1
|
Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Li X, Wan Abas WAB, Pingguan-Murphy B, Xu F. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. LAB ON A CHIP 2016; 16:611-21. [PMID: 26759062 DOI: 10.1039/c5lc01388g] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] [Imported: 03/07/2025]
Abstract
With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
Collapse
|
|
9 |
211 |
2
|
Choi JR, Yong KW, Choi JY, Nilghaz A, Lin Y, Xu J, Lu X. Black Phosphorus and its Biomedical Applications. Theranostics 2018; 8:1005-1026. [PMID: 29463996 PMCID: PMC5817107 DOI: 10.7150/thno.22573] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/14/2017] [Indexed: 12/22/2022] [Imported: 08/29/2023] Open
Abstract
Black phosphorus (BP), also known as phosphorene, has attracted recent scientific attention since its first successful exfoliation in 2014 owing to its unique structure and properties. In particular, its exceptional attributes, such as the excellent optical and mechanical properties, electrical conductivity and electron-transfer capacity, contribute to its increasing demand as an alternative to graphene-based materials in biomedical applications. Although the outlook of this material seems promising, its practical applications are still highly challenging. In this review article, we discuss the unique properties of BP, which make it a potential platform for biomedical applications compared to other 2D materials, including graphene, molybdenum disulphide (MoS2), tungsten diselenide (WSe2) and hexagonal boron nitride (h-BN). We then introduce various synthesis methods of BP and review its latest progress in biomedical applications, such as biosensing, drug delivery, photoacoustic imaging and cancer therapies (i.e., photothermal and photodynamic therapies). Lastly, the existing challenges and future perspective of BP in biomedical applications are briefly discussed.
Collapse
|
Review |
7 |
193 |
3
|
Cao L, Cui X, Hu J, Li Z, Choi JR, Yang Q, Lin M, Ying Hui L, Xu F. Advances in digital polymerase chain reaction (dPCR) and its emerging biomedical applications. Biosens Bioelectron 2016; 90:459-474. [PMID: 27818047 DOI: 10.1016/j.bios.2016.09.082] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 12/18/2022] [Imported: 03/07/2025]
Abstract
Since the invention of polymerase chain reaction (PCR) in 1985, PCR has played a significant role in molecular diagnostics for genetic diseases, pathogens, oncogenes and forensic identification. In the past three decades, PCR has evolved from end-point PCR, through real-time PCR, to its current version, which is the absolute quantitive digital PCR (dPCR). In this review, we first discuss the principles of all key steps of dPCR, i.e., sample dispersion, amplification, and quantification, covering commercialized apparatuses and other devices still under lab development. We highlight the advantages and disadvantages of different technologies based on these steps, and discuss the emerging biomedical applications of dPCR. Finally, we provide a glimpse of the existing challenges and future perspectives for dPCR.
Collapse
|
Review |
9 |
169 |
4
|
Choi JR. Development of Point-of-Care Biosensors for COVID-19. Front Chem 2020; 8:517. [PMID: 32574316 PMCID: PMC7267686 DOI: 10.3389/fchem.2020.00517] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] [Imported: 08/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) outbreak has become a global pandemic. The deleterious effects of coronavirus have prompted the development of diagnostic tools to manage the spread of disease. While conventional technologies such as quantitative real time polymerase chain reaction (qRT-PCR) have been broadly used to detect COVID-19, they are time-consuming, labor-intensive and are unavailable in remote settings. Point-of-care (POC) biosensors, including chip-based and paper-based biosensors are typically low-cost and user-friendly, which offer tremendous potential for rapid medical diagnosis. This mini review article discusses the recent advances in POC biosensors for COVID-19. First, the development of POC biosensors which are made of polydimethylsiloxane (PDMS), papers, and other flexible materials such as textile, film, and carbon nanosheets are reviewed. The advantages of each biosensors along with the commercially available COVID-19 biosensors are highlighted. Lastly, the existing challenges and future perspectives of developing robust POC biosensors to rapidly identify and manage the spread of COVID-19 are briefly discussed.
Collapse
|
Review |
5 |
146 |
5
|
Choi JR, Yong KW, Choi JY, Cowie AC. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques 2019; 66:40-53. [PMID: 30730212 DOI: 10.2144/btn-2018-0083] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] [Imported: 03/07/2025] Open
Abstract
Photo-crosslinkable hydrogels have recently attracted significant scientific interest. Their properties can be manipulated in a spatiotemporal manner through exposure to light to achieve the desirable functionality for various biomedical applications. This review article discusses the recent advances of the most common photo-crosslinkable hydrogels, including poly(ethylene glycol) diacrylate, gelatin methacryloyl and methacrylated hyaluronic acid, for various biomedical applications. We first highlight the advantages of photopolymerization and discuss diverse photosensitive systems used for the synthesis of photo-crosslinkable hydrogels. We then introduce their synthesis methods and review their latest state of development in biomedical applications, including tissue engineering and regenerative medicine, drug delivery, cancer therapies and biosensing. Lastly, the existing challenges and future perspectives of engineering photo-crosslinkable hydrogels for biomedical applications are briefly discussed.
Collapse
|
|
6 |
144 |
6
|
Tang R, Yang H, Gong Y, You M, Liu Z, Choi JR, Wen T, Qu Z, Mei Q, Xu F. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. LAB ON A CHIP 2017; 17:1270-1279. [PMID: 28271104 DOI: 10.1039/c6lc01586g] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] [Imported: 03/07/2025]
Abstract
Nucleic acid testing (NAT) has been widely used for disease diagnosis, food safety control and environmental monitoring. At present, NAT mainly involves nucleic acid extraction, amplification and detection steps that heavily rely on large equipment and skilled workers, making the test expensive, time-consuming, and thus less suitable for point-of-care (POC) applications. With advances in paper-based microfluidic technologies, various integrated paper-based devices have recently been developed for NAT, which however require off-chip reagent storage, complex operation steps and equipment-dependent nucleic acid amplification, restricting their use for POC testing. To overcome these challenges, we demonstrate a fully disposable and integrated paper-based sample-in-answer-out device for NAT by integrating nucleic acid extraction, helicase-dependent isothermal amplification and lateral flow assay detection into one paper device. This simple device allows on-chip dried reagent storage and equipment-free nucleic acid amplification with simple operation steps, which could be performed by untrained users in remote settings. The proposed device consists of a sponge-based reservoir and a paper-based valve for nucleic acid extraction, an integrated battery, a PTC ultrathin heater, temperature control switch and on-chip dried enzyme mix storage for isothermal amplification, and a lateral flow test strip for naked-eye detection. It can sensitively detect Salmonella typhimurium, as a model target, with a detection limit of as low as 102 CFU ml-1 in wastewater and egg, and 103 CFU ml-1 in milk and juice in about an hour. This fully disposable and integrated paper-based device has great potential for future POC applications in resource-limited settings.
Collapse
|
|
8 |
135 |
7
|
Choi JR, Pingguan-Murphy B, Wan Abas WAB, Noor Azmi MA, Omar SZ, Chua KH, Wan Safwani WKZ. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells. Biochem Biophys Res Commun 2014; 448:218-24. [PMID: 24785372 DOI: 10.1016/j.bbrc.2014.04.096] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 01/09/2023] [Imported: 03/07/2025]
Abstract
Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O2 tension on their functional properties has not been well determined. In this study, we investigated the effects of O2 tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O2) and hypoxia (2% O2). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O2 tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
112 |
8
|
Rapid detection of clenbuterol in milk using microfluidic paper-based ELISA. Food Chem 2018; 246:437-441. [PMID: 29291870 DOI: 10.1016/j.foodchem.2017.12.022] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/16/2022] [Imported: 03/07/2025]
|
|
7 |
108 |
9
|
Choi JR, Tang R, Wang S, Wan Abas WAB, Pingguan-Murphy B, Xu F. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens Bioelectron 2015; 74:427-39. [PMID: 26164488 DOI: 10.1016/j.bios.2015.06.065] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/15/2015] [Accepted: 06/27/2015] [Indexed: 01/04/2023] [Imported: 03/07/2025]
Abstract
Nucleic acid testing (NAT), as a molecular diagnostic technique, including nucleic acid extraction, amplification and detection, plays a fundamental role in medical diagnosis for timely medical treatment. However, current NAT technologies require relatively high-end instrumentation, skilled personnel, and are time-consuming. These drawbacks mean conventional NAT becomes impractical in many resource-limited disease-endemic settings, leading to an urgent need to develop a fast and portable NAT diagnostic tool. Paper-based devices are typically robust, cost-effective and user-friendly, holding a great potential for NAT at the point of care. In view of the escalating demand for the low cost diagnostic devices, we highlight the beneficial use of paper as a platform for NAT, the current state of its development, and the existing challenges preventing its widespread use. We suggest a strategy involving integrating all three steps of NAT into one single paper-based sample-to-answer diagnostic device for rapid medical diagnostics in the near future.
Collapse
|
Review |
10 |
91 |
10
|
Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Yang H, Qu Z, Pingguan-Murphy B, Xu F. Polydimethylsiloxane-Paper Hybrid Lateral Flow Assay for Highly Sensitive Point-of-Care Nucleic Acid Testing. Anal Chem 2016; 88:6254-64. [PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] [Imported: 03/07/2025]
Abstract
In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
81 |
11
|
Choi JR, Yong KW, Choi JY, Cowie AC. Emerging Point-of-care Technologies for Food Safety Analysis. SENSORS (BASEL, SWITZERLAND) 2019; 19:E817. [PMID: 30781554 PMCID: PMC6412947 DOI: 10.3390/s19040817] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023] [Imported: 03/07/2025]
Abstract
Food safety issues have recently attracted public concern. The deleterious effects of compromised food safety on health have rendered food safety analysis an approach of paramount importance. While conventional techniques such as high-performance liquid chromatography and mass spectrometry have traditionally been utilized for the detection of food contaminants, they are relatively expensive, time-consuming and labor intensive, impeding their use for point-of-care (POC) applications. In addition, accessibility of these tests is limited in developing countries where food-related illnesses are prevalent. There is, therefore, an urgent need to develop simple and robust diagnostic POC devices. POC devices, including paper- and chip-based devices, are typically rapid, cost-effective and user-friendly, offering a tremendous potential for rapid food safety analysis at POC settings. Herein, we discuss the most recent advances in the development of emerging POC devices for food safety analysis. We first provide an overview of common food safety issues and the existing techniques for detecting food contaminants such as foodborne pathogens, chemicals, allergens, and toxins. The importance of rapid food safety analysis along with the beneficial use of miniaturized POC devices are subsequently reviewed. Finally, the existing challenges and future perspectives of developing the miniaturized POC devices for food safety monitoring are briefly discussed.
Collapse
|
Review |
6 |
73 |
12
|
Choi JR, Hu J, Gong Y, Feng S, Wan Abas WAB, Pingguan-Murphy B, Xu F. An integrated lateral flow assay for effective DNA amplification and detection at the point of care. Analyst 2018; 141:2930-9. [PMID: 27010033 DOI: 10.1039/c5an02532j] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] [Imported: 03/07/2025]
Abstract
Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
73 |
13
|
Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci Rep 2015; 5:9596. [PMID: 25872464 PMCID: PMC4397835 DOI: 10.1038/srep09596] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/04/2015] [Indexed: 12/17/2022] [Imported: 03/07/2025] Open
Abstract
Cryopreservation represents an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs) and allows pooling of cells via long-term storage for clinical applications, e.g., cell-based therapies. It is crucial to reduce freezing injury during the cryopreservation process by loading the ASCs with the optimum concentration of suitable cryoprotective agents (CPAs). In this study, human ASCs were preserved for 3 months in different combinations of CPAs, including 1) 0.25 M trehalose; 2) 5% dimethylsulfoxide (DMSO); 3) 10% DMSO; 4) 5% DMSO + 20% fetal bovine serum (FBS); 5) 10% DMSO + 20% FBS; 6) 10% DMSO + 90% FBS. Interestingly, even with a reduction of DMSO to 5% and without FBS, cryopreserved ASCs maintained high cell viability comparable with standard cryomedium (10% DMSO + 90% FBS), with normal cell phenotype and proliferation rate. Cryopreserved ASCs also maintained their differentiation capability (e.g., to adipocytes, osteocytes and chondrocytes) and showed an enhanced expression level of stemness markers (e.g., NANOG, OCT-4, SOX-2 and REX-1). Our findings suggest that 5% DMSO without FBS may be an ideal CPA for an efficient long-term cryopreservation of human ASCs. These results aid in establishing standardized xeno-free long-term cryopreservation of human ASCs for clinical applications.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
72 |
14
|
Tang R, Yang H, Choi JR, Gong Y, Hu J, Feng S, Pingguan-Murphy B, Mei Q, Xu F. Improved sensitivity of lateral flow assay using paper-based sample concentration technique. Talanta 2016; 152:269-76. [PMID: 26992520 DOI: 10.1016/j.talanta.2016.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 11/29/2022] [Imported: 03/07/2025]
Abstract
Lateral flow assays (LFAs) hold great promise for point-of-care testing, especially in resource-poor settings. However, the poor sensitivity of LFAs limits their widespread applications. To address this, we developed a novel device by integrating dialysis-based concentration method into LFAs. The device successfully achieved 10-fold signal enhancement in Human Immunodeficiency Virus (HIV) nucleic acid detection with a detection limit of 0.1 nM and 4-fold signal enhancement in myoglobin (MYO) detection with a detection limit of 1.56 ng/mL in less than 25 min. This simple, low-cost and portable integrated device holds great potential for highly sensitive detection of various target analytes for medical diagnostics, food safety analysis and environmental monitoring.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
68 |
15
|
Choi JR, Hu J, Feng S, Wan Abas WAB, Pingguan-Murphy B, Xu F. Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device. Biosens Bioelectron 2015; 79:98-107. [PMID: 26700582 DOI: 10.1016/j.bios.2015.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 12/30/2022] [Imported: 03/07/2025]
Abstract
Lateral flow assays (LFAs) have currently attracted broad interest for point-of-care (POC) diagnostics, but their application has been restricted by poor quantification and limited sensitivity. While the former has been currently solved to some extent by the development of handheld or smartphone-based readers, the latter has not been addressed fully, particularly the potential influences of environmental conditions (e.g., temperature and relative humidity (RH)), which have not yet received serious attention. The present study reports the use of a portable temperature-humidity control device to provide an optimum environmental requirement for sensitivity improvement in LFAs, followed by quantification by using a smartphone. We found that a RH beyond 60% with temperatures of 55-60°C and 37-40°C produced optimum nucleic acid hybridization and antigen-antibody interaction in LFAs, respectively representing a 10-fold and 3-fold signal enhancement over ambient conditions (25°C, 60% RH). We envision that in the future the portable device could be coupled with a fully integrated paper-based sample-to-answer biosensor for sensitive detection of various target analytes in POC settings.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
65 |
16
|
Tang RH, Yang H, Choi JR, Gong Y, Feng SS, Pingguan-Murphy B, Huang QS, Shi JL, Mei QB, Xu F. Advances in paper-based sample pretreatment for point-of-care testing. Crit Rev Biotechnol 2016; 37:411-428. [PMID: 27075621 DOI: 10.3109/07388551.2016.1164664] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] [Imported: 03/07/2025]
|
|
9 |
64 |
17
|
Choi JR, Yong KW, Tang R, Gong Y, Wen T, Yang H, Li A, Chia YC, Pingguan-Murphy B, Xu F. Lateral Flow Assay Based on Paper-Hydrogel Hybrid Material for Sensitive Point-of-Care Detection of Dengue Virus. Adv Healthc Mater 2017; 6. [PMID: 27860384 DOI: 10.1002/adhm.201600920] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/09/2016] [Indexed: 11/09/2022] [Imported: 03/07/2025]
Abstract
Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications.
Collapse
|
Journal Article |
8 |
60 |
18
|
Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] [Imported: 03/07/2025]
|
|
8 |
58 |
19
|
Rasmi Y, Li X, Khan J, Ozer T, Choi JR. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal Bioanal Chem 2021; 413:4137-4159. [PMID: 34008124 PMCID: PMC8130795 DOI: 10.1007/s00216-021-03377-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is currently a serious global health threat. While conventional laboratory tests such as quantitative real-time polymerase chain reaction (qPCR), serology tests, and chest computerized tomography (CT) scan allow diagnosis of COVID-19, these tests are time-consuming and laborious, and are limited in resource-limited settings or developing countries. Point-of-care (POC) biosensors such as chip-based and paper-based biosensors are typically rapid, portable, cost-effective, and user-friendly, which can be used for COVID-19 in remote settings. The escalating demand for rapid diagnosis of COVID-19 presents a strong need for a timely and comprehensive review on the POC biosensors for COVID-19 that meet ASSURED criteria: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end users. In the present review, we discuss the importance of rapid and early diagnosis of COVID-19 and pathogenesis of COVID-19 along with the key diagnostic biomarkers. We critically review the most recent advances in POC biosensors which show great promise for the detection of COVID-19 based on three main categories: chip-based biosensors, paper-based biosensors, and other biosensors. We subsequently discuss the key benefits of these biosensors and their use for the detection of antigen, antibody, and viral nucleic acids. The commercial POC biosensors for COVID-19 are critically compared. Finally, we discuss the key challenges and future perspectives of developing emerging POC biosensors for COVID-19. This review would be very useful for guiding strategies for developing and commercializing rapid POC tests to manage the spread of infections.Graphical abstract.
Collapse
|
Review |
4 |
55 |
20
|
Choi JR, Yong KW, Wan Safwani WKZ. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci 2017; 74:2587-2600. [PMID: 28224204 PMCID: PMC11107561 DOI: 10.1007/s00018-017-2484-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022] [Imported: 08/29/2023]
Abstract
Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.
Collapse
|
Review |
8 |
54 |
21
|
Yong KW, Wan Safwani WKZ, Xu F, Wan Abas WAB, Choi JR, Pingguan-Murphy B. Cryopreservation of Human Mesenchymal Stem Cells for Clinical Applications: Current Methods and Challenges. Biopreserv Biobank 2016; 13:231-9. [PMID: 26280501 DOI: 10.1089/bio.2014.0104] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] [Imported: 03/07/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
Collapse
|
Review |
9 |
53 |
22
|
Yew CHT, Azari P, Choi JR, Li F, Pingguan-Murphy B. Electrospin-coating of nitrocellulose membrane enhances sensitivity in nucleic acid-based lateral flow assay. Anal Chim Acta 2018; 1009:81-88. [PMID: 29422135 DOI: 10.1016/j.aca.2018.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 11/18/2022] [Imported: 03/07/2025]
Abstract
Point-of-care biosensors are important tools developed to aid medical diagnosis and testing, food safety and environmental monitoring. Paper-based biosensors, especially nucleic acid-based lateral flow assays (LFA), are affordable, simple to produce and easy to use in remote settings. However, the sensitivity of such assays to infectious diseases has always been a restrictive challenge. Here, we have successfully electrospun polycaprolactone (PCL) on nitrocellulose (NC) membrane to form a hydrophobic coating to reduce the flow rate and increase the interaction rate between the targets and gold nanoparticles-detecting probes conjugates, resulting in the binding of more complexes to the capture probes. With this approach, the sensitivity of the PCL electrospin-coated test strip has been increased by approximately ten-fold as compared to the unmodified test strip. As a proof of concept, this approach holds great potential for sensitive detection of targets at point-of-care testing.
Collapse
|
Journal Article |
7 |
49 |
23
|
Choi JR, Yong KW, Choi JY. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering. J Cell Physiol 2017; 233:1913-1928. [PMID: 28542924 DOI: 10.1002/jcp.26018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] [Imported: 03/07/2025]
Abstract
Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair.
Collapse
|
Review |
8 |
48 |
24
|
Mesenchymal Stem Cell Therapy for Ischemic Tissues. Stem Cells Int 2018; 2018:8179075. [PMID: 30402112 PMCID: PMC6196793 DOI: 10.1155/2018/8179075] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/01/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] [Imported: 03/07/2025] Open
Abstract
Ischemic diseases such as myocardial infarction, ischemic stroke, and critical limb ischemia are immense public health challenges. Current pharmacotherapy and surgical approaches are insufficient to completely heal ischemic diseases and are associated with a considerable risk of adverse effects. Alternatively, human mesenchymal stem cells (hMSCs) have been shown to exhibit immunomodulation, angiogenesis, and paracrine secretion of bioactive factors that can attenuate inflammation and promote tissue regeneration, making them a promising cell source for ischemic disease therapy. This review summarizes the pathogenesis of ischemic diseases, discusses the potential therapeutic effects and mechanisms of hMSCs for these diseases, and provides an overview of challenges of using hMSCs clinically for treating ischemic diseases.
Collapse
|
Review |
7 |
48 |
25
|
Choi JR, Pingguan-Murphy B, Wan Abas WAB, Yong KW, Poon CT, Noor Azmi MA, Omar SZ, Chua KH, Xu F, Wan Safwani WKZ. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS One 2015; 10:e0115034. [PMID: 25615717 PMCID: PMC4304807 DOI: 10.1371/journal.pone.0115034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 11/18/2014] [Indexed: 12/25/2022] [Imported: 03/07/2025] Open
Abstract
Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
48 |