101
|
Mohankumar K, Li X, Sridharan S, Karki K, Safe S. Nuclear receptor 4A1 (NR4A1) antagonists induce ROS-dependent inhibition of mTOR signaling in endometrial cancer. Gynecol Oncol 2019; 154:218-227. [PMID: 31053403 DOI: 10.1016/j.ygyno.2019.04.678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 02/06/2023] [Imported: 08/29/2023]
Abstract
OBJECTIVES NR4A1 is overexpressed in many solid tumors, and the objectives of this study were to investigate the expression and functional role of this receptor in endometrial cancer cells and demonstrate that NR4A1 antagonist inhibit mTOR. METHODS Ishikawa and Hec-1B endometrial cells were used as models to investigate the parallel effects of NR4A1 knockdown by RNA interference (siNR4A1) and treatment with bis-indole-derived NR4A1 ligands (antagonists) on cell growth and survival by determining cell numbers and effects on Annexin V staining. Western blot analysis of whole cell lysates was used to determine effects of these treatments on expression of growth promoting, survival and apoptotic genes and mTOR signaling. Effects of NR4A1 antagonists on tumor growth were determined in athymic nude mice bearing Hec-1B cells as xenografts. RESULTS siNR4A1 or treatment with bis-indole-derived NR4A1 antagonists inhibited growth of endometrial cancer cells in vitro and endometrial tumors in vivo and this was accompanied by decreased expression of growth promoting and survival genes and mTOR inhibition. CONCLUSIONS NR4A1 exhibited pro-oncogenic activity in endometrial cells due, in part, to regulation of cell growth, survival and mTOR signaling, and all of these pathways and their associated gene products were inhibited after treatment with bis-indole-derived NR4A1 antagonists. Moreover, these compounds also blocked endometrial tumor growth in vivo demonstrating that NR4A1 is a potential novel drug target for treatment of endometrial cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
11 |
102
|
Jin UH, Cheng Y, Zhou B, Safe S. Bardoxolone Methyl and a Related Triterpenoid Downregulate cMyc Expression in Leukemia Cells. Mol Pharmacol 2017; 91:438-450. [PMID: 28275049 PMCID: PMC5399643 DOI: 10.1124/mol.116.106245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/10/2017] [Indexed: 11/22/2022] [Imported: 08/29/2023] Open
Abstract
Structurally related pentacyclic triterpenoids methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate [bardoxolone-methyl (Bar-Me)] and methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me) contain 2-cyano-1-en-3-one and 2-trifluoromethyl-1-en-3-one moieties, respectively, in their A-rings and differ in the position of their en-one structures in ring C. Only Bar-Me forms a Michael addition adduct with glutathione (GSH) and inhibits IKKβ phosphorylation. These differences may be due to steric hindrance by the 11-keto group in CF3DODA-Me, which prevents Michael addition by the conjugated en-one in the A-ring. In contrast, both Bar-Me and CF3DODA-Me induce reactive oxygen species in HL-60 and Jurkat leukemia cells, inhibit cell growth, induce apoptosis and differentiation, and decrease expression of specificity proteins (Sp) 1, 3, and 4, and cMyc, and these effects are significantly attenuated after cotreatment with the antioxidant GSH. In contrast to solid tumor-derived cells, cMyc and Sp transcriptions are regulated independently and cMyc plays a more predominant role than Sp transcription factors in regulating HL-60 or Jurkat cell proliferation and differentiation compared with that observed in cells derived from solid tumors.
Collapse
|
research-article |
7 |
10 |
103
|
Karki K, Harishchandra S, Safe S. Bortezomib Targets Sp Transcription Factors in Cancer Cells. Mol Pharmacol 2018; 94:1187-1196. [PMID: 30115673 DOI: 10.1124/mol.118.112797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022] [Imported: 08/29/2023] Open
Abstract
Bortezomib alone and in combination with other anticancer agents are extensively used for chemotherapeutic treatment of multiple myeloma (MM) patients and are being developed for treating other cancers. Bortezomib acts through multiple pathways, and in this study with ANBL-6 and RPMI 8226 MM cells we show that bortezomib inhibited growth and induced apoptosis and that this was accompanied by downregulation of specificity protein (Sp) 1, Sp3, and Sp4 transcription factors that are overexpressed in these cells. Similar results were observed in pancreatic and colon cancer cells. The functional importance of this pathway was confirmed by showing that individual knockdown of Sp1, Sp3, and Sp4 in MM cells inhibited cell growth and induced apoptosis, and that this correlates with the results of previous studies in pancreatic, colon, and other cancer cell lines. The mechanism of bortezomib-mediated downregulation of Sp transcription factors in MM was due to the induction of caspase-8 and upstream factors, including Fas-associated death domain. These results demonstrate that an important underlying mechanism of action of bortezomib was due to the activation of caspase-8-dependent downregulation of Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
10 |
104
|
Chidambara Murthy KN, Jayaprakasha GK, Safe S, Patil BS. Citrus limonoids induce apoptosis and inhibit the proliferation of pancreatic cancer cells. Food Funct 2021; 12:1111-1120. [PMID: 33427831 DOI: 10.1039/d0fo02740e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] [Imported: 08/29/2023]
Abstract
In our recent study, we demonstrated that certain limonoids isolated from citrus seeds induced apoptosis in human pancreatic (Panc-28) cells. In this study, limonin, nomilin and limonexic acid (LNA) were investigated for understanding the possible mode of cytotoxicity in cultured pancreatic cancer (Panc-28) cells. All three limonoids inhibited Panc-28 cell proliferation, with IC50 values less than 50 μM after 72 h of incubation. The induction of apoptosis was confirmed through the cleavage of caspase-3, decreased mitochondrial membrane potential, and expression of apoptosis-related proteins. The Bax/Bcl2 expression ratio was increased up to 11-fold in cells pre-treated with 60 μM limonoids for 48 h. Apart from this, the limonoids also induced the expression of p21, and exhibited anti-inflammatory activity through decreasing the expression of cox-2, NF-κB and IL-6. Based on these results, we were interested in understanding the possible mode of inhibition by LNA, which exhibited the highest activity. The treatment of Panc-28 cells resulted in dose- and time-dependent induction of apoptosis-inducible proteins. In addition, treatment with 60 μM LNA resulted in the activation of Akt-associated signals to induce apoptosis, and the same was confirmed by the effects of the compounds on pAkt, p53, VEGF and caspase proteins. The results of this study demonstrated the cytotoxicity of limonoids to human pancreatic cancer cells through the modulation of genes involved in proliferation and survival.
Collapse
|
Journal Article |
3 |
10 |
105
|
Karki K, Li X, Jin UH, Mohankumar K, Zarei M, Michelhaugh SK, Mittal S, Tjalkens R, Safe S. Nuclear receptor 4A2 (NR4A2) is a druggable target for glioblastomas. J Neurooncol 2019; 146:25-39. [PMID: 31754919 DOI: 10.1007/s11060-019-03349-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 01/17/2023] [Imported: 08/29/2023]
Abstract
INTRODUCTION The orphan nuclear receptor 4A2 (NR4A2) has been extensively characterized in subcellular regions of the brain and is necessary for the function of dopaminergic neurons. The NR4A2 ligand, 1,1-bis (31-indoly1)-1-(p-chlorophenyl)methane (DIM-C-pPhCl) inhibits markers of neuroinflammation and degeneration in mouse models and in this study we investigated expression and function of NR4A2 in glioblastoma (GBM). METHODS Established and patient-derived cell lines were used as models and the expression and functions of NR4A2 were determined by western blots and NR4A2 gene silencing by antisense oligonucleotides respectively. Effects of NR4A2 knockdown and DIM-C-pPhCl on cell growth, induction of apoptosis (Annexin V Staining) and migration/invasion (Boyden chamber and spheroid invasion assay) and transactivation of NR4A2-regulated reporter genes were determined. Tumor growth was investigated in athymic nude mice bearing U87-MG cells as xenografts. RESULTS NR4A2 knockdown and DIM-C-pPhCl inhibited GBM cell and tumor growth, induced apoptosis and inhibited migration and invasion of GBM cells. DIM-C-pPhCl and related analogs also inhibited NR4A2-regulated transactivation (luciferase activity) confirming that DIM-C-pPhCl acts as an NR4A2 antagonist and blocks NR4A2-dependent pro-oncogenic responses in GBM. CONCLUSION We demonstrate for the first time that NR4A2 is pro-oncogenic in GBM and thus a potential druggable target for patients with tumors expressing this receptor. Moreover, our bis-indole-derived NR4A2 antagonists represent a novel class of anti-cancer agents with potential future clinical applications for treating GBM.
Collapse
|
Journal Article |
5 |
9 |
106
|
Lee J, Safe S. Coactivation of estrogen receptor alpha (ER alpha)/Sp1 by vitamin D receptor interacting protein 150 (DRIP150). Arch Biochem Biophys 2007; 461:200-10. [PMID: 17306756 PMCID: PMC1978170 DOI: 10.1016/j.abb.2006.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 12/24/2006] [Indexed: 11/30/2022] [Imported: 08/29/2023]
Abstract
Vitamin D receptor interacting protein (DRIP150) coactivates estrogen receptor alpha (ERalpha)-mediated transactivation in breast cancer cell lines transfected with a construct (pERE(3)) containing three estrogen responsive elements (EREs). In this study, we show that DRIP150 also coactivates ERalpha/Sp1-mediated transactivation in ZR-75, MCF-7, and MDA-MB-231 breast cancer cells transfected with a construct (pSp1(3)) containing three consensus GC-rich motifs. Studies on coactivation of wild-type and variant ERalpha/Sp1 by DRIP150 indicates that the DNA-binding domain and helix 12 in the ligand binding domain of ERalpha are required and the coactivation response is squelched by overexpressing an NR-box peptide that contains two LXXLL motifs from GRIP2. In contrast, coactivation of ERalpha/Sp1 by wild-type and mutant DRIP150 expression plasmids show that coactivation of ERalpha/Sp1 by DRIP150 is independent of the NR-boxes. Deletion analysis of DRIP150 demonstrates that coactivation requires an alpha-helical NIFSEVRVYN (amino acids 795-804) motif within 23 amino acid sequence (789-811) in the central region of DRIP150 and similar results were obtained for coactivation of ERalpha by DRIP150. Thus, although different domains of ERalpha are required for hormone-dependent activation of ERalpha and ERalpha/Sp1, coactivation of these transcription factors by DRIP150 requires the alpha-helical amino acids 795-804. This is the first report of a coactivator that enhances ERalpha/Sp1-mediated transactivation in breast cancer cells.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
8 |
107
|
Jin UH, Karki K, Kim SB, Safe S. Inhibition of pancreatic cancer Panc1 cell migration by omeprazole is dependent on aryl hydrocarbon receptor activation of JNK. Biochem Biophys Res Commun 2019; 501:751-757. [PMID: 29758193 DOI: 10.1016/j.bbrc.2018.05.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022] [Imported: 08/29/2023]
Abstract
Several aryl hydrocarbon receptor (AhR)-active pharmaceuticals were screened as inhibitors of pancreatic cancer cell invasion and identified two compounds, omeprazole, that inhibited invasion. Inhibition of highly invasive Panc1 cell invasion by omeprazole involves an AhR-dependent non-genomic pathway, and omeprazole-mediated inhibition of Panc1 cell invasion was dependent on Jun-N-terminal kinase (JNK) and mitogen-activated kinase kinase 7 (MKK7). The failure of omeprazole to induce nuclear translocation of the AhR was not due to overexpression of cytosolic AhR partner proteins Hsp90 or XAP2, and results of DNA sequencing show that the AhR expressed in Panc1 cells was not mutated. Results of RNAseq studies indicate that omeprazole induced an AhR-dependent downregulation of several pro-invasion factors including activated leukocyte cell adhesion molecule (ALCAM), long chain fatty acid CoA-synthase (CSL4), stathmin 3 (STMN3) and neuropillin 2 (NRP2), and the specific functions of these genes are currently being investigated.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
7 |
108
|
Safe S, Shrestha R, Mohankumar K, Howard M, Hedrick E, Abdelrahim M. Transcription factors specificity protein and nuclear receptor 4A1 in pancreatic cancer. World J Gastroenterol 2021; 27:6387-6398. [PMID: 34720529 PMCID: PMC8517783 DOI: 10.3748/wjg.v27.i38.6387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] [Imported: 08/29/2023] Open
Abstract
Specificity protein (Sp) transcription factors (TFs) Sp1, Sp3 and Sp4, and the orphan nuclear receptor 4A1 (NR4A1) are highly expressed in pancreatic tumors and Sp1 is a negative prognostic factor for pancreatic cancer patient survival. Results of knockdown and overexpression of Sp1, Sp3 and Sp4 in pancreatic and other cancer lines show that these TFs are individually pro-oncogenic factors and loss of one Sp TF is not compensated by other members. NR4A1 is also a pro-oncogenic factor and both NR4A1 and Sp TFs exhibit similar functions in pancreatic cancer cells and regulate cell growth, survival, migration and invasion. There is also evidence that Sp TFs and NR4A1 regulate some of the same genes including survivin, epidermal growth factor receptor, PAX3-FOXO1, α5- and α6-integrins, β1-, β3- and β4-integrins; this is due to NR4A1 acting as a cofactor and mediating NR4A1/Sp1/4-regulated gene expression through GC-rich gene promoter sites. Several studies show that drugs targeting Sp downregulation or NR4A1 antagonists are highly effective inhibitors of Sp/NR4A1-regulated pathways and genes in pancreatic and other cancer cells, and the triterpenoid celastrol is a novel dual-acting agent that targets both Sp TFs and NR4A1.
Collapse
|
Minireviews |
3 |
7 |
109
|
Mohankumar K, Li X, Sung N, Cho YJ, Han SJ, Safe S. Bis-Indole-Derived Nuclear Receptor 4A1 (NR4A1, Nur77) Ligands as Inhibitors of Endometriosis. Endocrinology 2020; 161:5758064. [PMID: 32099996 PMCID: PMC7105386 DOI: 10.1210/endocr/bqaa027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] [Imported: 08/29/2023]
Abstract
Endometriosis is an inflammatory disease that primarily affects women during their reproductive years, and since current hormonal therapies are of concern, new hormone-independent treatment regimens are needed. The orphan nuclear receptor 4A1 (NR4A1, Nur77) is expressed in patient-derived (stromal) endometriotic cells and also epithelial cell lines, and we observed that knockdown of NR4A1 in patient-derived ectopic endometrium-isolated ovarian endometrioma (ESECT)-7 and ESECT-40 cells decreased cell proliferation and induced apoptosis. Moreover, the treatment of these cells with bis-indole derived NR4A1 ligands 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) and its buttressed 3-chloro-5-methoxy analog (DIM-C-pPhOH-3-Cl-5-OCH3) inhibited cell growth and induced apoptosis and related genes. The compounds exhibit NR4A1 antagonist activities in both functional and transactivation assays whereas these effects were not observed in normal endometrial cells. We also observed that NR4A1 knockdown and treatment with NR4A1 antagonists decreased fibrosis, α-smooth muscle actin, and related pro-fibrotic genes in ESECT-7 and ESECT-40 cells, and similar results were observed in epithelial-derived endometriotic cell lines. Moreover, in an endometriosis mouse model with auto-transplantation and also in severe combined immune deficiency mice transplanted with human endometriotic cells treatment with 25 mg/kg/day DIM-C-pPhOH-3-Cl-5-OCH3 significantly inhibited growth and expansion of endometriotic lesions. Thus, bis-indole-derived NR4A1 ligands represent a novel class of drugs as nonhormonal therapy for endometriosis.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
7 |
110
|
Zhang L, Martin G, Mohankumar K, Hampton JT, Liu WR, Safe S. RESVERATROL BINDS NUCLEAR RECEPTOR 4A1 (NR4A1) AND ACTS AS AN NR4A1 ANTAGONIST IN LUNG CANCER CELLS. Mol Pharmacol 2022; 102:MOLPHARM-AR-2021-000481. [PMID: 35680166 PMCID: PMC9341251 DOI: 10.1124/molpharm.121.000481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] [Imported: 08/29/2023] Open
Abstract
Resveratrol is a polyphenolic phytochemical found in fruits, nuts and vegetables that contributes to the remarkable dietary effects of polyphenolic as inhibitors aging and multiple aging related diseases. In addition, resveratrol has been extensively investigated as an inhibitor of inflammatory diseases including cancer, however, the underlying mechanisms of these chemotherapeutic effects of resveratrol are not completely understood. In cancer cells resveratrol inhibits cell growth, survival, migration and invasion, and many of the effects of resveratrol resemble those observed for bis-indole derived (CDIM) compounds that bind the pro-oncogenic nuclear receptor 4A1 (NR4A1, Nur77) and act as receptor antagonists. Using an isothermal titration calorimetry binding assay, we observed that resveratrol bound to the ligand binding domain of NR4A1 with a KD value of 2.4 µM and a ΔG of -32.2 kJ/mol. Resveratrol also inhibited NR4A1-dependent transactivation in H460 and H1299 lung cancer cells suggesting that resveratrol is an NR4A1 antagonist. This observation was confirmed in a series of functional (cell proliferation, survival, migration and invasion) and gene expression assays in H460 and H1299 cells showing that treatment with resveratrol mimicked the effects of NR4A1 knockdown and were similar to results of previous studies using CDIM/NR4A1 antagonists. These data indicate that applications of resveratrol may be more effective in patients that overexpress NR4A1 which is a negative prognostic factor for patients with some solid tumor-derived cancers. Significance Statement We have examined the mechanism of action of resveratrol and show binding to NR4A1 (KD = 2.4 µM) and inhibition of NR4A1-dependent transactivation in lung cancer cells. Treatment of H460 and H1299 lung cancer cells with resveratrol inhibits cell growth, survival, migration/invasion and related genes, and acts as an NR4A1 antagonist. Resveratrol can now be used more effectively in cancer chemotherapy by targeting patients that overexpress NR4A1 in lung cancer.
Collapse
|
research-article |
2 |
7 |
111
|
Safe S. 3-methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters. Toxicol Sci 2010; 117:1-3. [PMID: 20651249 PMCID: PMC2923292 DOI: 10.1093/toxsci/kfq193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 06/19/2010] [Indexed: 11/14/2022] [Imported: 08/29/2023] Open
Abstract
The paper by Pansoy and coworkers investigates the effects of the aryl hydrocarbon receptor (AHR) ligand 3-methylcholanthrene (3MC) on recruitment of the AHR complex to human promoters in T47D breast cancer cells. The results are particularly important because they can be compared with a prior study using the potent AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the same cell line. The chromatin immunoprecipitation and promoter-focused microarrays (ChIP-chip) demonstrated that after treatment of T47D cells with 1microM 3MC, there were 241 AHR-3MC bound regions and many of these contained AHR-responsive elements. However, they also observed interactions with regions that do not contain these responsive elements, and subsequent analysis of selected target genes show that 3MC-dependent AHR binding did not necessarily predict Ah-responsiveness because induction, repression, and no effects were observed. A prior study with TCDD demonstrated that both 3MC and TCDD induced AHR binding to 127 common regions; however, there were significant differences in ligand (3MC vs. TCDD)-dependent AHR bound regions. The results illustrate the complexity of AHR signaling and also demonstrate that compared with TCDD as a reference ligand, 3MC is a selective AHR modulator.
Collapse
|
Comment |
14 |
6 |
112
|
Carbidopa: a selective Ah receptor modulator (SAhRM). Biochem J 2017; 474:3763-3765. [PMID: 29109131 DOI: 10.1042/bcj20170728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/23/2023] [Imported: 08/29/2023]
Abstract
The aryl hydrocarbon receptor (AhR) was discovered as the intracellular receptor that bound with high affinity to the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the AhR is required for mediating the toxicity induced by TCDD. Subsequent studies show that the AhR binds structurally diverse chemicals including plant-derived compounds that promote health and several AhR-active pharmaceuticals that exhibit anticancer activity. In this issue, there is a report that carbidopa, a drug used for treating Parkinson's disease, is also an AhR ligand, and this compound inhibits pancreatic cancer cell and tumor growth. These results are consistent with activities of other AhR-active compounds that inhibit carcinogenesis. Like carbidopa, these chemicals are selective AhR modulators with potential clinical applications that are AhR-dependent.
Collapse
|
Comment |
7 |
5 |
113
|
Safe SH. Is there an association between exposure to environmental estrogens and breast cancer? ENVIRONMENTAL HEALTH PERSPECTIVES 1997; 105 Suppl 3:675-678. [PMID: 9168013 DOI: 10.2307/3433388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] [Imported: 08/29/2023]
Abstract
It was initially reported that levels of polychlorinated biphenyls (PCBs) or p,p'-DDE were elevated in breast cancer patients (serum or tissue) versus controls. These results, coupled with reports that selected environmental estrogens decreased 17beta-estradiol (E2) 2-hydroxylase activity and increased the ratio of 16alpha-hydroxyestrone/2-hydroxyestrone metabolites in MCF-7 human breast cancer cells, have led to the hypothesis that xenoestrogens are a preventable cause of breast cancer. More recent studies and analysis of organochlorine levels in breast cancer patients versus controls show that these contaminants are not elevated in the latter group. Moreover, occupational exposure to relatively high levels of PCBs and DDT/DDE are not associated with an increased incidence of breast cancer. A reexamination of the radiometric E2 2-hydroxylase assay in MCF-7 cells with diverse estrogens, antiestrogens, and carcinogens showed that the mammary carcinogen benzo[a]pyrene induced this response and the antiestrogen ICI 164,384 decreased E2 2-hydroxylase activity. Thus, E2 2-hydroxylase activity and the 16alpha-hydroxyestrone/2-hydroxyestrone metabolite ratio in MCF-7 cells does not predict xenoestrogens or mammary carcinogens.
Collapse
|
Review |
27 |
5 |
114
|
NR4A1 Ligands as Potent Inhibitors of Breast Cancer Cell and Tumor Growth. Cancers (Basel) 2021; 13:cancers13112682. [PMID: 34072371 PMCID: PMC8198788 DOI: 10.3390/cancers13112682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] [Imported: 08/29/2023] Open
Abstract
Nuclear receptor 4A1 (NR4A1, Nur77, TR3) is more highly expressed in breast and solid tumors compared to non-tumor tissues and is a pro-oncogenic factor in solid tumor-derived cancers. NR4A1 regulates cancer cell growth, survival, migration, and invasion, and bis-indole-derived compounds (CDIMs) that bind NR4A1 act as antagonists and inhibit tumor growth. Preliminary structure-binding studies identified 1,1-bis(3'-indolyl)-1-(3,5-disubstitutedphenyl)methane analogs as NR4A1 ligands with low KD values; we further investigated the anticancer activity of the four most active analogs (KD's ≤ 3.1 µM) in breast cancer cells and in athymic mouse xenograft models. The treatment of MDA-MB-231 and SKBR3 breast cancer cells with the 3-bromo-5-methoxy, 3-chloro-5-trifluoromethoxy, 3-chloro-5-trifluoromethyl, and 3-bromo-5-trifluoromethoxy phenyl-substituted analogs decreased cell growth and the expression of epidermal of growth factor receptor (EGFR), hepatocyte growth factor receptor (cMET), and PD-L1 as well as inhibited mTOR phosphorylation. In addition, all four compounds inhibited tumor growth in athymic nude mice bearing MDA-MB-231 cells (orthotopic) at a dose of 1 mg/kg/d, which was not accompanied by changes in body weight. These 3,5-disubstituted analogs were the most potent CDIM/NR4A1 ligands reported and are being further developed for clinical applications.
Collapse
|
Journal Article |
3 |
5 |
115
|
Shrestha R, Mohankumar K, Jin UH, Martin G, Safe S. The Histone Methyltransferase Gene G9A Is Regulated by Nuclear Receptor 4A1 in Alveolar Rhabdomyosarcoma Cells. Mol Cancer Ther 2020; 20:612-622. [PMID: 33277444 DOI: 10.1158/1535-7163.mct-20-0474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] [Imported: 08/29/2023]
Abstract
The histone methyltransferase G9A (EHMT2) gene catalyzes methylation of histone 3 lysine 9 (H3K9), and this gene silencing activity contributes to the tumor promoter-like activity of G9A in several tumor types including alveolar rhabdomyosarcoma (ARMS). Previous studies show the orphan nuclear receptor 4A1 (NR4A1, Nur77) is overexpressed in rhabdomyosarcoma and exhibits pro-oncogenic activity. In this study, we show that knockdown of NR4A1 in ARMS cells decreased expression of G9A mRNA and protein. Moreover, treatment of ARMS cells with several bis-indole-derived NR4A1 ligands (antagonists) including 1,1-bis(3'-indolyl)-1-(4-hydroxyphenyl)methane (CDIM8), 3,5-dimethyl (3,5-(CH3)2), and 3-bromo-5-methoxy (3-Br-5-OCH3) analogs also decreased G9A expression. Furthermore, NR4A1 antagonists also decreased G9A expression in breast, lung, liver, and endometrial cancer cells confirming that G9A is an NR4A1-regulated gene in ARMS and other cancer cell lines. Mechanistic studies showed that the NR4A1/Sp1 complex interacted with the GC-rich 511 region of the G9A promoter to regulate G9A gene expression. Moreover, knockdown of NR4A1 or treatment with NR4A1 receptor antagonists decreased overall H3K9me2, H3K9me2 associated with the PTEN promoter, and PTEN-regulated phospho-Akt. In vivo studies showed that the NR4A1 antagonist (3-Br-5-OCH3) inhibited tumor growth in athymic nude mice bearing Rh30 ARMS cells and confirmed that G9A was an NR4A1-regulated gene that can be targeted by NR4A1 receptor antagonists.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
4 |
116
|
Safe S. Targeting apoptosis pathways in cancer--letter. Cancer Prev Res (Phila) 2015; 8:338. [PMID: 25627800 DOI: 10.1158/1940-6207.capr-14-0405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/22/2015] [Indexed: 11/16/2022] [Imported: 08/29/2023]
|
Comment |
9 |
4 |
117
|
Mohankumar K, Shrestha R, Safe S. Nuclear receptor 4A1 (NR4A1) antagonists target paraspeckle component 1 (PSPC1) in cancer cells. Mol Carcinog 2022; 61:73-84. [PMID: 34699643 PMCID: PMC8665050 DOI: 10.1002/mc.23362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023] [Imported: 08/29/2023]
Abstract
Paraspeckles compound 1 (PSPC1) is a multifunctional protein that plays an important role in cancer cells, where PSPC1 is a master regulator of pro-oncogenic responses that includes activation of TGFβ (TGFβ1), TGFβ-dependent EMT, and metastasis. The pro-oncogenic activities of PSPC1 closely resembled those observed for the orphan nuclear receptor 4A1 (NR4A1, Nur77) and knockdown of NR4A1 decreased expression of PSPC1 in MDA-MB-231 breast, H1299 lung, and SNU449 liver cancer cells. Similar results were observed in these same cell lines after treatment with bisindole-derived (CDIMs) NR4A1 antagonists. Moreover, PSPC1-dependent regulation of TGFβ, genes associated with cancer stem cells and epithelial to mesenchymal transition (EMT) were also downregulated after NR4A1 silencing or treatment of breast, lung, and liver cancer cells with CDIM/NR4A1 antagonists. Results of chromatin immunoprecipitation (ChIP) assays suggest that NR4A1 regulates PSPC1 through interaction with an NBRE sequence in the PSPC1 gene promoter. These results coupled with in vivo studies showing that NR4A1 antagonists inhibit breast tumor growth and downregulate PSPC1 in tumors indicate that the pro-oncogenic nuclear PSPC1 factor can be targeted by CDIM/NR4A1 antagonists.
Collapse
|
research-article |
2 |
3 |
118
|
Kolluri SK, Jin UH, Safe S. Erratum to: Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Arch Toxicol 2017; 91:3209. [PMID: 28695231 DOI: 10.1007/s00204-017-2026-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] [Imported: 08/29/2023]
|
Published Erratum |
7 |
3 |
119
|
Baek SJ, Hammock BD, Hwang IK, Li Q, Moustaid-Moussa N, Park Y, Safe S, Suh N, Yi SS, Zeldin DC, Zhong Q, Bradbury JA, Edin ML, Graves JP, Jung HY, Jung YH, Kim MB, Kim W, Lee J, Li H, Moon JS, Yoo ID, Yue Y, Lee JY, Han HJ. Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients 2021; 13:1881. [PMID: 34072678 PMCID: PMC8227583 DOI: 10.3390/nu13061881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] [Imported: 08/29/2023] Open
Abstract
The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.
Collapse
|
Review |
3 |
2 |
120
|
Lee HS, Kim SH, Kim BM, Safe S, Lee SO. Broussochalcone A Is a Novel Inhibitor of the Orphan Nuclear Receptor NR4A1 and Induces Apoptosis in Pancreatic Cancer Cells. Molecules 2021; 26:2316. [PMID: 33923503 PMCID: PMC8073833 DOI: 10.3390/molecules26082316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/18/2022] [Imported: 08/29/2023] Open
Abstract
The orphan nuclear receptor 4A1 (NR4A1) is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity, and NR4A1 silencing and treatment with its inactivators has been shown to inhibit pancreatic cancer cells and tumor growth. In this study, we identified broussochalcone A (BCA) as a new NR4A1 inhibitor and demonstrated that BCA inhibits cell growth partly by inducing NR4A1-mediated apoptotic pathways in human pancreatic cancer cells. BCA downregulated specificity protein 1 (Sp1)-mediated expression of an anti-apoptotic protein, survivin, and activated the endoplasmic reticulum (ER) stress-mediated apoptotic pathway. These results suggest that NR4A1 inactivation contributes to the anticancer effects of BCA, and that BCA represents a potential anticancer agent targeting NR4A1 that is overexpressed in many types of human cancers.
Collapse
|
research-article |
3 |
2 |
121
|
Safe S. Recent advances in understanding endocrine disruptors: DDT and related compounds. Fac Rev 2020; 9:7. [PMID: 33659939 PMCID: PMC7886056 DOI: 10.12703/b/9-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] [Imported: 08/29/2023] Open
Abstract
Endocrine-disrupting compounds (EDCs) are environmental contaminants that modulate estrogen, androgen, and thyroid hormone receptor signaling and it has been hypothesized that human exposures to EDCs induce multiple adverse health effects. Some of these responses include male and female reproductive tract problems, obesity, and neurological/neurobehavior deficits. Extensive laboratory animal and some human studies support the EDC hypothesis. However, there is a debate among scientists and regulators regarding the adverse human health impacts of EDCs and this review highlights and gives examples of some of the concerns.
Collapse
|
Review |
4 |
1 |
122
|
Lee HS, Kim DH, Lee IS, Park JH, Martin G, Safe S, Kim KJ, Kim JH, Jang BI, Lee SO. Plant Alkaloid Tetrandrine Is a Nuclear Receptor 4A1 Antagonist and Inhibits Panc-1 Cell Growth In Vitro and In Vivo. Int J Mol Sci 2022; 23:5280. [PMID: 35563670 PMCID: PMC9104798 DOI: 10.3390/ijms23095280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 01/19/2023] [Imported: 08/29/2023] Open
Abstract
The orphan nuclear receptor 4A1 (NR4A1) is highly expressed in human pancreatic cancer cells and exerts pro-oncogenic activity. In a previous study, we demonstrated that fangchinoline (FCN), a natural inhibitor of nuclear NR4A1, induces NR4A1-dependent apoptosis in human pancreatic cancer cells. In this study, we evaluated FCN and its structural analogs (berbamine, isotetrandrine, tetrandrine, and tubocurarine) for their inhibitory effects on NR4A1 transactivity, and confirmed that tetrandrine (TTD) showed the highest inhibitory effect in pancreatic cancer cells. Moreover, in a tryptophan fluorescence quenching assay, TTD directly bound to the ligand binding domain (LBD) of NR4A1 with a KD value of 10.60 μM. Treatment with TTD decreased proliferation and induced apoptosis in Panc-1 human pancreatic cancer cells in part through the reduced expression of the Sp1-dependent anti-apoptotic gene survivin and induction of ROS-mediated endoplasmic reticulum stress, which are the well-known NR4A1-dependent proapoptotic pathways. Furthermore, at a dose of 25 mg/kg/day, TTD reduced tumor growth in an athymic nude mouse xenograft model bearing Panc-1 cells. These data show that TTD is an NR4A1 antagonist and that modulation of the NR4A1-mediated pro-survival pathways is involved in the antitumor effects of TTD.
Collapse
|
research-article |
2 |
1 |
123
|
Lee M, Upadhyay S, Mariyam F, Martin G, Hailemariam A, Lee K, Jayaraman A, Chapkin RS, Lee SO, Safe S. Flavone and Hydroxyflavones Are Ligands That Bind the Orphan Nuclear Receptor 4A1 (NR4A1). Int J Mol Sci 2023; 24:8152. [PMID: 37175855 PMCID: PMC10179475 DOI: 10.3390/ijms24098152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] [Imported: 08/29/2023] Open
Abstract
It was recently reported that the hydroxyflavones quercetin and kaempferol bind the orphan nuclear receptor 4A1 (NR4A1, Nur77) and act as antagonists in cancer cells and tumors, and they inhibit pro-oncogenic NR4A1-regulated genes and pathways. In this study, we investigated the interactions of flavone, six hydroxyflavones, seven dihydroxyflavones, three trihydroxyflavones, two tetrahydroxyflavones, and one pentahydroxyflavone with the ligand-binding domain (LBD) of NR4A1 using direct-binding fluorescence and an isothermal titration calorimetry (ITC) assays. Flavone and the hydroxyflavones bound NR4A1, and their KD values ranged from 0.36 µM for 3,5,7-trihydroxyflavone (galangin) to 45.8 µM for 3'-hydroxyflavone. KD values determined using ITC and KD values for most (15/20) of the hydroxyflavones were decreased compared to those obtained using the fluorescence assay. The results of binding, transactivation and receptor-ligand modeling assays showed that KD values, transactivation data and docking scores for these compounds are highly variable with respect to the number and position of the hydroxyl groups on the flavone backbone structure, suggesting that hydroxyflavones are selective NR4A1 modulators. Nevertheless, the data show that hydroxyflavone-based neutraceuticals are NR4A1 ligands and that some of these compounds can now be repurposed and used to target sub-populations of patients that overexpress NR4A1.
Collapse
|
research-article |
1 |
|
124
|
Safe S, Kothari J, Hailemariam A, Upadhyay S, Davidson LA, Chapkin RS. Health Benefits of Coffee Consumption for Cancer and Other Diseases and Mechanisms of Action. Int J Mol Sci 2023; 24:2706. [PMID: 36769029 PMCID: PMC9916720 DOI: 10.3390/ijms24032706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] [Imported: 08/29/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide, and epidemiology studies associate higher coffee consumption with decreased rates of mortality and decreased rates of neurological and metabolic diseases, including Parkinson's disease and type 2 diabetes. In addition, there is also evidence that higher coffee consumption is associated with lower rates of colon and rectal cancer, as well as breast, endometrial, and other cancers, although for some of these cancers, the results are conflicting. These studies reflect the chemopreventive effects of coffee; there is also evidence that coffee consumption may be therapeutic for some forms of breast and colon cancer, and this needs to be further investigated. The mechanisms associated with the chemopreventive or chemotherapeutic effects of over 1000 individual compounds in roasted coffee are complex and may vary with different diseases. Some of these mechanisms may be related to nuclear factor erythroid 2 (Nrf2)-regulated pathways that target oxidative stress or pathways that induce reactive oxygen species to kill diseased cells (primarily therapeutic). There is evidence for the involvement of receptors which include the aryl hydrocarbon receptor (AhR) and orphan nuclear receptor 4A1 (NR4A1), as well as contributions from epigenetic pathways and the gut microbiome. Further elucidation of the mechanisms will facilitate the potential future clinical applications of coffee extracts for treating cancer and other inflammatory diseases.
Collapse
|
Review |
1 |
|
125
|
Shrestha R, Mohankumar K, Safe S. Bis-indole derived nuclear receptor 4A1 (NR4A1) antagonists inhibit TGFβ-induced invasion of embryonal rhabdomyosarcoma cells. Am J Cancer Res 2020; 10:2495-2509. [PMID: 32905449 PMCID: PMC7471359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023] [Imported: 08/29/2023] Open
Abstract
Transforming growth factor β (TGFβ) enhances invasion of breast and lung cancer cells through phosphorylation-dependent nuclear export of the nuclear receptor 4A1 (NR4A1, Nur77). This response is inhibited by the NR4A1 antagonist 1,1-bis(3'-indoly)-1-(p-hydroxyphenyl) methane (CDIM8) and we hypothesized that similar effects would be observed in Rhabdomyosarcoma (RMS) cells. Although some kinase inhibitors block TGFβ-induced invasion of embryonal RMS (ERMS) cells, the mechanism differs from breast and lung cancer cells since NR4A1 is extranuclear in ERMS cells. However, CDIM8 blocks basal and TGFβ-induced invasion of RD and SMS-CTR ERMS cell lines but not Rh30 alveolar RMS (ARMS) cells. Moreover, this response in ERMS cells was independent of SMAD7 degradation or activation of SMAD2/SMAD3. β-Catenin silencing decreased ERMS cell invasion and CDIM8 induced proteasome-independent downregulation of β-catenin. The novel mechanism of CDIM8-mediated inhibition of basal and TGFβ-induced ERMS cell invasion was due to activation of the Bcl-2-NR4A1 complex, mitochondrial disruption, induction of the tumor suppressor-like cytokine interleukin-24 (IL-24) which in turn downregulates β-catenin expression. Thus, the NR4A1 antagonist inhibits TGFβ-induced invasion of ERMS cells through initial targeting of cytosolic NR4A1.
Collapse
|
research-article |
4 |
|