1
|
Mao Q, Min J, Zeng R, Liu H, Li H, Zhang C, Zheng A, Lin J, Liu X, Wu M. Self-assembled traditional Chinese nanomedicine modulating tumor immunosuppressive microenvironment for colorectal cancer immunotherapy. Theranostics 2022; 12:6088-6105. [PMID: 36168633 PMCID: PMC9475452 DOI: 10.7150/thno.72509] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] [Imported: 09/13/2023] Open
Abstract
Colorectal cancer (CRC), mostly categorized as a low immunogenic microsatellite-stable phenotype bearing complex immunosuppressive tumor microenvironment (TME), is highly resistant to immunotherapy. Seeking safe and efficient alternatives aimed at modulating tumor immunosuppressive TME to improve outcome of CRC is highly anticipated yet remains challenging. Methods: Enlightened from the drug complementary art in traditional Chinese medicine, we designed a self-assembled nanomedicine (termed LNT-UA) by the natural active ingredients of ursolic acid (UA) and lentinan (LNT) through a simple nano-precipitation method, without any extra carriers, for CRC immunotherapy. Results: UA induces immunogenic cell death (ICD), while LNT further promotes dendritic cell (DC) maturation and repolarizes tumor-associated macrophage (TAM) from a protumorigenic M2 to an antitumor M1 phenotype. Co-delivery of UA and LNT by LNT-UA effectively reshapes the immunosuppressive TME and mobilizes innate and adaptive immunity to inhibit tumor progression in the CT26 CRC tumor model. Following the principle of integrative theoretical system of traditional Chinese medicine (TCM) on overall regulation, the further combination of LNT-UA and anti-CD47 antibody (αCD47) would reinforce the antitumor immunity by promoting phagocytosis of dying tumor cells and tumor-associated antigens (TAAs), leading to effective suppression of both primary and distant tumor growth with 2.2-fold longer of median survival time in the bilateral tumor model. Most notably, this combination effect is also observed in the spontaneous CRC model induced by chemical carcinogens, with much less and smaller size of tumor nodules after sequential administration of LNT-UA and αCD47 through gavage and intraperitoneal injection, respectively. Conclusions: This study provides a promising self-assembled traditional Chinese nanomedicine to improve immunotherapy for CRC, which might be applicable for future clinical translation.
Collapse
|
research-article |
3 |
53 |
2
|
Jin Y, Chen W, Yang H, Yan Z, Lai Z, Feng J, Peng J, Lin J. Scutellaria barbata D. Don inhibits migration and invasion of colorectal cancer cells via suppression of PI3K/AKT and TGF-β/Smad signaling pathways. Exp Ther Med 2017; 14:5527-5534. [PMID: 29285087 PMCID: PMC5740531 DOI: 10.3892/etm.2017.5242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/27/2017] [Indexed: 12/29/2022] [Imported: 08/29/2023] Open
Abstract
Metastasis is one of the most aberrant behaviors of cancer cells. Patients with cancers, including colorectal cancer (CRC), have a higher risk of tumor recurrence and cancer-related mortality once metastasis is diagnosed. Existing treatment strategies fail to cure cancer mostly due to the onset of metastasis. Therefore, metastasis remains a challenge in cancer treatment. Some complementary and alternative medical therapies using traditional Chinese medicine have been demonstrated to be clinically effective in cancer treatment. Scutellaria barbata D. Don (SB) is a promising medicinal herb. It was previously reported that the ethanol extract of SB (EESB) is able to promote apoptosis, and inhibit cell proliferation and angiogenesis in human colon cancer cells. However, the anticancer effect of SB and the underlying mechanism require further investigation, particularly its role against metastasis. To further elucidate the antimetastatic effect of SB, MTT and Transwell assays were used in the present study to evaluate the effect of EESB on the proliferation, migration and invasion of the CRC cell line HCT-8. In addition, western blot analysis was performed to detect the expression of matrix metalloproteinases (MMPs), cadherins and other metastasis-associated proteins. EESB significantly reduced HCT-8 cell viability and attenuated the migration and invasion ability of HCT-8 cells in a dose-dependent manner. In addition, EESB decreased the expression of MMP-1, MMP-2, MMP-3/10, MMP-9 and MMP-13, and proteins in the phosphoinositide 3-kinase (PI3K)/AKT and transforming growth factor (TGF)-β/Smad pathways, but not the epithelial-mesenchymal transition (EMT)-related factors E-cadherin and N-cadherin. In conclusion, the results suggested that SB inhibits CRC cell metastasis via the suppression of PI3K/AKT and TGF-β/Smad signaling pathways, which may represent a mechanism by which SB exerts an anticancer effect.
Collapse
|
research-article |
8 |
23 |
3
|
Zhang L, Cai QY, Liu J, Peng J, Chen YQ, Sferra TJ, Lin JM. Ursolic acid suppresses the invasive potential of colorectal cancer cells by regulating the TGF-β1/ZEB1/miR-200c signaling pathway. Oncol Lett 2019; 18:3274-3282. [PMID: 31452805 PMCID: PMC6676672 DOI: 10.3892/ol.2019.10604] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/19/2019] [Indexed: 01/02/2023] [Imported: 09/13/2023] Open
Abstract
Ursolic acid (UA) is a biologically active compound, commonly used in traditional Chinese medicine (TCM). It has been reported to exhibit strong anticancer properties against a variety of cancers. Our previous studies showed that UA promoted apoptosis in colorectal cancer (CRC) cells and inhibited cellular proliferation and angiogenesis. However, the effect and underlying molecular mechanism of UA in CRC progression remain unclear. In the present study, the role of UA in suppressing the migration and invasion of human colon cancer HCT116 and HCT-8 cells was investigated, using Transwell assays. In addition, to evaluate whether the anticancer properties of UA were mediated by the regulation of a double-negative feedback loop consisting of the transforming growth factor-β1 (TGF-β1)/zinc finger E-box-binding homeobox (ZEB1) pathway and microRNA (miR)-200a/b/c, reverse transcription-quantitative PCR and western blot analysis were performed. The results indicated that UA treatment significantly suppressed cellular growth, migration and invasion in HCT116 and HCT-8 cells in a dose-dependent manner. Furthermore, following UA treatment, several crucial mediators of the TGF-β1 signaling pathway, including TGF-β1, phosphorylated (p)-Smad2/3, p-focal adhesion kinase and ZEB1, were significantly downregulated in the HCT116 and HCT-8 cell lines compared with the control group. Furthermore, the ratio of N-cadherin/E-cadherin, two proteins directly downstream of the TGF-β1 signaling pathway, was found to be downregulated in UA treated CRC cells. Finally, UA significantly upregulated miR200a/b/c, with miR-200c exhibiting the highest increase in expression levels following UA treatment. Collectively, the present study suggested that inhibition of CRC cell invasion by UA occurred via regulation of the TGF-β1/ZEB1/miR-200c signaling network, which may be one of the mechanisms by which UA appears to be an effective therapeutic agent against colon cancer.
Collapse
|
research-article |
6 |
19 |
4
|
Yang H, Liu JX, Shang HX, Lin S, Zhao JY, Lin JM. Qingjie Fuzheng granules inhibit colorectal cancer cell growth by the PI3K/AKT and ERK pathways. World J Gastrointest Oncol 2019; 11:377-392. [PMID: 31139308 PMCID: PMC6522764 DOI: 10.4251/wjgo.v11.i5.377] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] [Imported: 09/13/2023] Open
Abstract
BACKGROUND Qingjie Fuzheng granules (QFGs) are part of a traditional Chinese medicine formula, which has been widely used and found to be clinically effective with few side effects in various cancer treatments, including colorectal cancer (CRC). However, the precise mechanisms and molecular signaling pathways involved in the activity of QFGs' anticancer effect have not been reported in the literature. In this study, we hypothesized that QFGs can inhibit the growth of colorectal cancer cells, and that its mechanism is closely related to one or more intracellular signal transduction pathways. AIM To better evaluate the mechanism underlying the anti-cancer effect of QFGs on the CRC cell lines HCT-116 and HCT-8. METHOD First, we measured cell viability and cytotoxicity by performing MTT and lactate dehydrogenase (LDH) assays. We evaluated the role of QFGs in cell proliferation and apoptosis by assessing colony formation and analyzing Hoechst 33258 staining. Second, cell cycle and apoptosis rates were measured by fluorescence activated cell sorting, and the expression levels of survivin, cyclin D1, CDK4, p21, Bax, Bcl-2, Fas, FasL, and cleaved-caspase-3/-8/-9 were measured by performing western blots and caspase activity assays. Furthermore, inhibitors of caspase-3/-8/-9 were used to elucidate the specific apoptosis pathway induced by QFGs in cancer cells. Finally, activation of the PI3K/AKT and ERK signaling pathways was examined using the western blot assay to investigate the possible mechanism. RESULTS MTT and LDH assays revealed that after 0.5-2.0 mg/mL of QFGs treatment, cell viability was reduced by (6.90% ± 1.03%)-(59.70% ± 1.51%) (HCT-116; P < 0.05) and (5.56% ± 4.52%)-(49.44% ± 2.47%) (HCT-8; P < 0.05), and cytotoxicity was increased from 0.52 ± 0.023 to 0.77 ± 0.002 (HCT-116; P < 0.01) and from 0.56 ± 0.054 to 0.81 ± 0.044 (HCT-8; P < 0.01) compared with the non-QFGs treatment groups. Additionally, colony formation and Hoechst 33258 staining assays showed that QFGs inhibited proliferation and induced apoptosis in CRC cells. QFGs also increased the expression levels of Bax, Fas and FasL, decreased the level of Bcl-2, and stimulated the activation of caspase-3/-8/-9, which were revealed by western blot and caspase activity assays. In contrast, when adding the three caspase inhibitors, the suppression effect of QFGs on cell viability and apoptosis were markedly inhibited. Moreover, QFGs suppressed the phosphorylation levels of PI3K, AKT and ERK. CONCLUSION These results demonstrated that QFGs can inhibit CRC cell proliferation and induce apoptosis by suppressing the PI3K/AKT and ERK signaling pathways.
Collapse
|
Basic Study |
6 |
19 |
5
|
Huang B, Gui M, Ni Z, He Y, Zhao J, Peng J, Lin J. Chemotherapeutic Drugs Induce Different Gut Microbiota Disorder Pattern and NOD/RIP2/NF-κB Signaling Pathway Activation That Lead to Different Degrees of Intestinal Injury. Microbiol Spectr 2022; 10:e0167722. [PMID: 36222691 PMCID: PMC9769542 DOI: 10.1128/spectrum.01677-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023] [Imported: 09/13/2023] Open
Abstract
5-Fluorouracil (5-FU), irinotecan (CPT-11), oxaliplatin (L-OHP), and calcium folinate (CF) are widely used chemotherapeutic drugs to treat colorectal cancer. However, chemotherapeutic use is often accompanied by intestinal inflammation and gut microbiota disorder. Changes in gut microbiota may destroy the intestinal barrier, which contributes to the severity of intestinal injury. However, intestinal injury and gut microbiota disorder have yet to be compared among 5-FU, CPT-11, L-OHP, and CF in detail, thereby limiting the development of targeted detoxification therapy after chemotherapy. In this study, a model of chemotherapy-induced intestinal injury in tumor-bearing mice was established by intraperitoneally injecting chemotherapeutic drugs at a clinically equivalent dose. 16S rRNA gene sequencing was used to detect gut microbiota. We found that 5-FU, CPT-11, and l-OHP caused intestinal injury, inflammatory cytokine (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], interleukin-1β [IL-1β], and IL-6) secretion, and gut microbiota disorder. We established a complex but clear network between the pattern of changes in gut microbiota and degree of intestinal damage induced by different chemotherapeutic drugs. L-OHP caused the most severe damage in the intestine and disorder of the gut microbiota and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Analysis by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt v.1.0) showed that the microbiota disorder pattern induced by 5-FU, CPT-11, and L-OHP was related to the NOD-like signaling pathway. Therefore, we detected the protein expression of the NOD/RIP2/NF-κB signaling pathway and found that L-OHP most activated this pathway. Redundancy analysis/canonical correlation analysis (RDA/CCA) revealed that Bifidobacterium, Akkermansia, Allobaculum, Catenibacterium, Mucispirillum, Turicibacter, Helicobacter, Proteus, Escherichia Shigella, Alloprevotealla, Vagococcus, Streptococcus, and "Candidatus Saccharimonas" were highly correlated with the NOD/RIP2/NF-κB signaling pathway and influenced by chemotherapeutic drugs. IMPORTANCE Chemotherapy-induced intestinal injury limits the clinical use of drugs. Intestinal injury involves multiple signaling pathways and gut microbiota disruption. Our results suggested that the degree of intestinal injury caused by different drugs of the first-line colorectal chemotherapy regimen is related to the pattern of changes in microbiota. The activation of the NOD/RIP2/NF-κB signaling pathway was also related to the pattern of changes in microbiota. l-OHP caused the most severe damage to the intestine and showed a considerable overlap of the pattern of changes in microbiota with 5-FU and CPT-11. Thirteen bacterial genera were related to different levels of intestinal injury and correlated with the NOD/RIP2/NF-κB pathway. Here, we established a network of different chemotherapeutic drugs, gut microbiota, and the NOD/RIP2/NF-κB signaling pathway. This study likely provided a new basis for further elucidating the mechanism and clinical treatment of intestinal injury caused by chemotherapy.
Collapse
|
research-article |
3 |
17 |
6
|
Shang H, Cao Z, Zhao J, Guan J, Liu J, Peng J, Chen Y, Joseph Sferra T, Sankararaman S, Lin J. Babao Dan induces gastric cancer cell apoptosis via regulating MAPK and NF-κB signaling pathways. J Int Med Res 2019; 47:5106-5119. [PMID: 31456462 PMCID: PMC6833375 DOI: 10.1177/0300060519867502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/12/2019] [Indexed: 01/24/2023] [Imported: 09/13/2023] Open
Abstract
OBJECTIVE The objective was to further investigate apoptosis induction by Babao Dan (BBD), which supports its anti-tumor mechanisms, using two human gastric cancer cell lines (AGS and MGC80-3). METHODS After treatment with various BBD concentrations, cell viability and cytotoxic effects were investigated using methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays, respectively. The following indicators of cell apoptosis were evaluated: Annexin V-APC staining, caspase-3/-8/-9 activation, and mitochondrial membrane potential loss. Apoptosis-related protein levels (including Bcl-2-associated X protein [Bax], B-cell CLL/lymphoma 2 [Bcl-2], factor associated suicide [Fas], and Fas ligand [FasL]) were determined by western blot. The following multi-pathway factors were also assessed: p-ERK1/2, p-JNK, p-p38, and p-NF-κB. RESULTS The MTT and LDH assays both demonstrated increased BBD cytotoxicity. BBD induced cell apoptosis by stimulating caspase-3/-8/-9 activity and destroying the mitochondrial membrane potential. BBD also regulated key factor expression levels including Bcl-2, Bax, Fas, and FasL and down-regulated protein phosphorylation via the MAPK and NF-κB pathway. CONCLUSIONS The possible anti-tumor mechanism is that BBD induces apoptosis via the MAPK and NF-κB signaling pathways.
Collapse
|
research-article |
6 |
15 |
7
|
Liu J, Chen Y, Cao Z, Guan B, Peng J, Chen Y, Zhan Z, Sferra TJ, Sankararaman S, Lin J. Babao Dan inhibits the migration and invasion of gastric cancer cells by suppressing epithelial-mesenchymal transition through the TGF-β/Smad pathway. J Int Med Res 2020; 48:300060520925598. [PMID: 32529872 PMCID: PMC7294507 DOI: 10.1177/0300060520925598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/17/2020] [Indexed: 01/01/2023] [Imported: 09/13/2023] Open
Abstract
OBJECTIVE To investigate the anti-metastatic effects of Babao Dan (BBD) on gastric cancer (GC) cells (AGS and MGC80-3) and explore the underlying molecular mechanisms by which it inhibits epithelial-mesenchymal transition (EMT). METHODS AGS and MGC80-3 cells were treated with BBD. In addition, cells were treated with the EMT inducer transforming growth factor-β1 (TGF-β1). Cell viability was determined using the MTT assay, and the live cell ratio was calculated via cell counting. Cell invasion and migration were evaluated using the Transwell assay. Western blotting was performed to measure the protein expression of EMT biomarkers and related genes. RESULTS BBD inhibited the viability, migration, and invasion of AGS and MGC80-3 cells, but it did not reduce the live cell ratio. Furthermore, BBD inhibited the expression of N-cadherin, vimentin, zinc finger E-box binding homeobox (ZEB)1, ZEB2, Twist1, matrix metalloproteinase (MMP)2, MMP9, TGF-β1, and p-Smad2/3, whereas E-cadherin expression was increased in AGS and MGC80-3 cells to different degrees. Using a GC cell model of EMT induced by TGF-β1, we proved that BBD inhibited p-Smad2/3 and N-cadherin expression, cell migration, and cell invasion. CONCLUSION BBD suppressed cell migration and invasion by inhibiting TGF-β-induced EMT and inactivating TGF-β/Smad signaling in GC cells.
Collapse
|
research-article |
5 |
13 |
8
|
Zhu X, Chen Y, Lin M, Huang B, Lin J. Qingjie Fuzheng Granule Inhibits EMT and Induces Autophagy in Colorectal Cancer via mTOR Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9950499. [PMID: 34887935 PMCID: PMC8651347 DOI: 10.1155/2021/9950499] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/04/2021] [Accepted: 11/03/2021] [Indexed: 01/10/2023] [Imported: 09/13/2023]
Abstract
Qingjie Fuzheng granule (QFG) is a traditional Chinese medicinal formula used extensively as an alternative medicine for cancer treatment, including colorectal cancer (CRC). But its pathological mechanism in CRC is unclear. To study antitumor treatment effects and mechanisms of QFG, we established a CRC HCT-116 xenograft mouse model and assessed QFG on EMT and autophagy progression in vivo. The mice were randomly divided into 2 groups (n = 10 each group) and treated with intragastric administration of 1 g/kg of QFG or saline 6 days a week for 28 days (4 weeks). Body weight was measured every other day with electronic balance. At the end of the treatment, the tumor weight was measured. Immunohistochemical (IHC) and western blot (WB) assay were used to detect the expression level of E-cadherin, N-cadherin, vimentin, and TWIST1 to evaluate the effect of QFG on tumor cell EMT progression. IHC and WB assay were also used to detect the expression level of beclin-1, LC3-II, and p62 to evaluate the effect of QFG on tumor cell autophagy progression. Furthermore, the expression level of relative proteins in mTOR pathway was detected by WB assay to investigate the mechanism of QFG effect on CRC. We discovered that QFG inhibited the rise of tumor weight while it had no effect on mice body weight, which proved that QFG could inhibit CRC growth progression without significant side effects in vivo. In addition, QFG treatment inhibited EMT and induced autophagy progression in CRC tumor cells, including that QFG upregulated the expression of E-cadherin, beclin-1, and LC3-II, but downregulated the expression of N-cadherin, vimentin, TWIST1, and p62. And, QFG decreased the ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR, but increased the ratio of p-AMPK/AMPK. All findings from this research proved that QFG can induce autophagy and inhibit EMT progression in CRC via regulating the mTOR signaling pathway.
Collapse
|
research-article |
4 |
9 |
9
|
Wei L, Chen W, Zhao J, Fang Y, Lin J. Downregulation of CLCA4 expression is associated with the development and progression of colorectal cancer. Oncol Lett 2020; 20:631-638. [PMID: 32565987 PMCID: PMC7285744 DOI: 10.3892/ol.2020.11640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 04/01/2020] [Indexed: 01/22/2023] [Imported: 09/13/2023] Open
Abstract
The molecular mechanisms involved in the development and progression of colorectal cancer (CRC) are not completely understood. The present study aimed to identify potential novel genes involved in the development and progression of CRC. Database analysis revealed that the mRNA level of the chloride channel accessory 4 (CLCA4) was frequently lower in primary tumor tissues compared with that in corresponding non-cancerous colon tissues, and was even lower in liver metastases than in primary tumors. Further analyses through The Human Protein Atlas (THPA) website and immunohistochemistry (IHC)-based tissue microarray (TMA) confirmed that CLCA4 mRNA and protein expression were downregulated in CRC tissues. Furthermore, IHC-based TMA analysis revealed a gradual decrease in CLCA4 protein expression among colorectal normal, adenoma and carcinoma tissues. Survival analysis revealed that the decrease in CLCA4 mRNA expression was associated with the overall survival rate of patients with different types of tumor, including CRC, breast cancer, head and neck cancer and stomach cancer. Overall, downregulated CLCA4 expression may influence the development and progression of CRC.
Collapse
|
research-article |
5 |
9 |
10
|
Zhong P, Yang H, Lin S, Peng J, Lin J. A Traditional Chinese Medicine Herb Mixture Qingjie Fuzheng Granules Inhibits Hepatocellular Carcinoma Cells Growth by Inducing Apoptosis. J Evid Based Integr Med 2018; 23:2515690X18789632. [PMID: 30045633 PMCID: PMC6073831 DOI: 10.1177/2515690x18789632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/27/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
Abstract
In this study, hepatocellular carcinoma (HCC) mouse xenograft model, MTT assay, colony formation, nuclear staining, and Annexin-V/PI staining assays were used to evaluate the effect of Qingjie Fuzheng granules (QFG) on cell proliferation and apoptosis of HCC cell in vivo and in vitro. Furthermore, Western blotting was performed to detect the expression of Fas, FasL, Bcl-2, Bax, and the activation of caspase-3/-8/-9. The results showed that QFG reduced tumor weight ( P < .05) but had no effect on body weight gain in HCC mice in vivo. QFG significantly reduced HCC cell viability and attenuated cell proliferation in a dose-dependent manner ( P < .05). QFG increased the expression of Fas, FasL, and Bax ( P < .05). QFG downregulated the expression of Bcl-2 and promoted the activation of caspase-8, -9, and -3 ( P < .05). These results suggested that QFG possessed anticancer effects, and the mechanisms of action may involve the death receptor pathway and mitochondrion-dependent pathway-mediated apoptosis.
Collapse
|
research-article |
7 |
8 |
11
|
Yan Z, Wang Q, Liu X, Peng J, Li Q, Wu M, Lin J. Cationic nanomicelles derived from Pluronic F127 as delivery vehicles of Chinese herbal medicine active components of ursolic acid for colorectal cancer treatment. RSC Adv 2018; 8:15906-15914. [PMID: 35542233 PMCID: PMC9080071 DOI: 10.1039/c8ra01071d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/17/2018] [Indexed: 01/10/2023] [Imported: 09/13/2023] Open
Abstract
Ursolic acid (UA) has shown great potential in cancer therapy but their efficacy is seriously compromised by poor water-solubility and limited cellular uptake. In this paper, cationic nanomicelles self-assembled from Pluronic F127 with the cationic polymer of C18-polyethylenimine (C18-PEI) as a functional component are fabricated as delivery vehicles of Chinese herbal medicine active components of ursolic acid (UA) for colorectal cancer treatment. The inhibition effects of this drug loaded cationic nanomicelles (named as FUP) on cell viability and cell colony formation were more significant than the free UA, due to their cationic surface which can increase UA uptake by colorectal cancer cells. Cell cycle analysis showed that this inhibition effect was mediated by a cell cycle arrest at the G1 checkpoint, and the cell death induced by these nanomicelles occurred via apoptosis, which was detected by annexin V antibody and propidium iodide staining. Further western blot analysis demonstrated the apoptosis mechanism was associated with the regulation of Fas/FasL and activation of caspase-8 and caspase-3. Therefore, our cationic nanomicelles can potentially be used to enhance the therapeutic effect of UA for colorectal cancer treatment.
Collapse
|
research-article |
7 |
8 |
12
|
Zhu XQ, Yang H, Lin MH, Shang HX, Peng J, Chen WJ, Chen XZ, Lin JM. Qingjie Fuzheng Granules regulates cancer cell proliferation, apoptosis and tumor angiogenesis in colorectal cancer xenograft mice via Sonic Hedgehog pathway. J Gastrointest Oncol 2020; 11:1123-1134. [PMID: 33456987 PMCID: PMC7807284 DOI: 10.21037/jgo-20-213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] [Imported: 09/13/2023] Open
Abstract
BACKGROUND Sonic Hedgehog (SHh) signaling pathway plays a critical role in cell proliferation, apoptosis, and tumor angiogenesis in various types of malignancies including colorectal cancer (CRC). Qingjie Fuzheng Granules (QFG) is a traditional Chinese medicinal formula, which has been clinically used in various cancer treatments, including CRC. In this study, we explored the potential molecular mechanisms of QFG treatment effects on CRC via the SHh pathway. METHODS A CRC HCT-116 xenograft mouse model was utilized for all experiments. Mice were treated with intra-gastric administration of 1 g/kg of QFG or saline 6 days a week for 28 days (4 weeks). Body weight, length and shortest diameter of the tumor were measured every 3 days. At the end of the treatment, the tumor weight was measured. TUNEL staining assays were used to detect tumor apoptosis. Western blot and immunohistochemistry (IHC) assays were used to detect the expression of relative proteins. RESULTS In our results, QFG inhibited the increase of tumor volume and weight, and exhibited no impact on mouse body weight. Furthermore, QFG significantly decreased the expression of SHh, Smo and Gli proteins, indicating the action of SHh signaling. Consequently, the expression of pro-proliferative survivin, Ki-67, Cyclin-D1 and CDK4 were decreased and expression of anti-proliferative p21 was increased. The pro-apoptotic Bax/Bcl-2 ratio, cle-caspase-3 and TUNEL-positive cell percentage in tumor tissues were increased. Meanwhile, the pro-angiogenic VEGF-A and VEGFR-2 expression was down-regulated. CONCLUSIONS QFG inhibited CRC cell proliferation and promoted CRC cell apoptosis and tumor angiogenesis in vivo through the suppression of SHh pathway, suggesting that QFG could be a potential therapeutic drug for CRC.
Collapse
|
research-article |
5 |
7 |
13
|
Feng J, Jin Y, Peng J, Wei L, Cai Q, Yan Z, Lai Z, Lin J. Hedyotis diffusa willd extract suppresses colorectal cancer growth through multiple cellular pathways. Oncol Lett 2017; 14:8197-8205. [PMID: 29344262 PMCID: PMC5755052 DOI: 10.3892/ol.2017.7244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/21/2017] [Indexed: 12/15/2022] [Imported: 08/29/2023] Open
Abstract
The development of colorectal cancer (CRC) is strongly associated with the imbalance of various intracellular signal transduction cascades, including protein kinase B (AKT), mitogen-activated protein kinase 1 (MAPK), signal transducer and activator of transcription 3 (STAT3), as well as crosstalk between these signaling networks. At present, anti-tumor agents are often single-targeted and therefore are not always therapeutically effective. Moreover, long-term use of these anti-tumor agents often generates drug resistance and potential side effects. These problems highlight the urgent need for the development of novel and more effective anti-cancer drugs. Hedyotis diffusa Willd (HDW) has been used as a major component in traditional Chinese medicine for the clinical treatment of colorectal cancer, with a limited number of adverse effects. However, the molecular mechanisms, which underlie its anti-cancer activity, still require further elucidation. In the present study, using xenograft models and various different human CRC cell lines, the efficacy of the ethanol extract of HDW (EEHDW) against tumor growth was evaluated, and its underlying molecular mechanisms of action were investigated. It was demonstrated that EEHDW was able to inhibit cancer growth in vivo and in vitro. Furthermore, EEHDW was able to suppress the activation of several CRC-associated signaling pathways and was able to regulate the expression of various inflammatory and angiogenic factors. This resulted in the induction of apoptosis and inhibition of cellular proliferation, as well as tumor angiogenesis. The present study demonstrated that EEHDW is able to exhibit anti-cancer activity due to its ability to affect multiple intracellular targets, which suggests that it may be a novel multi-potent therapeutic agent for the treatment of colorectal cancer.
Collapse
|
research-article |
8 |
7 |
14
|
Yan Z, Feng J, Peng J, Lai Z, Zhang L, Jin Y, Yang H, Chen W, Lin J. Chloroform extract of Hedyotis diffusa Willd inhibits viability of human colorectal cancer cells via suppression of AKT and ERK signaling pathways. Oncol Lett 2017; 14:7923-7930. [PMID: 29344237 PMCID: PMC5755181 DOI: 10.3892/ol.2017.7245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 08/01/2017] [Indexed: 12/13/2022] [Imported: 08/29/2023] Open
Abstract
Hedyotis diffusa Willd (HDW) is a widely used traditional Chinese medicine in clinical therapy to treat various types of cancer, including colorectal cancer (CRC), but its effective polar fractions and functional mechanisms remain unclear. The aim of the present study was to determine the most effective extract of HDW and to investigate its effects on the regulation of CRC cell proliferation and apoptosis, as well as to investigate the underlying molecular mechanisms. The results demonstrated that the chloroform extract of HDW (CEHDW) exhibited the most anticancer ability. Furthermore, results of the MTT assay, colony formation, carboxyfluorescein diacetate succinimidyl ester assay and annexin V/propidium iodide staining suggested that CEHDW significantly inhibits proliferation and promotes apoptosis in the SW620 CRC cell line. Additionally, reverse transcription-polymerase chain reaction and western blot analysis demonstrated that CEHDW treatment downregulated the expression of Survivin, proliferating cell nuclear antigen, Cyclin D1, cyclin-dependent kinase 4 and B-cell lymphoma 2 (Bcl-2), and upregulated the expression of Bcl-2-associated X protein at the mRNA and protein levels. CEHDW also decreased the phosphorylation of protein kinase B (AKT) and extracellular-signal-regulated kinase (ERK), which indicated that the suppression of the AKT and ERK signaling pathways may be one of the underlying molecular mechanisms by which CEHDW exhibited its anticancer effect. Thus, CEHDW may be a promising agent for anticancer therapy.
Collapse
|
research-article |
8 |
6 |
15
|
Huang B, Lin M, Lu L, Chen W, Tan J, Zhao J, Cao Z, Zhu X, Lin J. Identification of mini-chromosome maintenance 8 as a potential prognostic marker and its effects on proliferation and apoptosis in gastric cancer. J Cell Mol Med 2020; 24:14415-14425. [PMID: 33155430 PMCID: PMC7753872 DOI: 10.1111/jcmm.16062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] [Imported: 09/13/2023] Open
Abstract
Mini-chromosome maintenance (MCM) proteins play important roles in initiating eukaryotic genome replication. The MCM family of proteins includes several members associated with the development and progression of certain cancers. We performed online data mining to assess the expression of MCMs in gastric cancer (GC) and the correlation between their expression and survival in patients with GC. Notably, MCM8 expression was undoubtedly up-regulated in GC, and higher expression correlated with shorter overall survival (OS) and progression-free survival (PFS) in patients with GC. However, the role of MCM8 in GC has not been previously explored. Our in vitro experiments revealed that MCM8 knockdown inhibited cell growth and metastasis. Moreover, MCM8 knockdown induced apoptosis. Mechanistically, the expression levels of Bax and cleaved caspase-3 were increased, whereas Bcl-2 expression decreased. Additionally, we demonstrated that MCM8 knockdown suppressed tumorigenesis in vivo. Overall, these results suggest that MCM8 plays a significant role in GC progression.
Collapse
|
research-article |
5 |
5 |
16
|
Yang H, Lu Y, Lan W, Huang B, Lin J. Down-regulated Solute Carrier Family 4 Member 4 Predicts Poor Progression in Colorectal Cancer. J Cancer 2020; 11:3675-3684. [PMID: 32284764 PMCID: PMC7150457 DOI: 10.7150/jca.36696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/18/2020] [Indexed: 12/18/2022] [Imported: 09/13/2023] Open
Abstract
Aim: To identify potential key candidate genes, whose expression and clinical significance was further assessed in colorectal cancer (CRC). Methods: Three original microarray datasets (GSE41328, GSE22598, and GSE23878) from NCBI-GEO were used to analyze differentially expressed genes (DEGs) in CRC. Online database analyses through Oncomine and GEIPA were performed to evaluate SLC4A4 expression and explore the prognostic merit of SLC4A4 expression, which was further confirmed by analyses from QPCR based cDNA array and IHC based tissue microarray (TMA). STRING website was used to explore the interaction between SLC4A4 with other DEGs based on the protein-protein interaction (PPI) networks. Results: Analysis of three original microarray datasets from GEO identified 82 shared, differentially expressed genes (28 upregulated and 54 down-regulated) in CRC tissues. Online analyses from Oncomine and GEIPA revealed lower SLC4A4 mRNA expression in CRC tissues compared to adjacent normal tissues, which were further confirmed by QPCR based cDNA array and IHC based TMA analyses on both mRNA and protein levels. Survival analyses through GEIPA and from TMA demonstrated that low SLC4A4 expression is correlated with worse overall survival among patients with CRC. Survival analysis from Kaplan-meier plotter demonstrated that low SLC4A4 expression is significantly associated with poor progression (including relapse-free survival, overall survival, distant metastasis-free survival, post-progression survival) of patients with breast cancer, lung cancer, gastric cancer, and ovarian cancer. PPI analysis found that SLC4A4 is highly correlated with various genes, including SLC9A3, SLC26A6, ENSG00000214921, SLC26A4, SLC9A3R1, and SLC9A1. Conclusion: The mRNA and protein levels of SLC4A4 were decreased in CRC tissues, and low expression of SLC4A4 significantly correlated with shorter survival of CRC patients and poorer progression of patients with breast cancer, lung cancer, gastric cancer and ovarian cancer, suggesting potential role of SLC4A4 on tumor suppression and prognostic prediction in multiple malignancies including CRC.
Collapse
|
research-article |
5 |
5 |
17
|
Zhao J, Lan W, Peng J, Guan B, Liu J, Zhang M, Zhan Z, Lin J. Babao Dan Reverses Multiple-Drug Resistance in Gastric Cancer Cells via Triggering Apoptosis and Autophagy and Inhibiting PI3K/AKT/mTOR Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5631942. [PMID: 34306145 PMCID: PMC8285167 DOI: 10.1155/2021/5631942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] [Imported: 09/13/2023]
Abstract
Multidrug resistance (MDR) is a critical reason for cancer chemotherapy failure. Babaodan (BBD) is a famous traditional Chinese patent medicine reported to have antigastric cancer activity. However, the roles and molecular mechanisms of the reversal of MDR of gastric cancer by BBD have not been well described until now. Therefore, the purpose of this study was to elucidate further the role of BBD in reversing the MDR of gastric cancer cells and its specific regulatory mechanism via in vitro experiments. To verify our results, MTT, Doxorubicin (DOX) staining, Rhodamin123 (Rho123) staining, DAPI staining, Annexin V-FITC, propidium iodide (PI), Cyto-ID, and western blot assays were performed. To determine whether BBD triggers apoptosis and autophagy through the PI3K/AKT/mTOR signaling, we also applied 3-methyladenine (3-MA), chloroquine (CQ), and 740Y-P (an activator of PI3K). The results showed that BBD reversed the MDR and induced apoptosis and autophagy of SGC7901/DDP cells. Pathway analyses suggested BBD inhibits PI3K/AKT/mTOR pathway activity and subsequent apoptosis-autophagy induction. Inhibition of autophagy with 3-MA and chloroquine (CQ) was performed to confirm that BBD promoted autophagy. PI3K agonist, 740Y-P, further verified BBD inhibition of PI3K/AKT/mTOR pathway activation. In conclusion, BBD may reverse the MDR of gastric cancer cells, induce apoptosis, and promote autophagy via inactivation of the PI3K/AKT/mTOR signaling pathway.
Collapse
|
research-article |
4 |
4 |
18
|
Zhang L, Liu J, Lin S, Tan J, Huang B, Lin J. Qingjie Fuzheng Granule Inhibited the Migration and Invasion of Colorectal Cancer Cells by Regulating the lncRNA ANRIL/let-7a/TGF- β1/Smad Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5264651. [PMID: 32714407 PMCID: PMC7341385 DOI: 10.1155/2020/5264651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] [Imported: 09/13/2023]
Abstract
Qingjie Fuzheng granule (QFG) promotes cancer cell apoptosis and ameliorates intestinal mucosal damage caused by 5-fluorouracil. However, the antitumor role of QFG in colorectal cancer (CRC) progression remains unclear. In this study, the growth of HCT-8 and HCT116 cells incubated with various concentrations of QFG for 24 and 48 h was evaluated using MTT assays; their abilities of migration and invasion were investigated through wound healing and Transwell assays. The expression of lncRNA ANRIL, let-7a, and the TGF-β1/Smad signaling pathway components was assessed using real-time PCR and western blotting. The results elicited that QFG significantly suppressed the growth of HCT-8 and HCT116 cells; the half-maximal inhibitory concentrations (IC50) of QFG for HCT-8 and HCT116 cells for 48 h were 1.849 and 1.608 mg/mL, respectively. The abilities of wound healing, migration, and invasion of HCT-8 and HCT116 cells were dose-dependently decreased by QFG treatment for 24 h, respectively. QFG decreased the expression of lncRNA ANRIL, TGF-β1, phosphorylated (p)-Smad2/3, Smad4, and N-cadherin and upregulated the expression of let-7a in HCT-8 and HCT116 cells. Collectively, our data demonstrated that QFG inhibited the metastasis of CRC cells by regulating the lncRNA ANRIL/let-7a/TGF-β1/Smad axis, indicating that they might serve as an adjunctive medicine for CRC treatment.
Collapse
|
research-article |
5 |
4 |
19
|
Guan JH, Cao ZY, Guan B, Wei LH, Peng J, Chen YQ, Sferra TJ, Sankararaman S, Zhan ZX, Lin JM. Effect of Babao Dan on angiogenesis of gastric cancer in vitro by regulating VEGFA/VEGFR2 signaling pathway. Transl Cancer Res 2021; 10:953-965. [PMID: 35116423 PMCID: PMC8798656 DOI: 10.21037/tcr-20-2559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/04/2020] [Indexed: 11/10/2022] [Imported: 09/13/2023]
Abstract
BACKGROUND To further elucidate the anti-angiogenesis effect of Babao Dan (BBD) in vitro, gastric cancer (GC) cells and human umbilical vein endothelial cells (HUVECs) were used to evaluate the regulation role of BBD by vascular endothelial growth factor A (VEGFA)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling pathway. METHODS After induced by VEGFA, GC cells (AGS, MGC80-3 and BGC823) were treated by different concentrations of BBD and then were detected cell viability, migration and VEGFA level. And the anti-angiogenesis effect of BBD was evaluated with HUVECs. To furtherly mimic the tumor microenvironment of angiogenesis, VEGFA as an inducer (10 ng/mL) was used to trigger a cascade of angiogenesis of HUVECs in vitro. RESULTS The viability and migration of GC cells with VEGFA-induced or non-induced and VEGFA levels in GC cells were significantly inhibited by BBD with concentration-dependent manner (P<0.01). BBD significantly inhibited the HUVECs viability with concentration-dependent manner (P<0.01), which was consistent with the inhibitory action on augmentation of cell viability induced by VEGFA (P<0.01). BBD exhibited the similar inhibitory trend on cyto behavioral variability such as wound repairing (P<0.05), migration (P<0.01) and tube formation (P<0.01) and activation effect on cell apoptosis rate (P<0.01) with VEGFA-induced or non-induced. Moreover, BBD notably regulated the levels of VEGFA, VEGFR2, matrix metalloprotein 2 (MMP2) and matrix metalloprotein 9 (MMP9) of HUVECs on present or absent of VEGFA with dose-dependent manner. CONCLUSIONS BBD inhibited GC growth against VEGFA-induced angiogenesis of HUVECs by VEGFA/VEGFR2 signaling pathway in vitro.
Collapse
|
research-article |
4 |
3 |
20
|
Huang B, Lu Y, Ni Z, Liu J, He Y, An H, Ye F, Shen J, Lin M, Chen Y, Lin J. ANRIL promotes the regulation of colorectal cancer on lymphatic endothelial cells via VEGF-C and is the key target for Pien Tze Huang to inhibit cancer metastasis. Cancer Gene Ther 2023; 30:1260-1273. [PMID: 37286729 PMCID: PMC10501904 DOI: 10.1038/s41417-023-00635-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] [Imported: 09/13/2023]
Abstract
lncRNA ANRIL is an oncogene, however the role of ANRIL in the regulation of colorectal cancer on human lymphatic endothelial cells (HLECs) is remain elusive. Pien Tze Huang (PZH, PTH) a Tradition Chinese Medicine (TCM) as an adjunctive medication could inhibit the cancer metastasis, however the mechanism still uncovering. We used network pharmacology, subcutaneous and orthotopic transplanted colorectal tumors models to determine the effect of PZH on tumor metastasis. Differential expressions of ANRIL in colorectal cancer cells, and stimulating the regulation of cancer cells on HLECs by culturing HLECs with cancer cells' supernatants. Network pharmacology, transcriptomics, and rescue experiments were carried out to verify key targets of PZH. We found PZH interfered with 32.2% of disease genes and 76.7% of pathways, and inhibited the growth of colorectal tumors, liver metastasis, and the expression of ANRIL. The overexpression of ANRIL promoted the regulation of cancer cells on HLECs, leading to lymphangiogenesis, via upregulated VEGF-C secretion, and alleviated the effect of PZH on inhibiting the regulation of cancer cells on HLECs. Transcriptomic, network pharmacology and rescue experiments show that PI3K/AKT pathway is the most important pathway for PZH to affect tumor metastasis via ANRIL. In conclusion, PZH inhibits the regulation of colorectal cancer on HLECs to alleviate tumor lymphangiogenesis and metastasis by downregulating ANRIL dependent PI3K/AKT/VEGF-C pathway.
Collapse
|
research-article |
2 |
2 |
21
|
Su Y, Lu Y, An H, Liu J, Ye F, Shen J, Ni Z, Huang B, Lin J. MicroRNA-204-5p Inhibits Hepatocellular Carcinoma by Targeting the Regulator of G Protein Signaling 20. ACS Pharmacol Transl Sci 2023; 6:1817-1828. [PMID: 38093845 PMCID: PMC10714421 DOI: 10.1021/acsptsci.3c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 03/14/2024] [Imported: 01/11/2025]
Abstract
Although the oncogenic roles of regulator of G protein signaling 20 (RGS20) and its upstream microRNAs (miRNAs) have been reported, their involvement in hepatocellular carcinoma (HCC) remains unexplored. We utilized the starBase, miRDB, TargetScan, and mirDIP databases, along with a dual-luciferase reporter assay and cDNA chip analysis to identify miRNAs targeting RGS20. miR-204-5p was selected for further experiments to confirm its direct targeting and downregulation of the RGS20 expression. To study the miR-204-5p/RGS20 axis in HCC, RGS20 and miR-204-5p were increased in PLC/PRF/5/Hep3B cells, and the viability, hyperplasia, apoptosis, cell cycle, and invasion/migration of the cells were assessed. RGS20 exhibited optimism, while miR-204-5p exhibited pessimism in tumors. miR-204-5p directly targeted RGS20 and downregulated its expression, whereas high RGS20 expression indicated a poor prognosis. Transfection of miR-204-5p inhibited the hyperplasia, migration, and invasion of HCC cells, but promoted apoptosis and influenced the levels of cyclin-dependent kinase 2 (CDK2), cyclin E1, B-cell lymphoma-2 (Bcl-2), Bax, and cleaved caspase-3/8. These effects were reversed by overexpression of RGS20. We recognized miR-204-5p as an upstream regulator targeting RGS20, thereby inhibiting HCC progression by downregulating RGS20 expression. RGS20 may prove to be a potential target for HCC treatment, and miR-204-5p might seem like to be a potential miRNA in gene therapy.
Collapse
|
research-article |
2 |
1 |
22
|
Huang B, Gui M, Ni Z, He Y, Zhao J, Peng J, Lin J. Correction for Huang et al., "Chemotherapeutic Drugs Induce Different Gut Microbiota Disorder Pattern and NOD/RIP2/NF-κB Signaling Pathway Activation That Lead to Different Degrees of Intestinal Injury". Microbiol Spectr 2024; 12:e0011224. [PMID: 38529960 PMCID: PMC11064531 DOI: 10.1128/spectrum.00112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] [Imported: 01/11/2025] Open
|
Published Erratum |
1 |
|
23
|
Lin L, He Y, Ni Z, Zhang M, Liu J, Mao Q, Huang B, Lin J. GPC2 deficiency inhibits cell growth and metastasis in colon adenocarcinoma. Open Med (Wars) 2022; 17:304-316. [PMID: 35233466 PMCID: PMC8847712 DOI: 10.1515/med-2022-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] [Imported: 09/13/2023] Open
Abstract
Glypican-2 (GPC2) has been reported to promote tumor progression through metabolic pathways. However, the role of GPC2 in colon adenocarcinoma (COAD) remains to be further investigated. This study was designed to evaluate the role of GPC2 in COAD. Based on patients with complete clinical information and GPC2 expression from the Cancer Genome Atlas-COAD database, we found that GPC2 mRNA was highly expressed in COAD tissues, which was associated with poor prognosis and tumornode-metastasis (TNM) stage. The predicted survival probability based on GPC2 mRNA expression and TNM stage was in good agreement with the observed survival probability. Furthermore, the genes coexpressed with GPC2 in COAD tissues were significantly enriched in basal cell carcinoma, Notch signaling pathway, and Hedgehog signaling pathway. After GPC2 was decreased through transfecting short hairpin RNA of GPC2 into HCT-8 and SW620 cells, cell cycle was arrested in G0/G1 phase, proliferation was decreased, apoptosis was increased, and migration and invasion were repressed. In conclusion, decreasing GPC2 significantly inhibited proliferation, migration, and invasion, and enhanced apoptosis, which implied that GPC2 can be considered a promising therapeutic target of COAD in the future.
Collapse
|
research-article |
3 |
|
24
|
Fang Y, Yang C, Lu Y, Wei L, Zhao J, Lu L, Lin J. Based on the Network Pharmacology to Investigate the Mechanism of Qingjie Fuzheng Granules against Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7242640. [PMID: 35280511 PMCID: PMC8916896 DOI: 10.1155/2022/7242640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 01/19/2023] [Imported: 09/13/2023]
Abstract
Qingjie Fuzheng granules (QFG) exert an anticancer effect against colorectal cancers (CRC). However, the pharmacological molecular mechanisms are still unclear. This study was aimed to establish a simple method to predict targets of QFG against CRC by the network pharmacology strategy. 461 compounds and 1559 targets in QFG were enriched by BATMAN-TCM. 21 of the common targets were obtained by the groups of "Jun," "Chen," "Zuo," and "Shi" medicine in QFG. The enrichment analyses of GO functional terms, KEGG pathway, and OMIM/TTD diseases displayed the targets in the different and complementary effects of four functional medicines in QFG. Then, 613 differential targets for QFG in CRC were identified. GO functional terms and KEGG pathway analyses showed that QFG regulated the inflammatory function and lipid metabolic process. There were also targets that played a role in the binding to the receptors in membranes, in the activation of the transportation signal, and provided pain relief by regulation of the neural related pathways. Next, the protein-protein interaction network was analyzed, and the levels of the predicted targets in CRC primary tumor were explored, and 7 candidate targets of QFG against CRC were obtained. Furthermore, with real-time PCR and enzyme-linked immunosorbent assay (ELISA) analysis, downregulation of dopamine D2 receptor (DRD2) and interleukin-6 (IL-6), and upregulation of interleukin-10 (IL-10) were identified following the treatment of QFG. At last, the survival and prognosis of the potential targets of QFG in CRC patients were analyzed by GenomicScape, and IL-6 was suggested to be an index for the regulation of QFG in CRC. These results might elucidate the possible antitumor mechanism of QFG and highlight the candidate therapeutic targets and the application direction in clinical treatment for QFG.
Collapse
|
research-article |
3 |
|