151
|
Chen R, Zhang H, Wu W, Li S, Wang Z, Dai Z, Liu Z, Zhang J, Luo P, Xia Z, Cheng Q. Corrigendum: Antigen Presentation Machinery Signature-Derived CALR Mediates Migration, Polarization of Macrophages in Glioma and Predicts Immunotherapy Response. Front Immunol 2022; 13:931433. [PMID: 35720317 PMCID: PMC9202315 DOI: 10.3389/fimmu.2022.931433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] [Imported: 09/06/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fimmu.2022.833792.].
Collapse
|
Published Erratum |
3 |
|
152
|
Wang Z, Liang X, Zhang H, Wang Z, Zhang X, Dai Z, Liu Z, Zhang J, Luo P, Li J, Cheng Q. Identification of a Hypoxia-Angiogenesis lncRNA Signature Participating in Immunosuppression in Gastric Cancer. J Immunol Res 2022; 2022:5209607. [PMID: 36052279 PMCID: PMC9427269 DOI: 10.1155/2022/5209607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] [Imported: 09/06/2023] Open
Abstract
Hypoxia and angiogenesis are the leading causes of tumor progression, and their strong correlation has been discovered in many cancers. However, their collective function's prognostic and biological roles were not reported in gastric cancer. Hence, we aimed to investigate the effects of hypoxia and angiogenesis on gastric cancer via sequencing data. This study used weighted gene coexpression network analysis and random forest regression to build a hypoxia-angiogenesis-related model (HARM) via the TCGA-STAD lncRNA data. It estimated the HARM's correlation with clinical features and its accuracy for survival prediction. Sequential functional analyses were conducted to investigate its biological role, and we next sought the immune landscape status and immunological function variation by ESTIMATE score calculation and GSVA, respectively. Seven different algorithms were conducted to assess the immunocyte infiltration, and TIDE score and immune checkpoint levels were compared between the high- and low-HARM groups. As a result, we found that HARM predicted patient survival with high accuracy and was correlated with higher stages of gastric cancer. Various cancer-associated pathways and macrophage-related regulations were upregulated in the high-HRAM group. The high-HARM group harbored higher immune levels, and M2 macrophages and cancer-associated fibroblasts were particularly highly unfiltered. Furthermore, globally upregulated immune checkpoints and higher TIDE scores were observed in the high-HARM group. Finally, we filtered eight drugs with lower IC50 in the high-HARM group as potential drugs for the HARM-targeted therapy. We believe this study opens up novel perspectives into the interaction between hypoxia-angiogenesis and immunosuppression and will provide novel insights for gastric cancer immunotherapy.
Collapse
|
research-article |
3 |
|
153
|
Li Z, Fan X, Fan J, Chen B, Zhang W, Liu J, Zhao Y, Liao Q, Liu B, Zhang H. Paricalcitol-loaded PLGA nanodrug for the amelioration of sepsis-associated acute kidney injury. MATERIALS & DESIGN 2025; 254:113995. [DOI: 10.1016/j.matdes.2025.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] [Imported: 05/13/2025]
|
|
1 |
|
154
|
Zhang H, Yang FQ, Gao JL. A Simple and Portable Personal Glucose Meter Method Combined with Molecular Docking for Screening of Lipase Inhibitors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4430050. [PMID: 36185086 PMCID: PMC9522516 DOI: 10.1155/2022/4430050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] [Imported: 01/12/2025]
Abstract
With the increase of obesity incidence, the development of antiobesity drugs has aroused extensive interest. In this study, a simple and portable personal glucose meter (PGM) method based on the lipase-mediated reaction combined with molecular docking was developed for the screening of lipase inhibitors. Lipase can catalyse the hydrolysis of 4-acetamidophenyl acetate to form acetaminophen, which can directly trigger the reduction of K3[Fe(CN)6] to K4[Fe(CN)6] in the glucose test strips and generate an electrical signal that can be detected by the PGM. When lipase inhibitors exist, the yield of acetaminophen will be reduced and results in a corresponding decrease of the PGM signal. Therefore, the activity of lipase can be measured by the PGM. After optimization of the experimental conditions, the inhibitory activity of fourteen small-molecule compounds and fifteen natural product extracts on lipase were evaluated by the developed PGM method. The results indicate that tannic acid, (-)-epigallocatechin gallate, (-)-epigallocatechin, (-)-epicatechin gallate, and epicatechin have good inhibitory effect on lipase (% of inhibition higher than 40.0%). Besides, the natural product extracts of Galla Chinensis, lemon, and Rhei Radix et Rhizoma have a good inhibitory effect on lipase with % of inhibition of (97.5 ± 0.6)%, (88.1 ± 0.7)%, and (79.1 ± 1.6)%, respectively. Finally, the binding sites and modes of six small-molecule compounds on lipase were investigated by the molecular docking study. The results show that the developed PGM method is an effective approach for the discovery of potential lipase inhibitors.
Collapse
|
research-article |
3 |
|
155
|
Yang JS, Gong HL, Chen H, Wei JM, Chen CM, Gao ZJ, Zhang ZL, Hao DJ, Zhao YT, Chu L. Full-Endoscopic Decompression with the Application of an Endoscopic-Matched Ultrasonic Osteotome for Removal of Ossification of the Thoracic Ligamentum Flavum. Pain Physician 2021; 24:275-281. [PMID: 33988947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023] [Imported: 09/06/2023]
Abstract
BACKGROUND Resection of the ossification of the thoracic ligamentum flavum (OTLF) with a high-speed burr may cause a high rate of perioperative complications, such as dural laceration and/or iatrogenic spinal cord injury. OBJECTIVES The aim of this study was to investigate the safety and feasibility of the endoscopic-matched ultrasonic osteotome in full-endoscopic spinal surgery for direct removal of OTLF. STUDY DESIGN Retrospective study. SETTING All data were from Honghui Hospital in Xi'an. METHODS This study conducted between December 2017 and December 2018, included 27 consecutive patients who met the study criteria, had single-level OTLF, and underwent full-endoscopic decompression under local anesthesia. The postoperative follow-up was scheduled at 1, 3, 6, and 12 months postoperatively. Outcomes evaluations included the Visual Analog Scale (VAS) score for lower extremity pain and the modified Japanese Orthopaedic Association (mJOA) score and improvement rate for the assessment of thoracic myelopathy. Removal of OTLF was measured by comparing the pre- and postoperative computed tomography (CT) and magnetic resonance imaging (MRI) scans. RESULTS The operation was completed in all patients without conversion to open surgery. The operation time ranged from 65 to 125 minutes (average, 83.7 ± 12.3 minutes). All patients were followed up for 12 to 18 months, with an average follow-up of 14.3 ± 1.3 months. Satisfactory neurologic decompression was confirmed by postoperative CT and MRI, and no revision surgery was required. The VAS and mJOA scores showed statistically higher improvement at the 1-month follow-up and the last follow-up compared with the preoperative assessment (P < 0.05). According to the improvement rate at the final follow-up, 20 cases were classified as good, 6 cases were fair, and 1 case remained unchanged. LIMITATIONS A single-center, noncontrol study. CONCLUSIONS The endoscopic-matched ultrasonic osteotome can be considered quite safe and feasible for direct removal of OTLF during full-endoscopic spinal surgery in strictly selected patients, as this allows for effective direct decompression of OTLF while minimizing trauma and instability. In addition, because of the design characteristics of the ultrasonic osteotome, surgical complications, especially dural tears and spinal cord injury, can also be effectively controlled.
Collapse
|
|
4 |
|
156
|
Zhang H, Yang DN, Li Y, Yang FQ. Enzyme-Regulated In Situ Formation of Copper Hexacyanoferrate Nanoparticles with Oxidase-Mimetic Behaviour for Colorimetric Detection of Ascorbate Oxidase. BIOSENSORS 2023; 13:344. [PMID: 36979556 PMCID: PMC10046506 DOI: 10.3390/bios13030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023] [Imported: 05/04/2025]
Abstract
In this study, a copper hexacyanoferrate nanoparticle with excellent oxidase-mimetic behaviour has been synthesized through a simple precipitation method. The synthesized copper hexacyanoferrate nanoparticle has intrinsic oxidase-like activity, which can catalyze the chromogenic reaction of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) through an O2•- reactive oxygen-species-participated process. On the other hand, K3[Fe(CN)6] can be reduced by ascorbic acid (AA) to produce K4[Fe(CN)6], thereby inhibiting the formation of the copper hexacyanoferrate nanoparticles. Furthermore, ascorbate oxidase (AAO) can catalyze the oxidation of AA to produce dehydroascorbic acid, which cannot reduce K3[Fe(CN)6]. Thus, a system for an AAO-regulated in situ formation of copper hexacyanoferrate nanoparticles was constructed by coupling a prepared copper hexacyanoferrate nanozyme with AA for the detection of AAO activity. This colorimetric sensing assay shows high sensitivity and selectivity for the detection of AAO activity (the limit of detection is 0.52 U/L) with a linear range of 1.1-35.7 U/L. Finally, the developed method was applied to detect the activity of AAO in normal human serum with a satisfactory sample spiked recovery (87.4-108.8%). In short, this study provides a good strategy for the construction of nanozyme-based multi-enzyme cascade-signal amplification assay.
Collapse
|
research-article |
2 |
|
157
|
Liang X, Wang Z, Dai Z, Zhang H, Zhang J, Luo P, Liu Z, Liu Z, Yang K, Cheng Q, Zhang M. Glioblastoma glycolytic signature predicts unfavorable prognosis, immunological heterogeneity, and ENO1 promotes microglia M2 polarization and cancer cell malignancy. Cancer Gene Ther 2023; 30:481-496. [PMID: 36494582 PMCID: PMC10014583 DOI: 10.1038/s41417-022-00569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] [Imported: 01/12/2025]
Abstract
Glioblastomas are the most malignant brain tumors, whose progress was promoted by aberrate aerobic glycolysis. The immune environment was highly engaged in glioblastoma formation, while its interaction with aerobic glycolysis remained unclear. Herein, we build a 7-gene Glycolytic Score (GS) by Elastic Net in the training set and two independent validating sets. The GS predicted malignant features and poor survival with good performances. Immune functional analyses and Cibersort calculation identified depressed T cells, B cells, natural killer cells immunity, and high immunosuppressive cell infiltration in the high-GS group. Also, high expressions of the immune-escape genes were discovered. Subsequently, the single-cell analyses validated the glycolysis-related immunosuppression. The functional results manifested the high-GS neoplastic cells' association with T cells, NK cells, and macrophage function regulation. The intercellular cross-talk showed strong associations between high-GS neoplastic cells and M2 macrophages/microglia in several immunological pathways. We finally confirmed that ENO1, the key gene of the GS, promoted M2 microglia polarization and glioblastoma cell malignant behaviors via immunofluorescence, clone formation, CCK8, and transwell rescue experiments. These results indicated the interactions between cancerous glycolysis and immunosuppression and glycolysis' role in promoting glioblastoma progression. Conclusively, we built a robust model and discovered strong interaction between GS and immune, shedding light on prognosis management improvement and therapeutic strategies development for glioblastoma patients.
Collapse
|
research-article |
2 |
|
158
|
Ye W, Liang X, Chen G, Chen Q, Zhang H, Zhang N, Huang Y, Cheng Q, Chen X. NDC80/HEC1 promotes macrophage polarization and predicts glioma prognosis via single-cell RNA-seq and in vitro experiment. CNS Neurosci Ther 2024; 30:e14850. [PMID: 39021287 PMCID: PMC11255415 DOI: 10.1111/cns.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] [Imported: 01/12/2025] Open
Abstract
INTRODUCTION Glioma is the most frequent and lethal form of primary brain tumor. The molecular mechanism of oncogenesis and progression of glioma still remains unclear, rendering the therapeutic effect of conventional radiotherapy, chemotherapy, and surgical resection insufficient. In this study, we sought to explore the function of HEC1 (highly expressed in cancer 1) in glioma; a component of the NDC80 complex in glioma is crucial in the regulation of kinetochore. METHODS Bulk RNA and scRNA-seq analyses were used to infer HEC1 function, and in vitro experiments validated its function. RESULTS HEC1 overexpression was observed in glioma and was indicative of poor prognosis and malignant clinical features, which was confirmed in human glioma tissues. High HEC1 expression was correlated with more active cell cycle, DNA-associated activities, and the formation of immunosuppressive tumor microenvironment, including interaction with immune cells, and correlated strongly with infiltrating immune cells and enhanced expression of immune checkpoints. In vitro experiments and RNA-seq further confirmed the role of HEC1 in promoting cell proliferation, and the expression of DNA replication and repair pathways in glioma. Coculture assay confirmed that HEC1 promotes microglial migration and the transformation of M1 phenotype macrophage to M2 phenotype. CONCLUSION Altogether, these findings demonstrate that HEC1 may be a potential prognostic marker and an immunotherapeutic target in glioma.
Collapse
|
research-article |
1 |
|
159
|
Xia Z, Tu R, Liu F, Zhang H, Dai Z, Wang Z, Luo P, He S, Xiao G, Feng J, Cheng Q. PD-L1-related IncRNAs are associated with malignant characteristics and immune microenvironment in glioma. Aging (Albany NY) 2023; 15:10785-10810. [PMID: 37837543 PMCID: PMC10599717 DOI: 10.18632/aging.205120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/21/2023] [Indexed: 10/16/2023] [Imported: 01/12/2025]
Abstract
BACKGROUND The expression of long non-coding RNA (lncRNA) can function as diagnostic and therapeutic biomarker for tumors. This research explores the role of PD-L1-related lncRNAs in affecting malignant characteristics and the immune microenvironment of glioma. METHODS Downloading gene expression profiles and clinicopathological information of glioma from TCGA and CGGA databases, 6 PD-L1-related lncRNAs were identified through correlation analysis, Cox and LASSO regression analysis, establishing the risk score model based on them. Bioinformatics analysis and cell experiments in vitro were adopted to verify the effects of LINC01271 on glioma. RESULTS Risk scores based on 6 PD-L1-related lncRNAs (AL355974.3, LINC01271, AC011899.3, MIR4500HG, LINC02594, AL357055.3) can reflect malignant characteristics and immunotherapy response of glioma. Patients with high LINC01271 expression had a worse prognosis, a higher abundance of M1 subtype macrophages in the immune microenvironment, and a higher degree of tumor malignancy. Experiments in vitro confirmed its positive regulatory effect on the proliferation and migration of glioma cells. CONCLUSIONS The risk score model based on 6 PD-L1-related lncRNAs can reflect the malignant characteristics and prognosis of glioma. LINC01271 can independently be used as a new target for prognosis evaluation and therapy.
Collapse
|
research-article |
2 |
|
160
|
Qu C, He R, Hou W, Ye W, Cao H, Zhang H, Zhang N, Cheng Q, Zhang Q, Luo P. Global burden of neoplasms attributable to specific occupational carcinogens over 30 years: a population-based study. Public Health 2023; 223:145-155. [PMID: 37657137 DOI: 10.1016/j.puhe.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 09/03/2023] [Imported: 01/12/2025]
Abstract
OBJECTIVES The study aimed to analyze the global burden of occupational neoplasms from various epidemiological perspectives. STUDY DESIGN In this cross-sectional study, secondary analyses were conducted to assess the burden of neoplasms attributable to occupational carcinogens and their distribution characteristics using data from GBD 2019 and the World Bank database. METHODS Based on the GBD 2019 and the World Bank database, we analyzed the global burden of occupational neoplasms including the age-period-cohort model, decomposition analysis, health inequality analysis, and panel model. All analyses were conducted in R (version 4.0.3) and Joinpoint (version 4.9.1). RESULTS The absolute number of neoplasms burden attributable to occupational carcinogens has continued to rise over 30 years. In 2019, occupational neoplasms caused 333,867 [95% uncertainty interval (UI): 263,491 to 404,641] mortalities and 6,964,775 (95% UI: 5,467,884 to 8,580,431) disability-adjusted life years (DALYs) globally. Greenland, Monaco, the Netherlands, and Andorra suffered the highest burden. The burden was higher in countries with a higher sociodemographic index. The age effect was prominent in the elderly, and the 1925 birth cohort had the highest cohort effect. Population growth was the most significant driver of the mortalities (89%) and DALYs (111%) change. Moreover, the proportion of urban population was significantly positively associated with the disease burden, while GDP per capita was negatively correlated with the disease burden. CONCLUSIONS The burden of occupational neoplasms was unevenly distributed across locations and populations. The need for rational allocation of healthcare resources was urgent.
Collapse
|
|
2 |
|
161
|
Feng S, Liang X, Li J, Wang Z, Zhang H, Dai Z, Luo P, Liu Z, Zhang J, Xiao X, Cheng Q. Immunogenic cell death related risk model to delineate ferroptosis pathway and predict immunotherapy response of patients with GBM. Front Immunol 2022; 13:992855. [PMID: 36248827 PMCID: PMC9554879 DOI: 10.3389/fimmu.2022.992855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] [Imported: 01/12/2025] Open
Abstract
Immunogenic cell death (ICD) is a type of cell death that leads to the regulation and activation of the immune response, which is marked by the exposure and delivery of damage-associated molecular patterns (DAMPs) in the tumor microenvironment. Accumulating evidence has revealed the significance of ICD-related genes in tumor progression and therapeutic response. In this study, we obtained two ICD-related clusters for glioblastoma (GBM) by applying consensus clustering, and further constructed a risk signature on account of the prognostic ICD genes. Based on the risk signature, we found that higher risk scores were associated with worse patient prognosis. Besides, the results illustrated that ferroptosis regulators/markers were highly enriched the high-risk group, and ferroptosis were correlated with cytokine signaling pathway and other immune-related pathways. We also discovered that high-risk scores were correlated to specific immune infiltration patterns and good response to immune checkpoint blockade (ICB) treatment. In conclusion, our study highlights the significance of ICD-related genes as prognostic biomarkers and immune response indicators in GBM. And the risk signature integrating prognostic genes possessed significant potential value to predict the prognosis of patients and the efficacy of ICB treatment.
Collapse
|
research-article |
3 |
|
162
|
Tian T, Zhang H, Yang FQ. Ascorbate oxidase enabling glucometer readout for portable detection of hydrogen peroxide. Enzyme Microb Technol 2022; 160:110096. [PMID: 35839591 DOI: 10.1016/j.enzmictec.2022.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022] [Imported: 01/12/2025]
Abstract
A rapid, portable, and cost-effective method using personal glucose meter (PGM) for quantitative analysis of hydrogen peroxide (H2O2) was established based on ascorbate oxidase (AAO)-catalyzed reaction for the first time. Ascorbic acid (AA) can rapidly reduce ferricyanide (K3[Fe(CN)6]) to ferrocyanide (K4[Fe(CN)6]) in the glucose test strip and transfer electron to the electrode to generating a PGM detectable signal. Thus, the concentration of AA can be directly determined by the PGM as simple as measuring the blood glucose. On the other hand, AAO can catalyze the reduction of H2O2 and produce an enzyme-peroxide complex, which decreases the yields of dehydroascorbic acid formed by the oxidation of AA, resulting in the increase in PGM detectable signal of residual ascorbic acid (re-AA). Therefore, the concentration of H2O2 is proportional to the concentration of re-AA. After optimization of the experimental conditions, the developed method can be used to detect H2O2 at linear range of 2.5-5 × 103 μM with the quantification limit of 2.5 μM. In addition, the satisfactory spiked recoveries (95.3-108.9 %) of real samples (i.e., tap water, contact lens solution, medical hydrogen peroxide, and normal human serum) confirm its feasibility for practical applications. In short, this study provides a feasible PGM-based method for H2O2 detection with simple operations.
Collapse
|
|
3 |
|
163
|
Dai Y, Zhang H. Facile synthesis of copper carbonate analog with peroxidase-like activity for colorimetric detection of isoniazid. Heliyon 2024; 10:e34962. [PMID: 39145013 PMCID: PMC11320321 DOI: 10.1016/j.heliyon.2024.e34962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/01/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] [Imported: 05/04/2025] Open
Abstract
In this article, copper carbonate analog with good peroxidase-like activity was successfully synthesized for the first time via a simple co-precipitation of CuSO4▪5H2O and Na2CO3. The obtained copper carbonate analog exhibited excellent intrinsic peroxidase-like activity towards a classical peroxidase substrate of 3, 3', 5, 5' -tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) under an acidic environment. The study of the catalytic mechanism confirmed that the hydroxyl radical produced from the decomposition of H2O2 is the main reactive oxygen species responsible for the catalytic oxidation of TMB to oxTMB. Moreover, results from kinetic parameter analysis indicated that H2O2 was more easily and/or likely to attach to the copper carbonate analog than TMB. Subsequently, the effects of experimental conditions (buffer pH, temperature, and incubation time) on the catalytic activity of the copper carbonate analog were also optimized. Finally, a copper carbonate analog-based colorimetric sensor was developed to determine isoniazid. Under the optimal conditions, the linear range for isoniazid was as broad as 0-178.6 μM, and the detection limit was as low as 8.47 μM. The spiked recoveries of isoniazid in normal human serum has been observed in the range of 94.8%-105.5 %. This strategy focuses on the development of a green, cost-efficient peroxidase mimic with high activity, good biocompatibility, and a simple synthesis process.
Collapse
|
research-article |
1 |
|
164
|
Zhang N, Zhang H, Li S, Wu W, Luo P, Liu Z, Chen Y, Xia Z, Huang C, Cheng Q. Uncovering the predictive and immunomodulatory potential of transient receptor potential melastatin family-related CCNE1 in pan-cancer. Mol Cancer 2024; 23:258. [PMID: 39551726 PMCID: PMC11572178 DOI: 10.1186/s12943-024-02169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] [Imported: 05/04/2025] Open
Abstract
Millions of new cases of cancer are diagnosed worldwide each year, making it a serious public health concern. Developments in customized therapy and early detection have significantly enhanced treatment for and results from cancer. Therefore, it is important to investigate new molecular biomarkers. In this study, we created an efficient transient receptor potential melastatin (TRPM) family members-related TRPM-Score for 17 solid tumors. CCNE1, produced from TRPM-Score, was found to be an exceptional biomarker through several sophisticated machine learning and deep learning computational techniques. TRPM-Score and CCNE1 immunotherapeutic prediction, immunological characteristics, and predictive value were thoroughly assessed. In most cancer types, CCNE1 was a substantially dangerous marker. Additional in vitro tests validated CCNE1's immunomodulatory properties, demonstrating that silencing impeded macrophage movement and decreased PD-L1 expression. Additionally, CCNE1 may accurately predict responses to cancer immunotherapy. These findings indicate that the TRPM family-particularly CCNE1, which is associated with TRPM-is a significant player in the pan-cancer domain and can be utilized as a therapeutic target and prognostic biomarkers, especially in immuno-oncology. The thorough characterization of the TRPM family and the discovery of CCNE1 as a crucial downstream effector mark important developments in our comprehension of pan-cancer biology.
Collapse
|
Letter |
1 |
|
165
|
Wang H, Zhang Y, Zhang H, Cao H, Mao J, Chen X, Wang L, Zhang N, Luo P, Xue J, Qi X, Dong X, Liu G, Cheng Q. Liquid biopsy for human cancer: cancer screening, monitoring, and treatment. MedComm (Beijing) 2024; 5:e564. [PMID: 38807975 PMCID: PMC11130638 DOI: 10.1002/mco2.564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] [Imported: 01/12/2025] Open
Abstract
Currently, tumor treatment modalities such as immunotherapy and targeted therapy have more stringent requirements for obtaining tumor growth information and require more accurate and easy-to-operate tumor information detection methods. Compared with traditional tissue biopsy, liquid biopsy is a novel, minimally invasive, real-time detection tool for detecting information directly or indirectly released by tumors in human body fluids, which is more suitable for the requirements of new tumor treatment modalities. Liquid biopsy has not been widely used in clinical practice, and there are fewer reviews of related clinical applications. This review summarizes the clinical applications of liquid biopsy components (e.g., circulating tumor cells, circulating tumor DNA, extracellular vesicles, etc.) in tumorigenesis and progression. This includes the development process and detection techniques of liquid biopsies, early screening of tumors, tumor growth detection, and guiding therapeutic strategies (liquid biopsy-based personalized medicine and prediction of treatment response). Finally, the current challenges and future directions for clinical applications of liquid biopsy are proposed. In sum, this review will inspire more researchers to use liquid biopsy technology to promote the realization of individualized therapy, improve the efficacy of tumor therapy, and provide better therapeutic options for tumor patients.
Collapse
|
Review |
1 |
|
166
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024] [Imported: 01/12/2025]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
|
Review |
1 |
|
167
|
Li Z, Wen J, Wu W, Dai Z, Liang X, Zhang N, Cheng Q, Zhang H. Causal relationship and shared genes between air pollutants and amyotrophic lateral sclerosis: A large-scale genetic analysis. CNS Neurosci Ther 2024; 30:e14812. [PMID: 38970158 PMCID: PMC11226412 DOI: 10.1111/cns.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 07/08/2024] [Imported: 01/12/2025] Open
Abstract
OBJECTIVE Air pollutants have been reported to have a potential relationship with amyotrophic lateral sclerosis (ALS). The causality and underlying mechanism remained unknown despite several existing observational studies. We aimed to investigate the potential causality between air pollutants (PM2.5, NOX, and NO2) and the risk of ALS and elucidate the underlying mechanisms associated with this relationship. METHODS The data utilized in our study were obtained from publicly available genome-wide association study data sets, in which single nucleotide polymorphisms (SNPs) were employed as the instrumental variantswith three principles. Two-sample Mendelian randomization and transcriptome-wide association (TWAS) analyses were conducted to evaluate the effects of air pollutants on ALS and identify genes associated with both pollutants and ALS, followed by regulatory network prediction. RESULTS We observed that exposure to a high level of PM2.5 (OR: 2.40 [95% CI: 1.26-4.57], p = 7.46E-3) and NOx (OR: 2.35 [95% CI: 1.32-4.17], p = 3.65E-3) genetically increased the incidence of ALS in MR analysis, while the effects of NO2 showed a similar trend but without sufficient significance. In the TWAS analysis, TMEM175 and USP35 turned out to be the genes shared between PM2.5 and ALS in the same direction. CONCLUSION Higher exposure to PM2.5 and NOX might causally increase the risk of ALS. Avoiding exposure to air pollutants and air cleaning might be necessary for ALS prevention.
Collapse
|
research-article |
1 |
|
168
|
Li H, Wen J, Zhang X, Dai Z, Liu M, Zhang H, Zhang N, Lei R, Luo P, Zhang J. Large-scale genetic correlation studies explore the causal relationship and potential mechanism between gut microbiota and COVID-19-associated risks. BMC Microbiol 2024; 24:292. [PMID: 39103761 PMCID: PMC11299294 DOI: 10.1186/s12866-024-03423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] [Imported: 01/12/2025] Open
Abstract
Recent observational studies suggest that gut microorganisms are involved in the onset and development of coronavirus disease 2019 (COVID-19), but the potential causal relationship behind them remains unclear. Exposure data were derived from the MiBioGen consortium, encompassing 211 gut microbiota (n = 18,340). The outcome data were sourced from the COVID-19 host genetics initiative (round 7), including COVID-19 severity (n = 1,086,211), hospitalization (n = 2,095,324), and susceptibility (n = 2,597,856). First, a two-sample Mendelian randomization (TSMR) was performed to investigate the causal effect between gut microbiota and COVID-19 outcomes. Second, a two-step MR was used to explore the potential mediators and underlying mechanisms. Third, several sensitivity analyses were performed to verify the robustness of the results. Five gut microbes were found to have a potential causality with COVID-19 severity, namely Betaproteobacteria (beta = 0.096, p = 0.034), Christensenellaceae (beta = -0.092, p = 0.023), Adlercreutzia (beta = 0.072, p = 0.048), Coprococcus 1 (beta = 0.089, p = 0.032), Eisenbergiella (beta = 0.064, p = 0.024). Seven gut microbes were found to have a potential causality with COVID-19 hospitalization, namely Victivallaceae (beta = 0.037, p = 0.028), Actinomyces (beta = 0.047, p = 0.046), Coprococcus 2 (beta = -0.061, p = 0.031), Dorea (beta = 0.067, p = 0.016), Peptococcus (beta = -0.035, p = 0.049), Rikenellaceae RC9 gut group (beta = 0.034, p = 0.018), and Proteobacteria (beta = -0.069, p = 0.035). Two gut microbes were found to have a potential causality with COVID-19 susceptibility, namely Holdemanella (beta = -0.024, p = 0.023) and Lachnospiraceae FCS020 group (beta = 0.026, p = 0.027). Multi-omics mediation analyses indicate that numerous plasma proteins, metabolites, and immune factors are critical mediators linking gut microbiota with COVID-19 outcomes. Sensitivity analysis suggested no significant heterogeneity or pleiotropy. These findings revealed the causal correlation and potential mechanism between gut microbiota and COVID-19 outcomes, which may improve our understanding of the gut-lung axis in the etiology and pathology of COVID-19 in the future.
Collapse
|
research-article |
1 |
|
169
|
Yang DN, Geng S, Zhang H. Cu-MOF nanosheets with laccase-like activity for phenolic compounds detection and dye removal. INORG CHEM COMMUN 2024; 170:113228. [DOI: 10.1016/j.inoche.2024.113228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] [Imported: 01/12/2025]
|
|
1 |
|
170
|
Qu C, Chen Y, Lai Z, Feng T, Zhang H, Hu H, Liu Z, Cheng Q. Burden of drug use disorder among adolescents and young adults aged 10-24 years in 204 countries and territories from 1990 to 2019 and future prediction to 2044. Asian J Psychiatr 2024; 91:103835. [PMID: 38029603 DOI: 10.1016/j.ajp.2023.103835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] [Imported: 01/12/2025]
|
Letter |
1 |
|
171
|
Li H, Gu J, Tian Y, Li S, Zhang H, Dai Z, Wang Z, Zhang N, Peng R. A prognostic signature consisting of metabolism-related genes and SLC17A4 serves as a potential biomarker of immunotherapeutic prediction in prostate cancer. Front Immunol 2022; 13:982628. [PMID: 36325340 PMCID: PMC9620963 DOI: 10.3389/fimmu.2022.982628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] [Imported: 09/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa), a prevalent malignant cancer in males worldwide, screening for patients might benefit more from immuno-/chemo-therapy remained inadequate and challenging due to the heterogeneity of PCa patients. Thus, the study aimed to explore the metabolic (Meta) characteristics and develop a metabolism-based signature to predict the prognosis and immuno-/chemo-therapy response for PCa patients. METHODS Differentially expressed genes were screened among 2577 metabolism-associated genes. Univariate Cox analysis and random forest algorithms was used for features screening. Multivariate Cox regression analysis was conducted to construct a prognostic Meta-model based on all combinations of metabolism-related features. Then the correlation between MetaScore and tumor was deeply explored from prognostic, genomic variant, functional and immunological perspectives, and chemo-/immuno-therapy response. Multiple algorithms were applied to estimate the immunotherapeutic responses of two MeteScore groups. Further in vitro functional experiments were performed using PCa cells to validate the association between the expression of hub gene SLC17A4 which is one of the model component genes and tumor progression. GDSC database was employed to determine the sensitivity of chemotherapy drugs. RESULTS Two metabolism-related clusters presented different features in overall survival (OS). A metabolic model was developed weighted by the estimated regression coefficients in the multivariate Cox regression analysis (0.5154*GAS2 + 0.395*SLC17A4 - 0.1211*NTM + 0.2939*GC). This Meta-scoring system highlights the relationship between the metabolic profiles and genomic alterations, gene pathways, functional annotation, and tumor microenvironment including stromal, immune cells, and immune checkpoint in PCa. Low MetaScore is correlated with increased mutation burden and microsatellite instability, indicating a superior response to immunotherapy. Several medications that might improve patients` prognosis in the MetaScore group were identified. Additionally, our cellular experiments suggested knock-down of SLC17A4 contributes to inhibiting invasion, colony formation, and proliferation in PCa cells in vitro. CONCLUSIONS Our study supports the metabolism-based four-gene signature as a novel and robust model for predicting prognosis, and chemo-/immuno-therapy response in PCa patients. The potential mechanisms for metabolism-associated genes in PCa oncogenesis and progression were further determined.
Collapse
|
research-article |
3 |
|
172
|
Wen J, Zhang J, Zhang H, Zhang N, Lei R, Deng Y, Cheng Q, Li H, Luo P. Large-scale genome-wide association studies reveal the genetic causal etiology between air pollutants and autoimmune diseases. J Transl Med 2024; 22:392. [PMID: 38685026 PMCID: PMC11057084 DOI: 10.1186/s12967-024-04928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/23/2024] [Indexed: 05/02/2024] [Imported: 01/12/2025] Open
Abstract
BACKGROUND Epidemiological evidence links a close correlation between long-term exposure to air pollutants and autoimmune diseases, while the causality remained unknown. METHODS Two-sample Mendelian randomization (TSMR) was used to investigate the role of PM10, PM2.5, NO2, and NOX (N = 423,796-456,380) in 15 autoimmune diseases (N = 14,890-314,995) using data from large European GWASs including UKB, FINNGEN, IMSGC, and IPSCSG. Multivariable Mendelian randomization (MVMR) was conducted to investigate the direct effect of each air pollutant and the mediating role of common factors, including body mass index (BMI), alcohol consumption, smoking status, and household income. Transcriptome-wide association studies (TWAS), two-step MR, and colocalization analyses were performed to explore underlying mechanisms between air pollution and autoimmune diseases. RESULTS In TSMR, after correction of multiple testing, hypothyroidism was causally associated with higher exposure to NO2 [odds ratio (OR): 1.37, p = 9.08 × 10-4] and NOX [OR: 1.34, p = 2.86 × 10-3], ulcerative colitis (UC) was causally associated with higher exposure to NOX [OR: 2.24, p = 1.23 × 10-2] and PM2.5 [OR: 2.60, p = 5.96 × 10-3], rheumatoid arthritis was causally associated with higher exposure to NOX [OR: 1.72, p = 1.50 × 10-2], systemic lupus erythematosus was causally associated with higher exposure to NOX [OR: 4.92, p = 6.89 × 10-3], celiac disease was causally associated with lower exposure to NOX [OR: 0.14, p = 6.74 × 10-4] and PM2.5 [OR: 0.17, p = 3.18 × 10-3]. The risky effects of PM2.5 on UC remained significant in MVMR analyses after adjusting for other air pollutants. MVMR revealed several common mediators between air pollutants and autoimmune diseases. Transcriptional analysis identified specific gene transcripts and pathways interconnecting air pollutants and autoimmune diseases. Two-step MR revealed that POR, HSPA1B, and BRD2 might mediate from air pollutants to autoimmune diseases. POR pQTL (rs59882870, PPH4=1.00) strongly colocalized with autoimmune diseases. CONCLUSION This research underscores the necessity of rigorous air pollutant surveillance within public health studies to curb the prevalence of autoimmune diseases.
Collapse
|
research-article |
1 |
|
173
|
Tian Z, Wu Y, Yi B, Li L, Liu Y, Zhang H, Li A. ESCRT III-mediated lysosomal repair improve renal tubular cell injury in cisplatin-induced AKI. Autophagy 2025:1-18. [PMID: 40152606 DOI: 10.1080/15548627.2025.2483598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] [Imported: 05/04/2025] Open
Abstract
The chemotherapeutic agent cisplatin is widely utilized for the treatment of various solid tumors. However, its clinical utility is limited by nephrotoxicity. Although numerous studies have demonstrated the potential of enhancing macroautophagy/autophagy in alleviating cisplatin-induced acute kidney injury (AKI), the dynamics of the autophagic process during renal tubular injury remain to be elucidated. In our investigation, we observed that cisplatin treatment leads to increased expression of LC3-II, GABARAPL1, SQSTM1/p62 and NBR1 in mouse renal tubular epithelial cells and BUMPT cells. Moreover, ultrastructurally, there is extensive accumulation of autophagic vacuoles in AKI mice. These findings imply that cisplatin-induced AKI results in impaired autophagic flow within renal tubular cells. Furthermore, LGALS3 (galectin 3) was found to be enriched in lysosomes after cisplatin treatment, revealing a close association between autophagy dysfunction and impaired lysosomal membrane integrity. Given the damaging contents of lysosomes, lysosomal membrane permeabilization must be rapidly resolved. Our findings showed that ESCRT III subunit CHMP4A-mediated lysosomal membrane repair significantly ameliorates autophagic defects and protects against lysosomal damage-induced cell death in a cisplatin-induced AKI model. In conclusion, our study indicates that ESCRT III-mediated lysosomal repair can relieve cisplatin-induced cell apoptosis and restore normal autophagy function in renal tubular epithelial cells. This mechanism plays a protective role against cisplatin-induced AKI.Abbreviations: AAV: adeno-associated virus; AKI: acute kidney injury; CQ: chloroquine; ESCRT: endosomal sorting complex required for transport; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PAS: periodic acid Schiff; PTECs: proximal renal tubule epithelial cells; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.
Collapse
|
|
1 |
|