). Accumulating evidence indicate that this so-called death receptor can also trigger non-apoptotic signaling pathways promoting inflammation and oncogenesis (Barnhart et al., Embo J 23(15):3175-3185, 2004; Chen et al., Nature 465(7297):492-496, 2010; Legembre et al., Cell Cycle 3(10):1235-1239, 2004; Legembre et al., EMBO Rep 5(11):1084-1089, 2004; Malleter et al., Cancer Res 73(22):6711-6721, 2013; Tauzin et al., PLoS Biol 9(6):e1001090, 2011). We and others demonstrated that CD95 implements the PI3K signaling pathway through the formation of a molecular complex designated Motility Inducing Signaling Complex (MISC) contributing to cell survival, growth, proliferation, differentiation and motility (Malleter et al., Cancer Res 73(22):6711-6721, 2013; Tauzin et al., PLoS Biol 9(6):e1001090, 2011; Kleber et al., Cancer Cell 13(3):235-248, 2008). This chapter describes how to immunoprecipitate CD95 to characterize MISC involved in PI3K activation.
Collapse
|
|
8 |
3 |
15
|
Tripathi N, Vetrivel I, Téletchéa S, Jean M, Legembre P, Laurent AD. Investigation of Phospholipase Cγ1 Interaction with SLP76 Using Molecular Modeling Methods for Identifying Novel Inhibitors. Int J Mol Sci 2019; 20:ijms20194721. [PMID: 31548507 PMCID: PMC6801593 DOI: 10.3390/ijms20194721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 01/03/2023] [Imported: 08/29/2023] Open
Abstract
The enzyme phospholipase C gamma 1 (PLCγ1) has been identified as a potential drug target of interest for various pathological conditions such as immune disorders, systemic lupus erythematosus, and cancers. Targeting its SH3 domain has been recognized as an efficient pharmacological approach for drug discovery against PLCγ1. Therefore, for the first time, a combination of various biophysical methods has been employed to shed light on the atomistic interactions between PLCγ1 and its known binding partners. Indeed, molecular modeling of PLCγ1 with SLP76 peptide and with previously reported inhibitors (ritonavir, anethole, daunorubicin, diflunisal, and rosiglitazone) facilitated the identification of the common critical residues (Gln805, Arg806, Asp808, Glu809, Asp825, Gly827, and Trp828) as well as the quantification of their interaction through binding energies calculations. These features are in agreement with previous experimental data. Such an in depth biophysical analysis of each complex provides an opportunity to identify new inhibitors through pharmacophore mapping, molecular docking and MD simulations. From such a systematic procedure, a total of seven compounds emerged as promising inhibitors, all characterized by a strong binding with PLCγ1 and a comparable or higher binding affinity to ritonavir (∆Gbind < -25 kcal/mol), one of the most potent inhibitor reported till now.
Collapse
|
Journal Article |
6 |
3 |
16
|
Galli G, Vacher P, Ryffel B, Blanco P, Legembre P. Fas/CD95 Signaling Pathway in Damage-Associated Molecular Pattern (DAMP)-Sensing Receptors. Cells 2022; 11:cells11091438. [PMID: 35563744 PMCID: PMC9105874 DOI: 10.3390/cells11091438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] [Imported: 08/29/2023] Open
Abstract
Study of the initial steps of the CD95-mediated signaling pathways is a field of intense research and a long list of actors has been described in the literature. Nonetheless, the dynamism of protein-protein interactions (PPIs) occurring in the presence or absence of its natural ligand, CD95L, and the cellular distribution where these PPIs take place render it difficult to predict what will be the cellular outcome associated with the receptor engagement. Accordingly, CD95 stimulation can trigger apoptosis, necroptosis, pyroptosis, or pro-inflammatory signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphatidylinositol-3-kinase (PI3K). Recent data suggest that CD95 can also activate pattern recognition receptors (PRRs) known to sense damage-associated molecular patterns (DAMPs) such as DNA debris and dead cells. This activation might contribute to the pro-inflammatory role of CD95 and favor cancer development or severity of chronic inflammatory and auto-immune disorders. Herein, we discuss some of the molecular links that might connect the CD95 signaling to DAMP sensors.
Collapse
|
|
3 |
2 |
17
|
Abstract
CD95 and its ligand CD95L play a major role in immune surveillance and homeostasis. CD95L is expressed by activated T lymphocytes and NK cells to induce apoptosis in cancer and virus-infected cells. The goal of this chapter is to describe a method used to immunoprecipitate CD95 and analyze its associated protein complex in cells stimulated with a cytotoxic CD95L (i.e., Ig-CD95L).
Collapse
|
|
8 |
1 |
18
|
Szegezdi E, Legembre P. Editorial: Death Receptors, Non-apoptotic Signaling Pathways and Inflammation. Front Immunol 2020; 11:2162. [PMID: 33013910 PMCID: PMC7506074 DOI: 10.3389/fimmu.2020.02162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 01/31/2023] [Imported: 08/29/2023] Open
|
Editorial |
5 |
1 |
19
|
MMP7 cleavage of amino-terminal CD95 death receptor switches signaling toward non-apoptotic pathways. Cell Death Dis 2022; 13:895. [PMID: 36274061 PMCID: PMC9588774 DOI: 10.1038/s41419-022-05352-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] [Imported: 08/29/2023]
Abstract
CD95 is a death receptor that can promote oncogenesis through molecular mechanisms that are not fully elucidated. Although the mature CD95 membrane receptor is considered to start with the arginine at position 17 after elimination of the signal peptide, this receptor can also be cleaved by MMP7 upstream of its leucine at position 37. This post-translational modification occurs in cancer cells but also in normal cells such as peripheral blood leukocytes. The non-cleaved CD95 amino-terminal region consists in a disordered domain and its in silico reconstitution suggests that it might contribute to receptor aggregation and thereby, regulate the downstream death signaling pathways. In agreement with this molecular modeling analysis, the comparison of CD95-deficient cells reconstituted with full-length or N-terminally truncated CD95 reveals that the loss of the amino-terminal region of CD95 impairs the initial steps of the apoptotic signal while favoring the induction of pro-survival signals, including the PI3K and MAPK pathways.
Collapse
|
research-article |
3 |
1 |
20
|
Boyden Chamber Assay to Study of Cell Migration Induced by Metalloprotease Cleaved-CD95L. Methods Mol Biol 2018. [PMID: 28078588 DOI: 10.1007/978-1-4939-6780-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] [Imported: 08/29/2023]
Abstract
CD95 receptor, also called Fas or Apo-1, is a member of the tumor necrosis factor receptors (TNF-R) superfamily (Itoh and Nagata, J Biol Chem 268:10932-10937, 1993). Its cognate ligand, CD95L, is a transmembrane cytokine, which can be cleaved by metalloproteases (Matsuno et al., J Rheumatol 28:22-28, 2001; Vargo-Gogola et al., Arch Biochem Biophys 408:155-161, 2002; Kiaei et al., Exp Neurol 205:74-81, 2007; Schulte et al., Cell Death Differ 14:1040-1049, 2007) releasing a soluble ligand into the bloodstream. Recent work has shown that this metalloprotease-cleaved CD95L (cl-CD95L) is involved in carcinogenesis (Malleter et al., Cancer Res 73:6711-6721, 2013). Cl-CD95L also fuels the inflammatory process in patients affected by systemic lupus erythematosus by promoting the accumulation of activated T lymphocytes in enflamed organs (Tauzin et al., PLoS Biol 9:e1001090, 2011). This chapter aims at describing the methodology used to measure the chemoattractive effect of cl-CD95L on human cancer cells and lymphocytes.
Collapse
|
Journal Article |
7 |
1 |
21
|
Flynn RJ, Legembre P. Myeloid-derived suppressor cell, arginase-1, IL-17 and cl-CD95L: an explosive cocktail in lupus? ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:554. [PMID: 28149915 DOI: 10.21037/atm.2016.12.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] [Imported: 08/29/2023]
|
Comment |
9 |
1 |