126
|
Wen J, Yang Y, Zhang H, Wu W, Dai Z, Liang X, Chen S. PM2.5 increases the risk of early-onset COPD mediated by smoking and shared genes: a large-scale genetic analysis. Clin Exp Med 2025; 25:116. [PMID: 40220177 PMCID: PMC11993444 DOI: 10.1007/s10238-025-01644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] [Imported: 05/04/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of mortality worldwide. However, whether air pollutants can cause COPD remains unknown. Summary data for the genome-wide association study of each phenotype were obtained from the publicly available datasets. Using single-nucleotide polymorphisms as instrumental variables, we performed Mendelian randomization (MR) to assess the relationship among PM2.5, smoking and early-onset COPD. A large-scale genetic analysis is performed to investigate the biological pathways. In MR, exposure to higher PM2.5 increased the risk of early-onset COPD (IVW, OR (95% CI) = 1.63 (1.15, 2.31), p = 5.60E-03) but had no association with later-onset COPD. In addition, cigarettes per day (IVW, OR (95% CI) = 1.71 (1.46, 1.99), p = 1.60E-11) was positively associated with the risk of early-onset COPD, while age of smoking initiation (IVW, OR (95% CI) = 0.39 (0.27, 0.57), p = 1.21E-06) had a negative effect. In addition, two smoking behaviors could be mediators between PM2.5 and early-onset COPD (p < 0.05). Furthermore, 136 significantly enriched biological pathways of PM2.5 potentially causing early-onset COPD were identified in a large-scale genetic analysis. This study provides strong evidence that exposure to higher PM2.5 was causally associated with smoking behavior and early-onset COPD. Smoking behavior acted as a mediator between PM2.5 and early-onset COPD. More attention should be given to people exposed to higher PM2.5 for the prevention of smoking and COPD.
Collapse
|
research-article |
1 |
|
127
|
Zhang H, Wang R, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Feng S, Peng Y, Liu Z, Cheng Q. Molecular insight into pentraxin-3: Update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [PMID: 36240615 DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] [Imported: 01/12/2025] Open
Abstract
Pentraxin-3 (PTX3) is the prototype of the long pentraxin subfamily, an acute-phase protein consisting of a C-terminal pentraxin domain and a unique N-terminal domain. PTX3 was initially isolated from human umbilical vein endothelial cells and human FS-4 fibroblasts. It was subsequently found to be also produced by synoviocytes, chondrocytes, osteoblasts, smooth muscle cells, myeloid dendritic cells, epithelial cells, and tumor cells. Various modulatory factors, such as miRNAs, cytokines, drugs, and hypoxic conditions, could regulate the expression level of PTX3. PTX3 is essential in regulating innate immunity, inflammation, angiogenesis, and tissue remodeling. Besides, PTX3 may play dual (pro-tumor and anti-tumor) roles in oncogenesis. PTX3 is involved in the occurrence and development of many non-cancerous diseases, including COVID-19, and might be a potential biomarker indicating the prognosis, activity,and severity of diseases. In this review, we summarize and discuss the potential roles of PTX3 in the oncogenesis and pathogenesis of non-cancerous diseases and potential targeted therapies based on PTX3.
Collapse
|
Review |
3 |
|
128
|
He J, Wang S, Liu H, Duan C, Zhang H, Wen F, Zhang C. Competing risk analysis of cardiovascular death in breast cancer: evidence from the SEER database. Transl Cancer Res 2023; 12:3591-3603. [PMID: 38192997 PMCID: PMC10774043 DOI: 10.21037/tcr-23-1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/18/2023] [Indexed: 01/10/2024] [Imported: 01/12/2025]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death for all non-cancer deaths among breast cancer (BC) patients. The aim of this study was to investigate the risk of cardiovascular mortality (CVM) in patients with BC. METHODS Patients diagnosed with primary BC between 2010 and 2018 were identified through the Surveillance, Epidemiology and End Results (SEER) database. The standardized mortality ratio (SMR) for CVD was calculated to compare the CVM of BC patients with that of the general population. Multivariate competing risk models were performed to identify predictors of CVM in BC patients. RESULTS Overall, 399,014 BC patients were included from the SEER database, of whom 7,023 (1.8%) suffered death from CVD. The significantly higher overall SMR of CVM was observed in BC patients [SMR =4.84, 95% confidence interval (CI): 4.72-4.95]. Multivariate competing risk regression analysis revealed that age, race, American Joint Committee on Cancer (AJCC) stage, year of diagnosis, estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal growth factor receptor 2 (HER2) status, BC subtype, surgery, chemotherapy, radiation therapy, and median household income as independent predictors of CVM in BC patients. CONCLUSIONS Compared to the general population, BC patients have a higher risk of experiencing CVM during the follow-up period after diagnosis. Early detection and intervention of cardiovascular risk factors would improve overall survival (OS) of BC patients.
Collapse
|
research-article |
2 |
|
129
|
Wang F, Yue J, Zhang M, Sun M, Luo X, Zhang H, Wu Y, Cheng Y, Chen J, Huang N. NPRL2 promotes TRIM16-mediated ubiquitination degradation of Galectin-3 to prevent CD8 +T lymphocyte cuproptosis in glioma. Cell Mol Life Sci 2024; 81:424. [PMID: 39367988 PMCID: PMC11456027 DOI: 10.1007/s00018-024-05454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] [Imported: 01/12/2025]
Abstract
BACKGROUND Our previous study found that tumor suppressor nitrogen permease regulator like-2(NPRL2) is frequently downregulated in glioma, leading to malignant growth. However, NPRL2-mediated crosstalk between tumor cells and immune cells remains unclear. METHODS The regulatory effects of NPRL2 on tripartite motif-containing protein 16(TRIM16) dependent ubiquitination degradation of Galectin-3(Gal-3) were explored. The effects of Gal-3 on copper uptake, immunocompetence and cuproptosis were investigated in CD8+T lymphocytes(CD8+T cells). The ability of NPRL2 to protect CD8+T cells from Gal-3 damage was evaluated. Furthermore, the correlations among NPRL2, TRIM16, Gal-3 and CD8+T cell accumulation were analyzed in glioma clinical specimens. RESULTS NPRL2 increased the TRIM16 expression via inactivation of ERK1/2, which in turn promoted the ubiquitination-mediated degradation of Gal-3 and diminished Gal-3 release from glioma cells. Moreover, Gal-3 accelerated copper uptake and triggered cuproptosis in CD8+T cells, whereas NPRL2 increased CD8+T cell recruitment and prevented impairment of CD8+T cells by Gal-3. Clinical samples revealed that NPRL2 expression was positively associated with TRIM16 expression and negatively correlated with Gal-3, but Gal-3 expression was negatively associated with CD8+T cell accumulation. CONCLUSION Glioma-derived NPRL2/TRIM16/Gal-3 axis participates in the regulation of CD8+T cell cuproptosis, which provides a promising strategy to rescue the immune activity of CD8+T cells and reverse immunosuppression in glioma.
Collapse
|
research-article |
1 |
|
130
|
Yang DN, Geng S, Jing R, Zhang H. Recent Developments in Personal Glucose Meters as Point-of-Care Testing Devices (2020-2024). BIOSENSORS 2024; 14:419. [PMID: 39329794 PMCID: PMC11430212 DOI: 10.3390/bios14090419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] [Imported: 01/12/2025]
Abstract
Point-of-care testing (POCT) is a contemporary diagnostic approach characterized by its user-friendly nature, cost efficiency, environmental compatibility, and lack of reliance on professional experts. Therefore, it is widely used in clinical diagnosis and other analytical testing fields to meet the demand for rapid and convenient testing. The application of POCT technology not only improves testing efficiency, but also brings convenience and benefits to the healthcare industry. The personal glucose meter (PGM) is a highly successful commercial POCT tool that has been widely used not only for glucose analysis, but also for non-glucose target detection. In this review, the recent advances from 2020 to 2024 in non-glucose target analysis for PGMs as POCT devices are summarized. The signal transduction strategies for non-glucose target analysis based on PGMs, including enzymatic transduction, nanocarrier transduction (enzyme or glucose), and glucose consumption transduction are briefly introduced. Meanwhile, the applications of PGMs in non-glucose target analysis are outlined, encompassing biomedical, environmental, and food analysis, along with other diverse applications. Finally, the prospects of and obstacles to employing PGMs as POCT tools for non-glucose target analysis are discussed.
Collapse
|
Review |
1 |
|
131
|
Yang DN, Wu SY, Deng HY, Zhang H, Shi S, Geng S. Blood Coagulation-Inspired Fibrin Hydrogel for Portable Detection of Thrombin Based on Personal Glucometer. BIOSENSORS 2024; 14:250. [PMID: 38785724 PMCID: PMC11118845 DOI: 10.3390/bios14050250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] [Imported: 01/12/2025]
Abstract
As one of the biomarkers of coagulation system-related diseases, the detection of thrombin is of practical importance. Thus, this study developed a portable biosensor based on a personal glucometer for rapid detection of thrombin activity. Fibrinogen was used for the detection of thrombin, and the assay principle was inspired by the blood coagulation process, where thrombin hydrolyzes fibrinogen to produce a fibrin hydrogel, and the amount of invertase encapsulated in the fibrin hydrogel fluctuates in accordance with the activity of thrombin in the sample solution. The quantitative assay is conducted by measuring the amount of unencapsulated invertase available to hydrolyze the substrate sucrose, and the signal readout is recorded using a personal glucometer. A linear detection range of 0-0.8 U/mL of thrombin with a limit of detection of 0.04 U/mL was obtained based on the personal glucometer sensing platform. The results of the selectivity and interference experiments showed that the developed personal glucometer sensing platform is highly selective and accurate for thrombin activity. Finally, the reliability of the portable glucometer method for rapid thrombin detection in serum samples was investigated by measuring the recovery rate, which ranged from 92.8% to 107.7%. In summary, the fibrin hydrogel sensing platform proposed in this study offers a portable and versatile means for detecting thrombin using a personal glucometer. This approach not only simplifies the detection process, but also eliminates the need for large instruments and skilled operators, and substantially reduces detection costs.
Collapse
|
research-article |
1 |
|
132
|
Zhang H, Cao H, Luo H, Zhang N, Wang Z, Dai Z, Wu W, Liu G, Xie Z, Cheng Q, Cheng Y. RUNX1/CD44 axis regulates the proliferation, migration, and immunotherapy of gliomas: A single-cell sequencing analysis. Front Immunol 2023; 14:1086280. [PMID: 36776876 PMCID: PMC9909339 DOI: 10.3389/fimmu.2023.1086280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] [Imported: 09/06/2023] Open
Abstract
BACKGROUND Glioma is one of the most common, primary, and lethal adult brain tumors because of its extreme aggressiveness and poor prognosis. Several recent studies relevant to the immune function of CD44, a transmembrane glycoprotein as a significant hyaluronic acid receptor, have achieved great success, revealing the critical role of CD44 in immune infiltration in gliomas. The overexpression of CD44 has been verified to correlate with cancer aggressiveness and migration, while the clinical and immune features of CD44 expression have not yet been thoroughly characterized in gliomas. METHODS Molecular and clinical data of glioma collected from publicly available genomic databases were analyzed. RESULTS CD44 was up-expressed in malignant gliomas, notably in the 1p/19q non-codeletion cases, isocitrate dehydrogenase (IDH) wild-type, and mesenchymal subtypes in GBM samples. CD44 expression level strongly correlates with stromal and immune cells, mainly infiltrating the glioma microenvironment by single-cell sequencing analysis. Meanwhile, CD44 can be a promising biomarker in predicting immunotherapy responses and mediating the expression of PD-L1. Finally, RUNX1/CD44 axis could promote the proliferation and migration of gliomas. CONCLUSIONS Therefore, CD44 was responsible for glioma growth and progression. It could potentially lead to a novel target for glioma immunotherapy or a prognostic biomarker.
Collapse
|
research-article |
2 |
|
133
|
Zhang H, Fu QF, Zheng GC, Yang FQ. Modulation of Electroosmotic Flow in Open Tubular Capillary Electrochromatography by Chitosan-Assisted Titanium Oxide Nanoparticles Liquid Phase Deposition. Chromatographia 2019; 82:1383-1393. [DOI: 10.1007/s10337-019-03760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 11/24/2022] [Imported: 01/12/2025]
|
|
6 |
|
134
|
Mao J, Tan L, Tian C, Wang W, Zhang H, Zhu Z, Li Y. Hepatoprotective effect of syringin combined with costunolide against LPS-induced acute liver injury in L-02 cells via Rac1/AKT/NF-κB signaling pathway. Aging (Albany NY) 2023; 15:11994-12020. [PMID: 37916984 PMCID: PMC10683587 DOI: 10.18632/aging.205161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] [Imported: 01/12/2025]
Abstract
Acute liver injury (ALI) leads to abnormal liver function and damage to liver cells. Syringin (syr) and costunolide (cos) are the major extracts from Dolomiaea souliei (Franch.) C.Shih (D. souliei), showing diverse biological functions in various biological processes. We explored the underlying hepatoprotective effects of syr+cos against LPS-induced ALI. Cell viability and proliferation were assessed using an MTT assay and immunofluorescence staining. Flow cytometry analysis was used to detect cell cycle distribution and apoptosis. ELISA was utilized to measure liver function and antioxidant stress indexes. qRT-PCR and western blotting was performed to determine mRNA and protein levels respectively. Using shRNA approach to Rac1 analyzed transcriptional targets. The results showed that syr+cos promoted L-02 cell proliferation, inhibiting the cell apoptosis and blocking cell cycle in G1 and G2/M phase. Syr+cos decreased the production of ALT, AST, LDH, MDA and ROS while increased SOD and CAT activities. Pretreated with syr+cos may decrease expressions of caspase-3,7,9, NF-κB, TNF-α proteins, Cyclin B, CDK1 and p-IκB proteins while p-IκB increased. Silencing of Rac-1 may protect the liver by increasing AKT, S473, T308 and reducing p-AKT proteins. Syr+cos exhibits anti-ALI activity via Rac1/AKT/NF-κB signaling pathway which might act as an effective candidate drug for the treatment of ALI.
Collapse
|
research-article |
2 |
|
135
|
Yin N, Xie X, Li D, Yang S, Liu Y, Tang Y, Zhang H, Zhang W. tRF-Val-TAC-004 protects against renal ischemia-reperfusion injury via attenuating Apaf1-mediated apoptosis. iScience 2025; 28:111954. [PMID: 40104049 PMCID: PMC11914182 DOI: 10.1016/j.isci.2025.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] [Imported: 05/04/2025] Open
Abstract
tRNA-derived fragments (tRFs) play critical roles in cellular process, and we have previously reported that tRFs are involved in ischemia reperfusion injury induced acute kidney injury (IRI-AKI). However, the precise involvement of tRFs in IRI-AKI remains obscure. This study aims to elucidate the impact of tRF-Val-TAC-004 (tRF-Val) on IRI-AKI and uncover the underlying mechanisms. Our observations reveal a significant downregulation of tRF-Val in IRI-AKI mice and its overexpression mitigated renal dysfunction, morphological damage, and apoptosis in IRI-AKI mice, while its inhibition exacerbated these effects. Similar outcomes were replicated in CoCl2-treated BUMPT cells upon transfection with tRF-Val mimic or inhibitor. Mechanistically, dual-luciferase reporter assay and AGO-RIP qPCR analyses demonstrated that tRF-Val suppresses Apaf1 expression by targeting the 3'-UTR of Apaf1 mRNA. Furthermore, the protective efficacy of tRF-Val was notably weakened by Apaf1-overexpressing plasmids. In summary, these novel findings unveil the protective role of tRF-Val against IRI-AKI through inhibition of Apaf1-mediated apoptosis.
Collapse
|
|
1 |
|
136
|
Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Liang X, Zhang L, Peng Y, Luo P, Zhang J, Liu Z, Cheng Q, Liu Z. Pericyte mediates the infiltration, migration, and polarization of macrophages by CD163/MCAM axis in glioblastoma. iScience 2022; 25:104918. [PMID: 36093059 PMCID: PMC9460550 DOI: 10.1016/j.isci.2022.104918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 08/06/2022] [Indexed: 11/26/2022] [Imported: 09/06/2023] Open
Abstract
Microenvironment cells (MCs) play a critical role in tumor proliferation, progression, and metastasis. However, it has not been adequately addressed whether MCs could be used as a reliable prognostic marker in glioblastoma (GBM). In the current study, the cell pair (CP) score was constructed in 1137 GBM samples based on the cell pair algorithm and Gaussian finite mixture model (GMM) and was verified in 73 GBM samples from the Xiangya cohort. CP score predicted GBM patients' survival and response to anti-PD-1 treatment with high sensitivity. Macrophage markers CD68 and CD163 were co-expressed with pericyte markers MCAM and MG2. Pericyte could mediate the infiltration, migration, and M2 type polarization of macrophages by MCAM. The CP score was a valuable tool for predicting survival outcomes and guiding immunotherapy for GBM patients. Cell pair pericyte/macrophage and gene pair CD163/MCAM were biologically significant in the tumor microenvironment of GBM.
Collapse
|
research-article |
3 |
|
137
|
Wang J, Li Y, Wang X, Yang X, Yang Y, Zhang H. Exploring Protein A Immunoadsorption for Autoimmune Hemolytic Anemia with Hyper-IgG4emia. AMERICAN JOURNAL OF CASE REPORTS 2025; 26:e945746. [PMID: 40211490 PMCID: PMC11997903 DOI: 10.12659/ajcr.945746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/19/2025] [Indexed: 04/17/2025] [Imported: 05/13/2025]
Abstract
BACKGROUND Autoimmune hemolytic anemia (AIHA) is a hemolytic anemia characterized by autoantibodies against red blood cells. Patients with AIHA can have 4 subtypes of IgG-type red blood cell antibodies: IgG1, IgG2, IgG3, and IgG4. The development of this disease is closely related to IgG 1 and IgG 3, and the combination with high IgG4 is rare. A patient with autoimmune hemolytic anemia who had a poor response to the steroid combined with immunosuppressive regimen (methylprednisolone and cyclophosphamide) received 4 sessions of protein A immunosorbent therapy with good results and is still under continued follow-up. CASE REPORT A 60-year-old woman had recurrent dizziness, weakness, darkening of urine, and jaundice for 2 months. Five years ago, she underwent a lymph node biopsy for "pelvic lymph node enlargement", which indicated "reactive lymph node hyperplasia". Bone marrow aspiration indicated "myelodysplasia", excluding leukemia and plasma cell disease. This patient was first treated with the steroid combination immunosuppressive regimen (methylprednisolone and cyclophosphamide), but she had a poor outcome and an increase in progressive anemia. She was treated with methylprednisolone and cyclophosphamide combined with protein A immunoadsorption therapy. She responded well and her clinical symptoms improved after 2 weeks of treatment. Her malaise was significantly reduced, jaundice decreased, Hb rose to 76 g/L, and IgG4 decreased to 12.4 g/L. At the outpatient review after 2 months, the patient's clinical symptoms had disappeared, hemoglobin (Hb) increased to 136 g/L, and IgG4 decreased to 6.72 g/L. CONCLUSIONS Protein A immunosorbent therapy may be an effective treatment option for patients with AIHA who have a poor response to conventional therapy.
Collapse
|
Case Reports |
1 |
|
138
|
Wang Z, Dai Z, Zhang H, Zhang N, Liang X, Peng L, Zhang J, Liu Z, Peng Y, Cheng Q, Liu Z. Comprehensive analysis of pyroptosis-related gene signatures for glioblastoma immune microenvironment and target therapy. Cell Prolif 2023; 56:e13376. [PMID: 36681858 PMCID: PMC9977674 DOI: 10.1111/cpr.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 01/23/2023] [Imported: 01/12/2025] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumour, but its subtypes (mesenchymal, classical, and proneural) show different prognoses. Pyroptosis is a programmed cell death relating to tumour progression, but its association with GBM is poorly understood. In this work, we collected 73 GBM samples (the Xiangya GBM cohort) and reported that pyroptosis involves tumour-microglia interaction and tumour response to interferon-gamma. GBM samples were grouped into different subtypes, cluster 1 and cluster 2, based on pyroptosis-related genes. Cluster 1 samples manifested a worse prognosis and had a more complicated immune landscape than cluster 2 samples. Single-cell RNA-seq data analysis supported that cluster 1 samples respond to interferon-gamma more actively. Moreover, the machine learning algorithm screened several potential compounds, including nutlin-3, for cluster 1 samples as a novel treatment. In vitro experiments supported that cluster 1 cell line, T98G, is more sensitive to nutlin-3 than cluster 2 cell line, LN229. Nutlin-3 can trigger oxidative stress by increasing DHCR24 expression. Moreover, pyroptosis-resistant genes were upregulated in LN229, which may participate against nutlin-3. Therefore, we hypothesis that GBM may be able to upregulate pyroptosis resistant related genes to against nutlin-3-triggered cell death. In summary, we conclude that pyroptosis highly associates with GBM progression, tumour immune landscape, and tumour response to nutlin-3.
Collapse
|
research-article |
2 |
|
139
|
Zhou HY, Zhang H, Peng LJ, Zhang WY, Tian T, Yang FQ. L-cysteine-regulated in situ formation of Prussian blue/Turnbull’s blue nanoparticles as the colorimetric probe for the detection of copper ion. ARAB J CHEM 2022; 15:104000. [DOI: 10.1016/j.arabjc.2022.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] [Imported: 01/12/2025] Open
|
|
3 |
|
140
|
Wang X, Zhang H, Lu M, Jiang H, Xia F, Gao J, Wan J, Yang F. Characterization of thrombin inhibitors in tea through ultra high performance liquid chromatography‐mass spectrometry combined with multivariate statistical analysis. SEPARATION SCIENCE PLUS 2021; 4:108-117. [DOI: 10.1002/sscp.202000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/14/2020] [Indexed: 11/07/2022] [Imported: 01/12/2025]
Abstract
AbstractIn this study, thrombin inhibitors in tea were characterized by combining thrombin inhibition assay of tea extracts with ultra high performance liquid chromatography–mass spectrometry based multivariate statistical analysis. The inhibitory activity on thrombin for ten tea samples were tested in vitro. Then, upon collecting and processing liquid chromatography‐mass spectrometry data, combined with the results of activity assays, principal component analysis, and orthogonal partial least squares discriminant analysis were applied to predict discriminate differential markers. Six of twelve predicted marker compounds were tentatively identified. Among them, epigallocatechin 3‐O‐gallate, epicatechin gallate, epigallocatechin and gallocatechin 3‐O‐gallate showed good inhibitory activity on thrombin with IC50 values of 5.033, 6.573, 6.704 and 6.842 mM, respectively. Moreover, molecular docking results indicated that these four active compounds could insert into the catalytic activity pocket of thrombin and the residue GLU192 may be their binding site.
Collapse
|
|
4 |
|
141
|
Zhang H, Yang DN, Zhu ZJ, Yang FQ. In situ synthesis of silver nanocomposites on paper substrate for the pre-concentration and determination of iron(III) ions. Microchem J 2023; 188:108475. [DOI: 10.1016/j.microc.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 01/12/2025]
|
|
2 |
|
142
|
Xia Z, Liu Y, Liu C, Dai Z, Liang X, Zhang N, Wu W, Wen J, Zhang H. The causal effect of air pollution on the risk of essential hypertension: a Mendelian randomization study. Front Public Health 2024; 12:1247149. [PMID: 38425468 PMCID: PMC10903282 DOI: 10.3389/fpubh.2024.1247149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] [Imported: 01/12/2025] Open
Abstract
BACKGROUND Air pollution poses a major threat to human health by causing various illnesses, such as cardiovascular diseases. While plenty of research indicates a correlation between air pollution and hypertension, a definitive answer has yet to be found. METHODS Our analyses were performed using the Genome-wide association study (GWAS) of exposure to air pollutants from UKB (PM2.5, PM10, NO2, and NOX; n = 423,796 to 456,380), essential hypertension from FinnGen (42,857 cases and 162,837 controls) and from UKB (54,358 cases and 408,652 controls) as a validated cohort. Univariable and multivariable Mendelian randomization (MR) were conducted to investigate the causal relationship between air pollutants and essential hypertension. Body mass index (BMI), alcohol intake frequency, and the number of cigarettes previously smoked daily were included in multivariable MRs (MVMRs) as potential mediators/confounders. RESULTS Our findings suggested that higher levels of both PM2.5 (OR [95%CI] per 1 SD increase in predicted exposure = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) and PM10 (OR [95%CI] = 1.24 [1.02-1.53], p = 3.46E-02 from Finn; OR [95%CI] = 1.04 [1.02-1.06], p = 7.58E-05 from UKB) were linked to an increased risk for essential hypertension. Even though we used MVMR to adjust for the impacts of smoking and drinking on the relationship between PM2.5 exposure and essential hypertension risks, our findings suggested that although there was a direct positive connection between them, it is not present after adjusting BMI (OR [95%CI] = 1.05 [0.87-1.27], p = 6.17E-01). Based on the study, higher exposure to PM2.5 and PM10 increases the chances of developing essential hypertension, and this influence could occur through mediation by BMI. CONCLUSION Exposure to both PM2.5 and PM10 is thought to have a causal relationship with essential hypertension. Those impacted by substantial levels of air pollution require more significant consideration for their cardiovascular health.
Collapse
|
research-article |
1 |
|
143
|
Lu M, Zhang H, Yin S, Jiang H, Wang X, Yang F. Biomimetic mineralization synthesis of poly(sodium 4‐styrenesulfonate)‐mediated calcium carbonate magnetic microsphere for kallikrein immobilization. SEPARATION SCIENCE PLUS 2022; 5:237-246. [DOI: 10.1002/sscp.202100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/21/2022] [Indexed: 11/07/2022] [Imported: 01/12/2025]
Abstract
AbstractIn this study, the poly (sodium 4‐styrenesulfonate)‐mediated calcium carbonate magnetic microspheres were prepared by a simple spontaneous biomimetic mineralization method to immobilize kallikrein. The immobilized kallikrein can be easily separated from the reaction mixture by an external magnet. The structural properties of the materials were studied by several characterization techniques. Subsequently, the immobilized kallikrein enzyme activity and stability were studied. Moreover, the inhibitory potency of ten natural compounds on kallikrein was evaluated by combining with capillary electrophoresis analysis. The immobilized kallikrein exhibited optimum pH and temperature at 7.5 and 75°C, respectively. After seven successive cycles, the immobilized kallikrein retained 82% of its initial activity. Furthermore, the Michaelis–Menten constant (Km) and the half‐maximal inhibitory concentration (IC50) of serine protease inhibitor on the immobilized kallikrein were determined to be 3.30 mM and 67.04 μM, respectively. In addition, berberine, evodine, coptisine, and jatrorrhizine among the ten natural compounds showed good inhibitory activity on the immobilized kallikrein, and their % of inhibition were (43.1 ± 1.7), (34.4 ± 1.9), (38.0 ± 1.7), and (28.5 ± 1.0)%, respectively. These results indicate that the biomimetic mineralization synthetic magnetic microsphere is an efficient method for kallikrein immobilization.
Collapse
|
|
3 |
|
144
|
Qu C, Chen Y, Liu C, Hu Z, Zhang J, Yan L, Zhang H, Liu Y, Liu W, Cheng Q, Luo P, Liu Z. Burden of Stroke Attributable to Nonoptimal Temperature in 204 Countries and Territories: A Population-Based Study, 1990-2019. Neurology 2024; 102:e209299. [PMID: 38598742 PMCID: PMC11175652 DOI: 10.1212/wnl.0000000000209299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/30/2024] [Indexed: 04/12/2024] [Imported: 01/12/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Stroke attributable to nonoptimal temperature needs more attention with dramatic climate change. The aim of this study was to estimate the global burden and distribution characteristics of the burden. METHODS In this ecological study, we collected data from the Climate Research Unit Gridded Time Series, the World Bank databases, and the Global Burden of Diseases study to estimate the distribution of burden. We used the joinpoint model, decomposition analysis, age-period-cohort model, panel data analysis, and health inequality analysis to assess the different types of stroke burden attributable to different climatic conditions. RESULTS The burden of stroke attributable to nonoptimal temperature continued to grow, and aging was a key factor in this increase. In 2019, 521,031 (95% uncertainty interval [UI] 402,433-663,996) deaths and 9,423,649 (95% UI 7,207,660-12,055,172) disability-adjusted life years [DALYs] attributable to stroke due to nonoptimal temperature were recorded globally. Globally, men (age-standardized mortality rate [ASMR] 7.70, 95% UI 5.80-9.73; age-standardized DALY rate [ASDR] 139.69, 95% UI 102.96-178.54 in 2019) had a heavier burden than women (ASMR 5.89, 95% UI 4.50-7.60; ASDR 96.02, 95% UI 72.62-123.85 in 2019). Central Asia (ASMR 18.12, 95% UI 13.40-24.53; ASDR 327.35, 95% UI 240.24-440.61 in 2019) had the heaviest burden at the regional level. In the national level, North Macedonia (ASMR 32.97, 95% UI 20.57-47.44 in 2019) and Mongolia (ASDR 568.54, 95% UI 242.03-1,031.14 in 2019) had the highest ASMR/ASDR, respectively. Low temperature currently contributes to the main burden (deaths 474,002, 95% UI 355,077-606,537; DALYs 8,357,198, 95% UI 6,186,217-10,801,911 attributable to low temperature vs deaths 48,030, 95% UI 5,630-104,370; DALYs 1,089,329, 95% UI 112,690-2,375,345 attributable to high temperature in 2019). However, the burden due to high temperature has increased rapidly, especially among people aged older than 10 years, and was disproportionately concentrated in low sociodemographic index (SDI) regions such as Africa. In addition, the rapid increase in the stroke burden due to high temperature in Central Asia also requires special attention. DISCUSSION This is the first study to assess the global stroke burden attributed to nonoptimal temperature. The dramatic increase in the burden due to high temperature requires special attention, especially in low-SDI countries.
Collapse
|
research-article |
1 |
|
145
|
Zhang J, Wen J, Dai Z, Zhang H, Zhang N, Lei R, Liu Z, Peng L, Cheng Q. Causal association and shared genetics between telomere length and COVID-19 outcomes: New evidence from the latest large-scale summary statistics. Comput Struct Biotechnol J 2024; 23:2429-2441. [PMID: 38882679 PMCID: PMC11176559 DOI: 10.1016/j.csbj.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] [Imported: 01/12/2025] Open
Abstract
BACKGROUND Observational studies suggested that leukocyte telomere length (LTL) is shortened in COVID-19 patients. However, the genetic association and causality remained unknown. METHODS Based on the genome-wide association of LTL (N = 472,174) and COVID-19 phenotypes (N = 1086,211-2597,856), LDSC and SUPERGNOVA were used to estimate the genetic correlation. Cross-trait GWAS meta-analysis, colocalization, fine-mapping analysis, and transcriptome-wide association study were conducted to explore the shared genetic etiology. Mendelian randomization (MR) was utilized to infer the causality. Upstream and downstream two-step MR was performed to investigate the potential mediating effects. RESULTS LDSC identified a significant genetic association between LTL and all COVID-19 phenotypes (rG < 0, p < 0.05). Six significant regions were observed for LTL and COVID-19 susceptibility and hospitalization, respectively. Colocalization analysis found rs144204502, rs34517439, and rs56255908 were shared causal variants between LTL and COVID-19 phenotypes. Numerous biological pathways associated with LTL and COVID-19 outcomes were identified, mainly involved in -immune-related pathways. MR showed that longer LTL was significantly associated with a lower risk of COVID-19 severity (OR [95% CI] = 0.81 [0.71-0.92], p = 1.24 ×10-3) and suggestively associated with lower risks of COVID-19 susceptibility (OR [95% CI] = 0.96 [0.92-1.00], p = 3.44 ×10-2) and COVID-19 hospitalization (OR [95% CI] = 0.89 [0.80-0.98], p = 1.89 ×10-2). LTL partially mediated the effects of BMI, smoking, and education on COVID-19 outcomes. Furthermore, six proteins partially mediated the causality of LTL on COVID-19 outcomes, including BNDF, QPCT, FAS, MPO, SFTPB, and APOF. CONCLUSIONS Our findings suggested that shorter LTL was genetically associated with a higher risk of COVID-19 phenotypes, with shared genetic etiology and potential causality.
Collapse
|
research-article |
1 |
|
146
|
Li SY, Zhang N, Zhang H, Wang N, Du YY, Li HN, Huang CS, Li XR. Deciphering the TCF19/miR-199a-5p/SP1/LOXL2 pathway: Implications for breast cancer metastasis and epithelial-mesenchymal transition. Cancer Lett 2024; 597:216995. [PMID: 38851313 DOI: 10.1016/j.canlet.2024.216995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] [Imported: 01/12/2025]
Abstract
Globally, breast cancer (BC) is the predominant malignancy with a significant death rate due to metastasis. The epithelial-mesenchymal transition (EMT) is a fundamental initiator for metastatic progression. Through advanced computational strategies, TCF19 was identified as a critical EMT-associated gene with diagnostic and prognostic significance in BC, based on a novel EMT score. Molecular details and the pro-EMT impact of the TCF19/miR-199a-5p/SP1/LOXL2 axis were explored in BC cell lines through in vitro validations, and the oncogenic and metastatic potential of TCF19 and LOXL2 were investigated using subcutaneous and tail-vein models. Additionally, BC-specific enrichment of TCF19 and LOXL2 was measured using a distribution landscape driven by diverse genomic analysis techniques. Molecular pathways revealed that TCF19-induced LOXL2 amplification facilitated migratory, invasive, and EMT activities of BC cells in vitro, and promoted the growth and metastatic establishment of xenografts in vivo. TCF19 decreases the expression of miR-199a-5p and alters the nuclear dynamics of SP1, modulating SP1's affinity for the LOXL2 promoter, leading to increased LOXL2 expression and more malignant characteristics in BC cells. These findings unveil a novel EMT-inducing pathway, the TCF19/miR-199a-5P/SP1/LOXL2 axis, highlighting the pivotal role of TCF19 and suggesting potential for novel therapeutic approaches for more focused BC interventions.
Collapse
|
|
1 |
|
147
|
Zhang H, Mao W. Harnessing innovative machine learning techniques to combat drug resistance in solid tumors. J Transl Med 2025; 23:398. [PMID: 40181247 PMCID: PMC11970023 DOI: 10.1186/s12967-025-06390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] [Imported: 05/04/2025] Open
|
Editorial |
1 |
|
148
|
Wu W, Li H, Wang Z, Dai Z, Liang X, Luo P, Liu K, Zhang H, Zhang N, Li S, Zhang C. The tertiary lymphoid structure-related signature identified PTGDS in regulating PD-L1 and promoting the proliferation and migration of glioblastoma. Heliyon 2024; 10:e23915. [PMID: 38205335 PMCID: PMC10777022 DOI: 10.1016/j.heliyon.2023.e23915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] [Imported: 01/12/2025] Open
Abstract
BACKGROUND Tertiary lymphoid structure (TLS) is a unique organ that carries out tumor cell elimination at tumor sites. It is continuously stimulated by inflammatory tumor signals and has been found to augment immunotherapy response. However, the detailed mechanisms behind it still need to be defined. METHODS To explore and grasp the whole picture of TLS from a pan-cancer view, we collected nine TLS-related genes from previous studies. We performed a comprehensive analysis of 9637 samples across 33 tumor types accessed from The Cancer Genome Atlas (TCGA) database. EdU, Transwell, and flow cytometry were performed on the feature gene PTGDS in U251 cells. The regulatory role of PTGDS on PD-L1 expression and macrophage polarization was verified. RESULTS Alteration analysis showed that mutations of TLS-related genes were widespread and relatively high. Clustering analysis based on the expression of these nine genes obtained two distinct clusters, with high EIF1AY and PTGDS in cluster 2 and better overall survival in cluster 1. To distinguish the two clusters, we utilized six machine learning algorithms and filtrated EIF1AY, PTGDS, SKAP1, and RBP5 as the characteristic genes, among which the former two genes were proved to be hazardous. PTGDS was found to regulate PD-L1 expression and also promoted the proliferation and migration of U251 cells. The knockdown of PTGDS could reduce the migration of macrophages and inhibit the polarization of macrophages into M2-phenotype. In addition, we established a TLS score to demonstrate patients' TLS activity. The low TLS-score group overlapped with cluster 1 and displayed a better prognosis. Besides, the low TLS-score group was related to better immunotherapy responses. The HE staining of histopathological sections confirmed that the low TLS-score group exhibited higher infiltration of immune cells. CONCLUSION This study reveals broad molecular, tumorigenic, and immunogenic signatures for further functional and therapeutic studies of tertiary lymphoid structure. The TLS score we established effectively predicted immunotherapy response and patients' survival. Its future application and combination await more research.
Collapse
|
research-article |
1 |
|
149
|
Tian Y, Fu S, Zhang N, Zhang H, Li L. The abdominal aortic aneurysm-related disease model based on machine learning predicts immunity and m1A/m5C/m6A/m7G epigenetic regulation. Front Genet 2023; 14:1131957. [PMID: 36911406 PMCID: PMC9995589 DOI: 10.3389/fgene.2023.1131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] [Imported: 09/06/2023] Open
Abstract
Introduction: Abdominal aortic aneurysms (AAA) are among the most lethal non-cancerous diseases. A comprehensive analysis of the AAA-related disease model has yet to be conducted. Methods: Weighted correlation network analysis (WGCNA) was performed for the AAA-related genes. Machine learning random forest and LASSO regression analysis were performed to develop the AAA-related score. Immune characteristics and epigenetic characteristics of the AAA-related score were explored. Results: Our study developed a reliable AAA-related disease model for predicting immunity and m1A/m5C/m6A/m7G epigenetic regulation. Discussion: The pathogenic roles of four model genes, UBE2K, TMEM230, VAMP7, and PUM2, in AAA, need further validation by in vitro and in vivo experiments.
Collapse
|
research-article |
2 |
|
150
|
Zeng WJ, Cao YF, Li H, Gong ZC, Wu W, Luo P, Zhang J, Liu Z, Zhang H, Cheng Q. A Novel Thrombosis-Related Signature for Predicting Survival and Drug Compounds in Glioblastoma. JOURNAL OF ONCOLOGY 2022; 2022:6792850. [PMID: 35874629 PMCID: PMC9300384 DOI: 10.1155/2022/6792850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/02/2022] [Imported: 09/06/2023]
Abstract
Glioblastoma is the most common primary tumor in the central nervous system, and thrombosis-associated genes are related to its occurrence and progression. Univariate Cox and LASSO regression analysis were utilized to develop a new prognostic signature based on thrombosis-associated genes. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and HALLMARK were used for functional annotation of risk signature. ESTIMATE, MCP-counter, xCell, and TIMER algorithms were used to quantify immune infiltration in the tumor microenvironment. Genomics of Drug Sensitivity in Cancer (GDSC) was used for selecting potential drug compounds. Risk signature based on thrombosis-associated genes shows moderate performance in prognosis prediction. The functional annotation of the risk signature indicates that the signaling pathways related to the cell cycle, apoptosis, tumorigenesis, and immune suppression are rich in the high-risk group. Somatic mutation analysis shows that tumor-suppressive gene TP53 and oncogene PTEN have higher expression in low-risk and high-risk groups, respectively. Potential drug compounds are explored in risk score groups and show higher AUC values in the low-risk score group. A nomogram with valuable prognostic factors exhibits high sensitivity in predicting the survival outcome of GBM patients. Our research screens out multiple thromboses-associated genes with remarkable clinical significance in GBM and further develops a meaningful prognostic risk signature predicting drug sensitivity and survival outcome.
Collapse
|
research-article |
3 |
|