1
|
Choi JR, Yong KW, Choi JY, Nilghaz A, Lin Y, Xu J, Lu X. Black Phosphorus and its Biomedical Applications. Theranostics 2018; 8:1005-1026. [PMID: 29463996 PMCID: PMC5817107 DOI: 10.7150/thno.22573] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/14/2017] [Indexed: 12/22/2022] [Imported: 08/29/2023] Open
Abstract
Black phosphorus (BP), also known as phosphorene, has attracted recent scientific attention since its first successful exfoliation in 2014 owing to its unique structure and properties. In particular, its exceptional attributes, such as the excellent optical and mechanical properties, electrical conductivity and electron-transfer capacity, contribute to its increasing demand as an alternative to graphene-based materials in biomedical applications. Although the outlook of this material seems promising, its practical applications are still highly challenging. In this review article, we discuss the unique properties of BP, which make it a potential platform for biomedical applications compared to other 2D materials, including graphene, molybdenum disulphide (MoS2), tungsten diselenide (WSe2) and hexagonal boron nitride (h-BN). We then introduce various synthesis methods of BP and review its latest progress in biomedical applications, such as biosensing, drug delivery, photoacoustic imaging and cancer therapies (i.e., photothermal and photodynamic therapies). Lastly, the existing challenges and future perspective of BP in biomedical applications are briefly discussed.
Collapse
|
Review |
7 |
193 |
2
|
Choi JR. Development of Point-of-Care Biosensors for COVID-19. Front Chem 2020; 8:517. [PMID: 32574316 PMCID: PMC7267686 DOI: 10.3389/fchem.2020.00517] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] [Imported: 08/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) outbreak has become a global pandemic. The deleterious effects of coronavirus have prompted the development of diagnostic tools to manage the spread of disease. While conventional technologies such as quantitative real time polymerase chain reaction (qRT-PCR) have been broadly used to detect COVID-19, they are time-consuming, labor-intensive and are unavailable in remote settings. Point-of-care (POC) biosensors, including chip-based and paper-based biosensors are typically low-cost and user-friendly, which offer tremendous potential for rapid medical diagnosis. This mini review article discusses the recent advances in POC biosensors for COVID-19. First, the development of POC biosensors which are made of polydimethylsiloxane (PDMS), papers, and other flexible materials such as textile, film, and carbon nanosheets are reviewed. The advantages of each biosensors along with the commercially available COVID-19 biosensors are highlighted. Lastly, the existing challenges and future perspectives of developing robust POC biosensors to rapidly identify and manage the spread of COVID-19 are briefly discussed.
Collapse
|
Review |
5 |
146 |
3
|
Rasmi Y, Li X, Khan J, Ozer T, Choi JR. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal Bioanal Chem 2021; 413:4137-4159. [PMID: 34008124 PMCID: PMC8130795 DOI: 10.1007/s00216-021-03377-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] [Imported: 08/29/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is currently a serious global health threat. While conventional laboratory tests such as quantitative real-time polymerase chain reaction (qPCR), serology tests, and chest computerized tomography (CT) scan allow diagnosis of COVID-19, these tests are time-consuming and laborious, and are limited in resource-limited settings or developing countries. Point-of-care (POC) biosensors such as chip-based and paper-based biosensors are typically rapid, portable, cost-effective, and user-friendly, which can be used for COVID-19 in remote settings. The escalating demand for rapid diagnosis of COVID-19 presents a strong need for a timely and comprehensive review on the POC biosensors for COVID-19 that meet ASSURED criteria: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end users. In the present review, we discuss the importance of rapid and early diagnosis of COVID-19 and pathogenesis of COVID-19 along with the key diagnostic biomarkers. We critically review the most recent advances in POC biosensors which show great promise for the detection of COVID-19 based on three main categories: chip-based biosensors, paper-based biosensors, and other biosensors. We subsequently discuss the key benefits of these biosensors and their use for the detection of antigen, antibody, and viral nucleic acids. The commercial POC biosensors for COVID-19 are critically compared. Finally, we discuss the key challenges and future perspectives of developing emerging POC biosensors for COVID-19. This review would be very useful for guiding strategies for developing and commercializing rapid POC tests to manage the spread of infections.Graphical abstract.
Collapse
|
Review |
4 |
55 |
4
|
Choi JR, Yong KW, Wan Safwani WKZ. Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications. Cell Mol Life Sci 2017; 74:2587-2600. [PMID: 28224204 PMCID: PMC11107561 DOI: 10.1007/s00018-017-2484-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022] [Imported: 08/29/2023]
Abstract
Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.
Collapse
|
Review |
8 |
54 |
5
|
Wan Safwani WKZ, Choi JR, Yong KW, Ting I, Mat Adenan NA, Pingguan-Murphy B. Hypoxia enhances the viability, growth and chondrogenic potential of cryopreserved human adipose-derived stem cells. Cryobiology 2017; 75:91-99. [PMID: 28108309 DOI: 10.1016/j.cryobiol.2017.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] [Imported: 08/29/2023]
Abstract
Cryopreservation is the only existing method of storage of human adipose-derived stem cells (ASCs) for clinical use. However, cryopreservation has been shown to be detrimental to ASCs, particularly in term of cell viability. To restore the viability of cryopreserved ASCs, it is proposed to culture the cells in a hypoxic condition. To this end, we aim to investigate the effect of hypoxia on the cryopreserved human ASCs in terms of not only cell viability, but also their growth and stemness properties, which have not been explored yet. In this study, human ASCs were cultured under four different conditions: fresh (non-cryopreserved) cells cultured in 1) normoxia (21% O2) and 2) hypoxia (2% O2) and cryopreserved cells cultured in 3) normoxia and 4) hypoxia. ASCs at passage 3 were subjected to assessment of viability, proliferation, differentiation, and expression of stemness markers and hypoxia-inducible factor-1 alpha (HIF-1α). We found that hypoxia enhances the viability and the proliferation rate of cryopreserved ASCs. Further, hypoxia upregulates HIF-1α in cryopreserved ASCs, which in turn activates chondrogenic genes to promote chondrogenic differentiation. In conclusion, hypoxic-preconditioned cryopreserved ASCs could be an ideal cell source for cartilage repair and regeneration.
Collapse
|
Journal Article |
8 |
47 |
6
|
Choi JR, Yong KW, Choi JY, Cowie AC. Single-Cell RNA Sequencing and Its Combination with Protein and DNA Analyses. Cells 2020; 9:cells9051130. [PMID: 32375335 PMCID: PMC7291268 DOI: 10.3390/cells9051130] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] [Imported: 08/29/2023] Open
Abstract
Heterogeneity in cell populations poses a significant challenge for understanding complex cell biological processes. The analysis of cells at the single-cell level, especially single-cell RNA sequencing (scRNA-seq), has made it possible to comprehensively dissect cellular heterogeneity and access unobtainable biological information from bulk analysis. Recent efforts have combined scRNA-seq profiles with genomic or proteomic data, and show added value in describing complex cellular heterogeneity than transcriptome measurements alone. With the rising demand for scRNA-seq for biomedical and clinical applications, there is a strong need for a timely and comprehensive review on the scRNA-seq technologies and their potential biomedical applications. In this review, we first discuss the latest state of development by detailing each scRNA-seq technology, including both conventional and microfluidic technologies. We then summarize their advantages and limitations along with their biomedical applications. The efforts of integrating the transcriptome profile with highly multiplexed proteomic and genomic data are thoroughly reviewed with results showing the integrated data being more informative than transcriptome data alone. Lastly, the latest progress toward commercialization, the remaining challenges, and future perspectives on the development of scRNA-seq technologies are briefly discussed.
Collapse
|
Review |
5 |
45 |
7
|
Yew CHT, Azari P, Choi JR, Muhamad F, Pingguan-Murphy B. Electrospun Polycaprolactone Nanofibers as a Reaction Membrane for Lateral Flow Assay. Polymers (Basel) 2018; 10:E1387. [PMID: 30961312 PMCID: PMC6401928 DOI: 10.3390/polym10121387] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] [Imported: 08/29/2023] Open
Abstract
Electrospun polycaprolactone (PCL) nanofibers have emerged as a promising material in diverse biomedical applications due to their various favorable features. However, their application in the field of biosensors such as point-of-care lateral flow assays (LFA) has not been investigated. The present study demonstrates the use of electrospun PCL nanofibers as a reaction membrane for LFA. Electrospun PCL nanofibers were treated with NaOH solution for different concentrations and durations to achieve a desirable flow rate and optimum detection sensitivity in nucleic acid-based LFA. It was observed that the concentration of NaOH does not affect the physical properties of nanofibers, including average fiber diameter, average pore size and porosity. However, interestingly, a significant reduction of the water contact angle was observed due to the generation of hydroxyl and carboxyl groups on the nanofibers, which increased their hydrophilicity. The optimally treated nanofibers were able to detect synthetic Zika viral DNA (as a model analyte) sensitively with a detection limit of 0.5 nM. Collectively, the benefits such as low-cost of fabrication, ease of modification, porous nanofibrous structures and tunability of flow rate make PCL nanofibers a versatile alternative to nitrocellulose membrane in LFA applications. This material offers tremendous potential for a broad range of point-of-care applications.
Collapse
|
research-article |
7 |
45 |
8
|
Rasmi Y, Saloua KS, Nemati M, Choi JR. Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1788. [PMID: 34361174 PMCID: PMC8308319 DOI: 10.3390/nano11071788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] [Imported: 08/29/2023]
Abstract
The COVID-19 pandemic is currently an unprecedented public health threat. The rapid spread of infections has led to calls for alternative approaches to combat the virus. Nanotechnology is taking root against SARS-CoV-2 through prevention, diagnostics and treatment of infections. In light of the escalating demand for managing the pandemic, a comprehensive review that highlights the role of nanomaterials in the response to the pandemic is highly desirable. This review article comprehensively discusses the use of nanotechnology for COVID-19 based on three main categories: prevention, diagnostics and treatment. We first highlight the use of various nanomaterials including metal nanoparticles, carbon-based nanoparticles and magnetic nanoparticles for COVID-19. We critically review the benefits of nanomaterials along with their applications in personal protective equipment, vaccine development, diagnostic device fabrication and therapeutic approaches. The remaining key challenges and future directions of nanomaterials for COVID-19 are briefly discussed. This review is very informative and helpful in providing guidance for developing nanomaterial-based products to fight against COVID-19.
Collapse
|
Review |
4 |
27 |
9
|
Yong KW, Choi JR, Dolbashid AS, Wan Safwani WKZ. Biosafety and bioefficacy assessment of human mesenchymal stem cells: what do we know so far? Regen Med 2018; 13:219-232. [PMID: 29509072 DOI: 10.2217/rme-2017-0078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] [Imported: 08/29/2023] Open
Abstract
An outstanding amount of resources has been used in research on manipulation of human stem cells, especially mesenchymal stem cells (MSCs), for various clinical applications. However, human MSCs have not been fully utilized in clinical applications due to restrictions with regard to their certain biosafety and bioefficacy concerns, for example, genetic abnormality, tumor formation, induction of host immune response and failure of homing and engraftment. This review summarizes the biosafety and bioefficacy assessment of human MSCs in terms of genetic stability, tumorigenicity, immunogenicity, homing and engraftment. The strategies used to reduce the biosafety concerns and improve the bioefficacy of human MSCs are highlighted. In addition, the approaches that can be implemented to improve their biosafety and bioefficacy assessment are briefly discussed.
Collapse
|
Review |
7 |
26 |
10
|
Yong KW, Choi JR, Choi JY, Cowie AC. Recent Advances in Mechanically Loaded Human Mesenchymal Stem Cells for Bone Tissue Engineering. Int J Mol Sci 2020; 21:E5816. [PMID: 32823645 PMCID: PMC7461207 DOI: 10.3390/ijms21165816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] [Imported: 08/29/2023] Open
Abstract
Large bone defects are a major health concern worldwide. The conventional bone repair techniques (e.g., bone-grafting and Masquelet techniques) have numerous drawbacks, which negatively impact their therapeutic outcomes. Therefore, there is a demand to develop an alternative bone repair approach that can address the existing drawbacks. Bone tissue engineering involving the utilization of human mesenchymal stem cells (hMSCs) has recently emerged as a key strategy for the regeneration of damaged bone tissues. However, the use of tissue-engineered bone graft for the clinical treatment of bone defects remains challenging. While the role of mechanical loading in creating a bone graft has been well explored, the effects of mechanical loading factors (e.g., loading types and regime) on clinical outcomes are poorly understood. This review summarizes the effects of mechanical loading on hMSCs for bone tissue engineering applications. First, we discuss the key assays for assessing the quality of tissue-engineered bone grafts, including specific staining, as well as gene and protein expression of osteogenic markers. Recent studies of the impact of mechanical loading on hMSCs, including compression, perfusion, vibration and stretching, along with the potential mechanotransduction signalling pathways, are subsequently reviewed. Lastly, we discuss the challenges and prospects of bone tissue engineering applications.
Collapse
|
Review |
5 |
17 |
11
|
Current Status and Perspectives of Human Mesenchymal Stem Cell Therapy. Stem Cells Int 2019; 2019:4762634. [PMID: 30984270 PMCID: PMC6431493 DOI: 10.1155/2019/4762634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] [Imported: 08/29/2023] Open
|
Editorial |
6 |
12 |
12
|
Choi JR, Somasundrum M, Shiddiky MJ, Surareungchai W, Hu Y, Qing Z. Editorial: Advances in Nucleic Acid-Based Biosensors and Imaging. Front Chem 2022; 10:925082. [PMID: 35685346 PMCID: PMC9171321 DOI: 10.3389/fchem.2022.925082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] [Imported: 08/29/2023] Open
|
|
3 |
2 |
13
|
Current Status and Perspectives of Human Mesenchymal Stem Cell Therapy 2020. Stem Cells Int 2022; 2022:9801358. [PMID: 35186092 PMCID: PMC8856818 DOI: 10.1155/2022/9801358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] [Imported: 08/29/2023] Open
|
|
3 |
|