1
|
Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu WKK, Ng SC, Tsoi H, Dong Y, Zhang N, He Y, Kang Q, Cao L, Wang K, Zhang J, Liang Q, Yu J, Sung JJY. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun 2015; 6:8727. [PMID: 26515465 PMCID: PMC4640069 DOI: 10.1038/ncomms9727] [Citation(s) in RCA: 497] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022] [Imported: 11/06/2023] Open
Abstract
Gut microbial dysbiosis contributes to the development of colorectal cancer (CRC). Here we catalogue the microbial communities in human gut mucosae at different stages of colorectal tumorigenesis. We analyse the gut mucosal microbiome of 47 paired samples of adenoma and adenoma-adjacent mucosae, 52 paired samples of carcinoma and carcinoma-adjacent mucosae and 61 healthy controls. Probabilistic partitioning of relative abundance profiles reveals that a metacommunity predominated by members of the oral microbiome is primarily associated with CRC. Analysis of paired samples shows differences in community configurations between lesions and the adjacent mucosae. Correlations of bacterial taxa indicate early signs of dysbiosis in adenoma, and co-exclusive relationships are subsequently more common in cancer. We validate these alterations in CRC-associated microbiome by comparison with two previously published data sets. Our results suggest that a taxonomically defined microbial consortium is implicated in the development of CRC.
Collapse
|
research-article |
10 |
497 |
2
|
Zhang J, Tsoi H, Li X, Wang H, Gao J, Wang K, Go MYY, Ng SC, Chan FKL, Sung JJY, Yu J. Carbonic anhydrase IV inhibits colon cancer development by inhibiting the Wnt signalling pathway through targeting the WTAP-WT1-TBL1 axis. Gut 2016; 65:1482-1493. [PMID: 26071132 PMCID: PMC5036249 DOI: 10.1136/gutjnl-2014-308614] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 04/19/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022] [Imported: 11/06/2023]
Abstract
OBJECTIVE We found that carbonic anhydrase IV (CA4), a member of the carbonic anhydrases, is silenced in colorectal cancer (CRC). We analysed its epigenetic inactivation, biological effects and prognostic significance in CRC. DESIGN The biological functions of CA4 were determined by in vitro and in vivo tumorigenicity assays. The CA4 co-operator was identified by immunoprecipitation and mass spectrometry. CA4 downstream effectors and signalling pathways were elucidated by promoter luciferase assay, electrophoretic mobility shift assay and chromatin immunoprecipitation. The clinical impact of CA4 was assessed in 115 patients with CRC. RESULTS CA4 was silenced in all nine CRC cell lines and 92.6% of CRC tumours. The promoter hypermethylation contributed to the inactivation of CA4, and it was detected in 75.7% of the patients with CRC. After a median follow-up of 49.3 months, multivariate analysis showed that the patients with CA4 hypermethylation had a recurrence of Stage II/III CRC. The re-expression of CA4 inhibited cell proliferation, induced apoptosis and cell cycle arrest in the G1 phase. CA4 inhibited the activity of the Wnt signalling pathway and mediated the degradation of β-catenin. CA4 interacted with Wilms' tumour 1-associating protein (WTAP) and induced WTAP protein degradation through polyubiquitination. Moreover, CA4 promoted the transcriptional activity of Wilms' tumour 1 (WT1), an antagonist of the Wnt pathway, which resulted in the induction of transducin β-like protein 1 (TBL1) and the degradation of β-catenin. CONCLUSIONS CA4 is a novel tumour suppressor in CRC through the inhibition of the Wnt signalling pathway by targeting the WTAP-WT1-TBL1 axis. CA4 methylation may serve as an independent biomarker for the recurrence of CRC.
Collapse
|
research-article |
9 |
127 |
3
|
Yang K, Niu J, Zuo T, Sun Y, Xu Z, Tang W, Liu Q, Zhang J, Ng EKW, Wong SKH, Yeoh YK, Chan PKS, Chan FKL, Miao Y, Ng SC. Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus. Gastroenterology 2021; 161:1257-1269.e13. [PMID: 34175280 DOI: 10.1053/j.gastro.2021.06.056] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] [Imported: 11/06/2023]
Abstract
BACKGROUND & AIMS Obesity and type 2 diabetes mellitus (T2DM) are associated with changes in the gut bacterial composition, but little is known about the role of the viral community (virome) in disease development. This study aims to characterize the gut virome alterations in obese subjects with or without T2DM. METHODS There were 128 obese subjects (body mass index ≥28 kg/m2) and 101 lean controls (body mass index ≥18.5 and <23 kg/m2) recruited from 2 regions in China (Hong Kong and Kunming). Fecal virome and bacteriome were profiled by shotgun metagenomic sequencing. Gut virome, bacteriome, and viral-bacterial correlations were compared between obese subjects and lean controls. RESULTS Obese subjects, especially those with T2DM (ObT2), had a decreased gut viral richness and diversity compared with lean controls in the Hong Kong cohort (P < .05), while no significant differences were observed in the Kunming cohort. Eleven viruses, including Escherichia phage, Geobacillus phage, and Lactobacillus phage were enriched in obese subjects (q < .1). Besides, 17 differentially abundant viruses were identified between ObT2 and lean controls (q < .1). Further ecologic analysis revealed that intensive transkingdom correlations between viruses and bacteria observed in lean controls were significantly decreased in ObT2 subjects (P < .001). CONCLUSIONS Obesity is characterized by altered viral taxonomic composition and weakened viral-bacterial correlations compared with lean controls. Obesity accompanied with T2DM may aggravate the obesity-associated virus signatures, signifying that the gut virome may play an important role in the development of obesity and T2DM. Geographic factors also contributed to the variations of gut virome in obesity and T2DM.
Collapse
|
Comparative Study |
4 |
99 |
4
|
Liang Q, Yao X, Tang S, Zhang J, Yau TO, Li X, Tang CM, Kang W, Lung RWM, Li JW, Chan TF, Xing R, Lu Y, Lo KW, Wong N, To KF, Yu C, Chan FKL, Sung JJY, Yu J. Integrative identification of Epstein-Barr virus-associated mutations and epigenetic alterations in gastric cancer. Gastroenterology 2014; 147:1350-62.e4. [PMID: 25173755 DOI: 10.1053/j.gastro.2014.08.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 12/13/2022] [Imported: 02/10/2025]
Abstract
BACKGROUND & AIMS The mechanisms by which Epstein-Barr virus (EBV) contributes to the development of gastric cancer are unclear. We investigated EBV-associated genomic and epigenomic variations in gastric cancer cells and tumors. METHODS We performed whole-genome, transcriptome, and epigenome sequence analyses of a gastric adenocarcinoma cell line (AGS cells), before and after EBV infection. We then looked for alterations in gastric tumor samples, with (n = 34) or without (n = 100) EBV infection, collected from patients at the Prince of Wales Hospital, Chinese University of Hong Kong (from 1998 through 2004), or the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (from 1999 through 2006). RESULTS Transcriptome analysis showed that infected cells expressed 9 EBV genes previously detected in EBV-associated gastric tumors and 71 EBV genes not previously reported in gastric tumors. Ten viral genes that had not been reported previously in gastric cancer but were expressed most highly in EBV-infected cells also were expressed in primary EBV-positive gastric tumors. Whole-genome sequence analysis identified 45 EBV-associated nonsynonymous mutations. These mutations, in genes such as AKT2, CCNA1, MAP3K4, and TGFBR1, were associated significantly with EBV-positive gastric tumors, compared with EBV-negative tumors. An activating mutation in AKT2 was associated with reduced survival times of patients with EBV-positive gastric cancer (P = .006); this mutation was found to dysregulate mitogen-activated protein kinase signaling. Integrated epigenome and transcriptome analyses identified 216 genes transcriptionally down-regulated by EBV-associated hypermethylation; methylation of ACSS1, FAM3B, IHH, and TRABD increased significantly in EBV-positive tumors. Overexpression of Indian hedgehog (IHH) and TraB domain containing (TRABD) increased proliferation and colony formation of gastric cancer cells, whereas knockdown of these genes reduced these activities. We found 5 signaling pathways (axon guidance, focal adhesion formation, interactions among cytokines and receptors, mitogen-activated protein kinase signaling, and actin cytoskeleton regulation) to be affected commonly by EBV-associated genomic and epigenomic alterations. CONCLUSIONS By using genomic, transcriptome, and epigenomic comparisons of EBV infected vs noninfected gastric cancer cells and tumor samples, we identified alterations in genes, gene expression, and methylation that affect different signaling networks. These might be involved in EBV-associated gastric carcinogenesis.
Collapse
|
|
11 |
93 |
5
|
Zhang J, Hoedt EC, Liu Q, Berendsen E, Teh JJ, Hamilton A, O' Brien AW, Ching JYL, Wei H, Yang K, Xu Z, Wong SH, Mak JWY, Sung JJY, Morrison M, Yu J, Kamm MA, Ng SC. Elucidation of Proteus mirabilis as a Key Bacterium in Crohn's Disease Inflammation. Gastroenterology 2021; 160:317-330.e11. [PMID: 33011176 DOI: 10.1053/j.gastro.2020.09.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] [Imported: 11/06/2023]
Abstract
BACKGROUND & AIMS Proteus spp, Gram-negative facultative anaerobic bacilli, have recently been associated with Crohn's disease (CD) recurrence after intestinal resection. We investigated the genomic and functional role of Proteus as a gut pathogen in CD. METHODS Proteus spp abundance was assessed by ure gene-specific polymerase chain in 54 pairs of fecal samples and 101 intestinal biopsies from patients with CD and healthy controls. The adherence, invasion, and intracellular presence of 2 distinct isolates of Proteus mirabilis in epithelial cells were evaluated using immunofluorescence and electron microscopy. Intracellular gene expression profiles and regulated pathways were analyzed by RNA sequencing and KEGG pathway analysis. Biologic functions of 2 isolates of P mirabilis were determined by in vitro cell culture, and in vivo using conventional mice and germ-free mice. RESULTS Proteus spp were significantly more prevalent and abundant in fecal samples and colonic tissue of patients with CD than controls. A greater abundance of the genus Fusobacterium and a lesser abundance of the genus Faecalibacterium were seen in patients with CD with a high Proteus spp abundance. All 24 Proteus monoclones isolated from patients with CD belonged to members of P mirabilis lineages and 2 isolates, recovered from stool or mucosa, were used in further studies. Mice gavaged with either P mirabilis strain had more severe colonic inflammation. Co-culture of the isolates with epithelial cell lines showed bacterial adherence, invasion, increased production of pro-inflammatory cytokines IL-18 and IL-1α, and cell necrosis. Both isolates induced key pro-inflammatory pathways, including NOD-like receptor signaling, Jak-STAT signaling, and MAPK signaling, and induced pro-inflammatory genes and activated inflammation-related pathways in gnotobiotic mice. CONCLUSIONS P mirabilis in the gut is associated with CD and can induce inflammation in cells and animal models of colitis. P mirabilis can act as a pathobiont and play a crucial role in the pathogenesis of CD.
Collapse
|
|
4 |
70 |
6
|
Zhang N, Chu ESH, Zhang J, Li X, Liang Q, Chen J, Chen M, Teoh N, Farrell G, Sung JJ, Yu J. Peroxisome proliferator activated receptor alpha inhibits hepatocarcinogenesis through mediating NF-κB signaling pathway. Oncotarget 2014; 5:8330-8340. [PMID: 25327562 PMCID: PMC4226686 DOI: 10.18632/oncotarget.2212] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/11/2014] [Indexed: 01/20/2023] [Imported: 02/10/2025] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) ligands have been reported to suppress cancer growth. However, the role of PPARα in hepatocarcinogenesis remains unclear. We investigated the functional significance of PPARα in HCC. PPARα-knockout (PPARα-/-) mice were more susceptible to diethylnitrosamine (DEN)-induced HCC at 6 months compared with wild-type (WT) littermates (80% versus 43%, P < 0.05). In resected HCCs, TUNEL-positive apoptotic cells were significantly less in PPARα-/- mice than in WT mice (P < 0.01), commensurate with a reduction in cleaved caspase-3 and caspase-7 protein expression. Ki-67 staining showed increased cell proliferation in PPARα-/- mice (P < 0.01), with concomitant up-regulation of cyclin-D1 and down-regulation of p15. Moreover, ectopic expression of PPARα in HCC cells significantly suppressed cell proliferation and induced apoptosis. The anti-tumorigenic function of PPARα was mediated via NF-κB as evidenced by inhibition of NF-κB promoter activity, diminution of phosphor-p65, phosphor-p50 and BCL2 levels, and enhancing IkBα protein. Chromatin immunoprecipitation analysis confirmed PPARαdirectly binds to the IkBα promoter. In conclusion, PPARα deficiency enhances susceptibility to DEN-initiated HCC. PPARα suppresses tumor cell growth by inhibiting cell proliferation and inducing cell apoptosis via direct targeting IκBα and NF-κB signaling pathway.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins/metabolism
- Binding Sites
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Diethylnitrosamine
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- I-kappa B Proteins/genetics
- I-kappa B Proteins/metabolism
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/prevention & control
- Mice, Inbred C57BL
- Mice, Knockout
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- PPAR alpha/deficiency
- PPAR alpha/genetics
- PPAR alpha/metabolism
- Promoter Regions, Genetic
- Signal Transduction
- Time Factors
- Transfection
Collapse
|
research-article |
11 |
68 |
7
|
Liu L, Zhang Y, Wong CC, Zhang J, Dong Y, Li X, Kang W, Chan FKL, Sung JJY, Yu J. RNF6 Promotes Colorectal Cancer by Activating the Wnt/β-Catenin Pathway via Ubiquitination of TLE3. Cancer Res 2018; 78:1958-1971. [PMID: 29374067 DOI: 10.1158/0008-5472.can-17-2683] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/02/2018] [Accepted: 01/23/2018] [Indexed: 11/16/2022] [Imported: 11/06/2023]
Abstract
Gene amplification is a hallmark of cancer and is frequently observed in colorectal cancer. Previous whole-genome sequencing of colorectal cancer clinical specimens identified amplification of Ring finger protein 6 (RNF6), a RING-domain E3 ubiquitin ligase. In this study, we showed that RNF6 is upregulated in 73.5% (147/200) of patients with colorectal cancer and was positively associated with RNF6 gene amplification. Furthermore, RNF6 expression and its gene amplification were independent prognostic factors for poor outcome of patients with colorectal cancer. RNF6 promoted cell growth, cell-cycle progression, and epithelial-to-mesenchymal transition in colorectal cancer cells; RNF6 also promoted colorectal tumor growth and lung metastasis in mouse models. Mechanistic investigations revealed that RNF6 bound and ubiquitylated transducin-like enhancer of split 3 (TLE3), a transcriptional repressor of the β-catenin/TCF4 complex. RNF6-mediated degradation of TLE3 significantly suppressed the association of TLE3 with TCF4/LEF, which in turn led to recruitment of β-catenin to TCF4/LEF, triggering Wnt/β-catenin activation. Restoration of TLE3 expression abolished the oncogenic effects of RNF6. Taken together, these results demonstrate that RNF6 plays a pivotal oncogenic role in colorectal tumorigenesis.Significance: RNF6-mediated ubiquitination and degradation of TLE3 activates the Wnt/β-catenin pathway in colorectal carcinogenesis. Cancer Res; 78(8); 1958-71. ©2018 AACR.
Collapse
|
|
7 |
67 |
8
|
Adolph TE, Zhang J. Diet fuelling inflammatory bowel diseases: preclinical and clinical concepts. Gut 2022; 71:2574-2586. [PMID: 36113981 PMCID: PMC9664119 DOI: 10.1136/gutjnl-2021-326575] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] [Imported: 11/06/2023]
Abstract
The diet and gut microbiota have been extensively interrogated as a fuel for gut inflammation in inflammatory bowel diseases (IBDs) in the last few years. Here, we review how specific nutrients, typically enriched in a Western diet, instigate or deteriorate experimental gut inflammation in a genetically susceptible host and we discuss microbiota-dependent and independent mechanisms. We depict the study landscape of nutritional trials in paediatric and adult IBD and delineate common grounds for dietary advice. Conclusively, the diet reflects a critical rheostat of microbial dysbiosis and gut inflammation in IBD. Dietary restriction by exclusive enteral nutrition, with or without a specific exclusion diet, is effectively treating paediatric Crohn's disease, while adult IBD trials are less conclusive. Insights into molecular mechanisms of nutritional therapy will change the perception of IBD and will allow us to enter the era of precision nutrition. To achieve this, we discuss the need for carefully designed nutritional trials with scientific rigour comparable to medical trials, which also requires action from stake holders. Establishing evidence-based dietary therapy for IBD does not only hold promise to avoid long-term immunosuppression, but to provide a widely accessible therapy at low cost. Identification of dietary culprits disturbing gut health also bears the potential to prevent IBD and allows informed decision making in food politics.
Collapse
|
Review |
3 |
64 |
9
|
Wang K, Liang Q, Li X, Tsoi H, Zhang J, Wang H, Go MYY, Chiu PWY, Ng EKW, Sung JJY, Yu J. MDGA2 is a novel tumour suppressor cooperating with DMAP1 in gastric cancer and is associated with disease outcome. Gut 2016; 65:1619-1631. [PMID: 26206665 PMCID: PMC5036270 DOI: 10.1136/gutjnl-2015-309276] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 12/13/2022] [Imported: 11/06/2023]
Abstract
BACKGROUND Using the promoter methylation assay, we have shown that MDGA2 (MAM domain containing glycosylphosphatidylinositol anchor 2) is preferentially methylated in gastric cancer. We analysed its biological effects and prognostic significance in gastric cancer. METHODS MDGA2 methylation status was evaluated by combined bisulfite restriction analysis and bisulfite genomic sequencing. The effects of MDGA2 re-expression or knockdown on cell proliferation, apoptosis and the cell cycle were determined. MDGA2 interacting protein was identified by mass spectrometry and MDGA2-related cancer pathways by reporter activity and PCR array analyses. The clinical impact of MDGA2 was assessed in 218 patients with gastric cancer. RESULTS MDGA2 was commonly silenced in gastric cancer cells (10/11) and primary gastric cancers due to promoter hypermethylation. MDGA2 significantly inhibited cell proliferation by causing G1-S cell cycle arrest and inducing cell apoptosis in vitro, and suppressed xenograft tumour growth in both subcutaneous and orthotopic xenograft mouse models (both p<0.001). The anti-tumorigenic effect of MDGA2 was mediated through direct stabilising of DNA methyltransferase 1 associated protein 1 (DMAP1), which played a tumour suppressive role in gastric cancer. This interaction activated their downstream key elements of p53/p21 signalling cascades. Moreover, promoter methylation of MDGA2 was detected in 62.4% (136/218) of gastric cancers. Multivariate analysis showed that patients with MDGA2 hypermethylation had a significantly decreased survival (p=0.005). Kaplan-Meier survival curves showed that MDGA2 hypermethylation was significantly associated with shortened survival in patients with early gastric cancer. CONCLUSIONS MDGA2 is a critical tumour suppressor in gastric carcinogenesis; its hypermethylation is an independent prognostic factor in patients with gastric cancer.
Collapse
|
research-article |
9 |
56 |
10
|
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, Kang W, To KF, Chen Z, Nie Y, He HH, Sung JJY, Yu J. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology 2023; 165:445-462. [PMID: 37169182 DOI: 10.1053/j.gastro.2023.04.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023] [Imported: 02/10/2025]
Abstract
BACKGROUND & AIMS Immune checkpoint blockade therapy benefits only a small subset of patients with colorectal cancer (CRC), and identification of CRC-intrinsic events modulating immune checkpoint blockade efficacy is an unmet need. We found that AlkB homolog 5 (ALKBH5), an RNA N6-methyladenosine eraser, drives immunosuppression and is a molecular target to boost immune checkpoint blockade therapy in CRC. METHODS Clinical significance of ALKBH5 was evaluated in human samples (n = 205). Function of ALKBH5 was investigated in allografts, CD34+ humanized mice, and Alkbh5 knockin mice. Immunity change was determined by means of flow cytometry, immunofluorescence, and functional investigation. Methylated RNA immunoprecipitation sequencing and RNA sequencing were used to identify ALKBH5 targets. Vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA was constructed for targeting ALKBH5 in vivo. RESULTS High ALKBH5 expression predicts poor prognosis in CRC. ALKBH5 induced myeloid-derived suppressor cell accumulation but reduced natural killer cells and cytotoxic CD8+ T cells to induce colorectal tumorigenesis in allografts, CD34+ humanized mice, and intestine-specific Alkbh5 knockin mice. Mechanistically, AXIN2, a Wnt suppressor, was identified as a target of ALKBH5. ALKBH5 binds and demethylates AXIN2 messenger RNA, which caused its dissociation from N6-methyladenosine reader IGF2BP1 and degradation, resulting in hyperactivated Wnt/β-catenin. Subsequently, Wnt/β-catenin targets, including Dickkopf-related protein 1 (DKK1) were induced by ALKBH5. ALKBH5-induced DKK1 recruited myeloid-derived suppressor cells to drive immunosuppression in CRC, and this effect was abolished by anti-DKK1 in vitro and in vivo. Finally, vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA, or anti-DKK1 potentiated anti-PD1 treatment in suppressing CRC growth by enhancing antitumor immunity. CONCLUSIONS This study identified an ALKBH5-N6-methyladenosine-AXIN2-Wnt-DKK1 axis in CRC, which drives immune suppression to facilitate tumorigenesis. Targeting of ALKBH5 is a promising strategy for sensitizing CRC to immunotherapy.
Collapse
|
|
2 |
55 |
11
|
Su Q, Liu Q, Lau RI, Zhang J, Xu Z, Yeoh YK, Leung TWH, Tang W, Zhang L, Liang JQY, Yau YK, Zheng J, Liu C, Zhang M, Cheung CP, Ching JYL, Tun HM, Yu J, Chan FKL, Ng SC. Faecal microbiome-based machine learning for multi-class disease diagnosis. Nat Commun 2022; 13:6818. [PMID: 36357393 PMCID: PMC9649010 DOI: 10.1038/s41467-022-34405-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] [Imported: 11/06/2023] Open
Abstract
Systemic characterisation of the human faecal microbiome provides the opportunity to develop non-invasive approaches in the diagnosis of a major human disease. However, shared microbial signatures across different diseases make accurate diagnosis challenging in single-disease models. Herein, we present a machine-learning multi-class model using faecal metagenomic dataset of 2,320 individuals with nine well-characterised phenotypes, including colorectal cancer, colorectal adenomas, Crohn's disease, ulcerative colitis, irritable bowel syndrome, obesity, cardiovascular disease, post-acute COVID-19 syndrome and healthy individuals. Our processed data covers 325 microbial species derived from 14.3 terabytes of sequence. The trained model achieves an area under the receiver operating characteristic curve (AUROC) of 0.90 to 0.99 (Interquartile range, IQR, 0.91-0.94) in predicting different diseases in the independent test set, with a sensitivity of 0.81 to 0.95 (IQR, 0.87-0.93) at a specificity of 0.76 to 0.98 (IQR 0.83-0.95). Metagenomic analysis from public datasets of 1,597 samples across different populations observes comparable predictions with AUROC of 0.69 to 0.91 (IQR 0.79-0.87). Correlation of the top 50 microbial species with disease phenotypes identifies 363 significant associations (FDR < 0.05). This microbiome-based multi-disease model has potential clinical application in disease diagnostics and treatment response monitoring and warrants further exploration.
Collapse
|
research-article |
3 |
53 |
12
|
Yu J, Liang Q, Wang J, Wang K, Gao J, Zhang J, Zeng Y, Chiu PWY, Ng EKW, Sung JJY. REC8 functions as a tumor suppressor and is epigenetically downregulated in gastric cancer, especially in EBV-positive subtype. Oncogene 2017; 36:182-193. [PMID: 27212034 PMCID: PMC5241426 DOI: 10.1038/onc.2016.187] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] [Imported: 11/06/2023]
Abstract
REC8 meiotic recombination protein (REC8) was found to be preferentially methylated in gastric cancer (GC) using promoter methylation array. We aimed to elucidate the epigenetic alteration and biological function of REC8 in GC. REC8 was downregulated in 100% (3/3) of Epstein-Barr virus (EBV)-positive and 80% (8/10) of EBV-negative GC cell lines by promoter methylation, but the expression could be restored through demethylation treatment. Protein expression of REC8 was significantly lower in human primary gastric tumors than in adjacent non-tumor tissues. A negative correlation between methylation and mRNA expression of REC8 was observed in 223 gastric samples of The Cancer Genome Atlas study (r=-0.7018, P<0.001). The methylation level (%) of the REC8 promoter was significantly higher in EBV-positive gastric tumors than in EBV-negative gastric tumors, as shown by bisulfite genomic sequencing (77.6 (69.3-80.5) vs 51.4 (39.5-62.3), median (interquartile range); P<0.001); methylation levels in both subtypes of tumors were significantly higher than in normal stomach tissues (14.8 (4.2-24.0)) (both P<0.001). Multivariate analysis revealed that REC8 methylation was an independent factor for poor survival in GC patients (hazard ratio=1.68, P<0.05). REC8 expression significantly suppressed cell viability, clonogenicity and cell cycle progression; it induced apoptosis and inhibited migration of AGS-EBV (EBV-positive) and BGC823 (EBV-negative) GC cells, and it suppressed tumorigenicity in nude mice. In contrast, knockdown of REC8 in gastric epithelial immortalized GES-1 cells significantly increased cell viability, clonogenicity and migration ability. The tumor-suppressive effect of REC8 is mediated at least in part by the downregulation of genes involved in cell growth (G6PD, SLC2A1, NOL3, MCM2, SNAI1 and SNAI2), and the upregulation of apoptosis/migration inhibitors (GADD45G and LDHA) and tumor suppressors (PinX1, IGFBP3 and ETS2). In conclusion, REC8 is a novel tumor suppressor that is commonly downregulated by promoter methylation in GC, especially in the EBV-associated subtype. Promoter methylation of REC8 is an independent risk factor for the shortened survival of GC patients.
Collapse
|
research-article |
8 |
38 |
13
|
Thomann AK, Mak JWY, Zhang JW, Wuestenberg T, Ebert MP, Sung JJY, Bernstein ÇN, Reindl W, Ng SC. Review article: bugs, inflammation and mood-a microbiota-based approach to psychiatric symptoms in inflammatory bowel diseases. Aliment Pharmacol Ther 2020; 52:247-266. [PMID: 32525605 DOI: 10.1111/apt.15787] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/13/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] [Imported: 11/14/2023]
Abstract
BACKGROUND Psychiatric co-morbidities including depression and anxiety are common in inflammatory bowel diseases (IBD). Emerging evidence suggests that interactions between the gut microbiota and brain may play a role in the pathogenesis of psychiatric symptoms in IBD. AIM To review the literature on microbiota-brain-gut interactions in gut inflammation, psychosocial stress and mental disorders and to discuss the putative mediating role of gut microbiota in the development of psychiatric symptoms or co-morbidities in IBD. METHODS A literature search was conducted on Ovid and Pubmed to select relevant animal and human studies reporting an association between IBD, mental disorders and gut microbiota. RESULTS Gut microbial alterations are frequently reported in subjects with IBD and with mental disorders. Both have been associated with reduced faecal bacterial diversity, decreased taxa within the phylum Firmicutes and increased Gammaproteobacteria. In animal studies, microbial perturbations induce behavioural changes and modulate inflammation in mice. Anxiety- and depression-like behaviours in animals can be transferred via faecal microbiota. In humans, modulation of the gut microbiota with probiotics is associated with behavioural and mood changes. Recent data show correlations in changes of faecal and mucosal microbiota and psychological distress in patients with IBD independent of disease activity. CONCLUSION Both IBD and mental disorders are associated with gut microbial alterations. Preclinical and preliminary human studies have shown a mediating role of the gut microbiota in intestinal inflammation and anxiety, depression and stress. Targeting the gut microbiota may represent a useful therapeutic approach for the treatment of psychiatric co-morbidities in IBD.
Collapse
|
Review |
5 |
33 |
14
|
Tsoi H, Lam KC, Dong Y, Zhang X, Lee CK, Zhang J, Ng SC, Ng SSM, Zheng S, Chen Y, Fang J, Yu J. Pre-45s rRNA promotes colon cancer and is associated with poor survival of CRC patients. Oncogene 2017; 36:6109-6118. [PMID: 28692053 PMCID: PMC5671943 DOI: 10.1038/onc.2017.86] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/12/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022] [Imported: 02/10/2025]
Abstract
One characteristic of cancer cells is the abnormally high rate of cell metabolism to sustain their enhanced proliferation. However, the behind mechanism of this phenomenon is still elusive. Here we find that enhanced precursor 45s ribosomal RNA (pre-45s rRNA) is one of the core mechanisms in promoting the pathogenesis of colorectal cancer (CRC). Pre-45s rRNA expression is significantly higher in primary CRC tumor tissues samples and cancer cell lines compared with the non-tumorous colon tissues, and is associated with tumor sizes. Knockdown of pre-45s rRNA inhibits G1/S cell-cycle transition by stabilizing p53 through inducing murine double minute 2 (MDM2) and ribosomal protein L11 (RpL11) interaction. In addition, we revealed that high rate of cancer cell metabolism triggers the passive release of calcium ion from endoplasmic reticulum to the cytoplasm. The elevated calcium ion in the cytoplasm activates the signaling cascade of calcium/calmodulin-dependent protein kinase II, ribosomal S6 kinase (S6K) and ribosomal S6K (CaMKII-S6K-UBF). The activated UBF promotes the transcription of rDNA, which therefore increases pre-45s rRNA. Disruption of CaMKII-S6K-UBF axis by either RNAi or pharmaceutical approaches leads to reduction of pre-45s rRNA expression, which subsequently suppresses cell proliferation in colon cancer cells by causing cell-cycle arrest. Knockdown of APC activates CaMKII-S6K-UBF cascade and thus enhances pre-45s rRNA expression. Moreover, the high expression level of pre-45s rRNA is associated with poor survival of CRC patients in two independent cohorts. Our study identifies a novel mechanism in CRC pathogenesis mediated by pre-45s rRNA and a prognostic factor of pre-45s rRNA in CRC patients.
Collapse
|
research-article |
8 |
26 |
15
|
Li X, Liang Q, Liu W, Zhang N, Xu L, Zhang X, Zhang J, Sung JJY, Yu J. Ras association domain family member 10 suppresses gastric cancer growth by cooperating with GSTP1 to regulate JNK/c-Jun/AP-1 pathway. Oncogene 2016; 35:2453-2464. [PMID: 26279301 DOI: 10.1038/onc.2015.300] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/16/2015] [Accepted: 06/28/2015] [Indexed: 11/08/2022] [Imported: 02/10/2025]
Abstract
The Ras association domain family (RASSF) encodes several members with tumor-suppressive potentials. We aimed to investigate the biological function and clinical implication of RASSF10 in gastric cancer (GC). We found that RASSF10 was silenced in six of seven GC cell lines and in primary GC tissues, but was highly expressed in normal gastric tissues. The silence of RASSAF10 was mediated by promoter methylation as evaluated by bisulfite genomic sequencing. RASSF10 expression could be restored by demethylation treatment. A negative correlation between methylation and mRNA expression of RASSF10 was observed in 223 gastric samples of The Cancer Genome Atlas study (P<0.0001). Re-expression of RASSF10 in GC cell lines (AGS and MKN45) significantly suppressed cell viability, colony formation, migration and invasion, reduced cells in S phase, accumulated cells in G2 phase and induced cell apoptosis in vitro, and inhibited tumorigenicity in nude mice. These were confirmed by decreased expression of proliferation markers (proliferating cell nuclear antigen, p-CDC2 and p-CDC25) and increased apoptotic cascades (cleaved caspases-9, -8, -3 and cleaved poly (ADP-ribose) polymerase). Conversely, RASSF10 knockdown in normal gastric cell line yielded an opposing effect. Co-immunoprecipitation combined with mass spectrometry analyses were performed to reveal the downstream effectors of RASSF10. The result revealed that glutathione S-transferase Pi 1 (GSTP1) was a direct cooperator of RASSF10. The tumor-suppressive effect of RASSF10 was partially mediated by cooperating with GSTP1 to deregulate Jun N-terminal kinase (JNK)/c-Jun/AP-1 pathway. Importantly, RASSF10 methylation was detected in 56.6% (98/173) of primary GCs and is an independent risk factor for poor survival of GC patients (P=0.001). In conclusions, RASSF10 functions as a tumor suppressor by cooperating with GSTP1 to deregulate JNK/c-Jun/AP-1 pathway in GC. Promoter methylation of RASSF10 is associated with poor survival of GC patients.
Collapse
|
|
9 |
23 |
16
|
Zheng J, Sun Q, Zhang J, Ng SC. The role of gut microbiome in inflammatory bowel disease diagnosis and prognosis. United European Gastroenterol J 2022; 10:1091-1102. [PMID: 36461896 PMCID: PMC9752296 DOI: 10.1002/ueg2.12338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022] [Imported: 11/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated intestinal disease consisting of ulcerative colitis and Crohn's disease. Inflammatory bowel disease is believed to be developed as a result of interactions between environmental, immune-mediated and microbial factors in a genetically susceptible host. Recent advances in high-throughput sequencing technologies have aided the identification of consistent alterations of the gut microbiome in patients with IBD. Preclinical and murine models have also shed light on the role of beneficial and pathogenic bacteria in IBD. These findings have stimulated interest in development of non-invasive microbial and metabolite biomarkers for predicting disease risk, disease progression, recurrence after surgery and responses to therapeutics. This review briefly summarizes the current evidence on the role of gut microbiome in IBD pathogenesis and mainly discusses the latest literature on the utilization of potential microbial biomarkers in disease diagnosis and prognosis.
Collapse
|
Review |
3 |
18 |
17
|
Loayza JJ, Kang S, Schooth L, Teh JJ, de Klerk A, Noon EK, Zhang J, Hu J, Hamilton AL, Wilson-O’Brien A, Trakman GL, Lin W, Ching J, Or L, Sung J, Yu J, Ng S, Kamm M, Morrison M. Effect of food additives on key bacterial taxa and the mucosa-associated microbiota in Crohn's disease. The ENIGMA study. Gut Microbes 2023; 15:2172670. [PMID: 36852457 PMCID: PMC9980662 DOI: 10.1080/19490976.2023.2172670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/18/2023] [Indexed: 03/01/2023] [Imported: 11/06/2023] Open
Abstract
Food additives have been linked to the pro-inflammatory microbial dysbiosis associated with Crohn's disease (CD) but the underlying ecological dynamics are unknown. Here, we examine how selection of food additives affects the growth of multiple strains of a key beneficial bacterium (Faecalibacterium prausnitzii), axenic clinical isolates of proinflammatory bacteria from CD patients (Proteus, Morganella, and Klebsiella spp.), and the consortia of mucosa-associated microbiota recovered from multiple Crohn's disease patients. Bacterial growth of the axenic isolates was evaluated using a habitat-simulating medium supplemented with either sodium sulfite, aluminum silicate, carrageenan, carboxymethylcellulose, polysorbate 80, saccharin, sucralose, or aspartame, intended to approximate concentrations found in food. The microbial consortia recovered from post-operative CD patient mucosal biopsy samples were challenged with either carboxymethylcellulose and/or polysorbate 80, and the bacterial communities compared to unchallenged consortia by 16S rRNA gene amplicon profiling. Growth of all F. prausnitzii strains was arrested when either sodium sulfite or polysorbate 80 was added to cultures at baseline or mid-exponential phase of growth, and the inhibitory effects on the Gram-negative bacteria by sodium sulfite were conditional on oxygen availability. The effects from polysorbate 80, saccharin, carrageenan, and/or carboxymethylcellulose on these bacteria were strain-specific. In addition to their direct effects on bacterial growth, polysorbate 80 and/or carboxymethylcellulose can drive profound changes in the CD mucosa-associated microbiota via niche expansion of Proteus and/or Veillonellaceae - both implicated in early Crohn's disease recurrence. These studies on the interaction of food additives with the enteric microbiota provide a basis for dietary management in Crohn's disease.
Collapse
|
research-article |
2 |
8 |
18
|
Zhang J, Zhai J, Wong CC, Chen H, Wang X, Ji J, Yu J. A novel amplification gene PCI domain containing 2 (PCID2) promotes colorectal cancer through directly degrading a tumor suppressor promyelocytic leukemia (PML). Oncogene 2021; 40:6641-6652. [PMID: 34625711 PMCID: PMC8660639 DOI: 10.1038/s41388-021-01941-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] [Imported: 11/06/2023]
Abstract
Using whole genome sequencing, PCI Domain Containing 2 (PCID2) was identified to be amplified in colorectal cancer (CRC). In this study, we investigated the expression, biological function, molecular mechanism, and clinical implication of PCID2 in CRC. PCID2 mRNA and protein expression were higher in CRC cells and tumor tissues compared to healthy colonic tissues. The copy number of PCID2 was positively correlated with its mRNA expression. Multivariate analysis revealed that PCID2 is an independent prognostic factor for CRC recurrence. Functional studies showed that PCID2 promoted cell growth, cell cycle progression, and cell migration/invasion, while apoptosis was suppressed. Moreover, PCID2 promoted xenograft growth and lung metastasis in nude mice. Using co-immunoprecipitation and mass spectroscopy, we showed that PCID2 binds to promyelocytic leukemia (PML), a tumor suppressor involved in non-canonical β-catenin signaling. PCID2 promoted the degradation of PML via poly-ubiquitination, which in turn, induced Wnt/β-catenin signaling while simultaneously repressing ARF-p53 pathway. Thus, these results demonstrated that PCID2 functions as an oncogene in CRC by enhancing canonical Wnt/β-catenin signaling and inhibition of CTNNB1-ARF-p53 axis. PCID2 promoted canonical Wnt/β-catenin signaling in CRC via degradation of PML. PCID2 may serve as an independent prediction marker for CRC recurrence.
Collapse
|
research-article |
4 |
8 |
19
|
Liu Y, Zhang J, Yu W, Zhang X, Wang G, Zhao Z. Dapper homolog 1 alpha suppresses metastasis ability of gastric cancer through inhibiting planar cell polarity pathway. Oncotarget 2016; 7:81423-81434. [PMID: 27833078 PMCID: PMC5348403 DOI: 10.18632/oncotarget.13234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] [Imported: 02/10/2025] Open
Abstract
Dapper homolog 1 alpha (DACT1α) is a member of DACT family and an important regulator in the planar cell polarity pathway. We aim to clarify its functional role in metastasis ability of gastric cancer. DACT1α was silenced in all gastric cancer cell lines (8/8), but expressed in normal gastric tissue. Ectopic expression of DACT1α in silenced gastric cancer cell lines (AGS, BGC823 and MGC803) by stable transfection significantly suppressed cancer cell spreading (P < 0.05), migration (P < 0.01) and invasion (P < 0.01). These effects were associated with downregulation of planar cell polarity pathway related genes involved in cell proliferation (PDGFB, VEGFA), adhesion (ITGA1, ITGA2, ITGA3, ITGB3) and migration/invasion (PLAU, MMP9, MCAM, Dvl-2 and JNK). DACT1α promoter methylation was detected in 205 gastric cancers and 20 normal controls by direct bisulfite genomic sequencing. DACT1α methylation was detected in 29.3% (60/205) of gastric cancer patients, but not in normal tissues. DACT1α methylation was associated with poor survival of gastric cancer patients. In conclusion, DACT1α plays a pivotal role as a potential tumor suppressor in migration and invasion of gastric cancer. DACT1α methylation may serve as a biomarker for the prognosis of gastric cancer.
Collapse
|
research-article |
9 |
7 |
20
|
Teh JJ, Berendsen EM, Hoedt EC, Kang S, Zhang J, Zhang F, Liu Q, Hamilton AL, Wilson-O'Brien A, Ching J, Sung JJY, Yu J, Ng SC, Kamm MA, Morrison M. Novel strain-level resolution of Crohn's disease mucosa-associated microbiota via an ex vivo combination of microbe culture and metagenomic sequencing. THE ISME JOURNAL 2021; 15:3326-3338. [PMID: 34035441 PMCID: PMC8528831 DOI: 10.1038/s41396-021-00991-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] [Imported: 11/06/2023]
Abstract
The mucosa-associated microbiota is widely recognized as a potential trigger for Crohn's disease pathophysiology but remains largely uncharacterised beyond its taxonomic composition. Unlike stool microbiota, the functional characterisation of these communities using current DNA/RNA sequencing approaches remains constrained by the relatively small microbial density on tissue, and the overwhelming amount of human DNA recovered during sample preparation. Here, we have used a novel ex vivo approach that combines microbe culture from anaerobically preserved tissue with metagenome sequencing (MC-MGS) to reveal patient-specific and strain-level differences among these communities in post-operative Crohn's disease patients. The 16 S rRNA gene amplicon profiles showed these cultures provide a representative and holistic representation of the mucosa-associated microbiota, and MC-MGS produced both high quality metagenome-assembled genomes of recovered novel bacterial lineages. The MC-MGS approach also produced a strain-level resolution of key Enterobacteriacea and their associated virulence factors and revealed that urease activity underpins a key and diverse metabolic guild in these communities, which was confirmed by culture-based studies with axenic cultures. Collectively, these findings using MC-MGS show that the Crohn's disease mucosa-associated microbiota possesses taxonomic and functional attributes that are highly individualistic, borne at least in part by novel bacterial lineages not readily isolated or characterised from stool samples using current sequencing approaches.
Collapse
|
research-article |
4 |
6 |
21
|
Lam S, Zhang J, Yang K, Chu LC, Zhu W, Tang W, Chan FKL, Chan PKS, Wu WKK, Ng SC. Modulation of gut microbiota impacts diet-induced and drug-induced alopecia in mice. Gut 2022; 71:2366-2369. [PMID: 34987064 DOI: 10.1136/gutjnl-2021-326320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/26/2021] [Indexed: 12/13/2022] [Imported: 11/06/2023]
|
Letter |
3 |
3 |
22
|
Xu Z, Dong X, Yang K, Chevarin C, Zhang J, Lin Y, Zuo T, Chu LC, Sun Y, Zhang F, Chan FK, Sung JJ, Yu J, Buisson A, Barnich N, Colombel JF, Wong SH, Miao Y, Ng SC. Association of Adherent-invasive Escherichia coli with severe Gut Mucosal dysbiosis in Hong Kong Chinese population with Crohn's disease. Gut Microbes 2021; 13:1994833. [PMID: 34812117 PMCID: PMC8632309 DOI: 10.1080/19490976.2021.1994833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023] [Imported: 11/06/2023] Open
Abstract
Adherent invasive Escherichia Coli (AIEC) has been implicated in the pathogenesis of Crohn's disease (CD) in Western populations. Whether the presence of AIEC is also seen in CD populations of different genetic susceptibility and has negative impact on host microbiota ecology and therapeutics are unclear. AIEC presence was assessed in ileal tissues of 60 Hong Kong Chinese patients with CD and 56 healthy subjects. Mucosa microbiota was analyzed by 16s rRNA sequencing. Impact of AIEC on the gut microbiota was determined in a mouse model. AIEC was significantly more prevalent in ileal tissues of patients with CD than controls (30% vs 7.1%). Presence of AIEC in ileal tissues was associated with more severe mucosa microbiota dysbiosis in CD with decreased diversity and lower abundance of Firmicutes including butyrate producing Roseburia and probiotic Bacillus. A random forest model predicted the presence of AIEC with area under the curve of 0.89. AIEC exacerbated dysbiosis in dextran sodium sulfate (DSS)-induced colitis mice and led to resistance to restoration of normal gut microbiota by fecal microbiota transplantation (FMT). Proportion of donor-derived bacteria in AIEC-colonized mice was significantly lower than that in uninfected mice. AIEC was prevalent and associated with severe mucosa microbiota dysbiosis in CD in Hong Kong Chinese population. The presence of AIEC impeded restoration of normal gut microbiota. AIEC may serve as a keystone bacterium in CD and impact the efficacy of FMT.
Collapse
|
research-article |
4 |
1 |
23
|
Vich Vila A, Zhang J, Liu M, Faber KN, Weersma RK. Untargeted faecal metabolomics for the discovery of biomarkers and treatment targets for inflammatory bowel diseases. Gut 2024; 73:1909-1920. [PMID: 39002973 PMCID: PMC11503092 DOI: 10.1136/gutjnl-2023-329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024] [Imported: 02/10/2025]
Abstract
The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.
Collapse
|
Review |
1 |
|
24
|
Zhang J, Zhai J, Wong CC, Chen H, Wang X, Ji J, Yu J. Correction: A novel amplification gene PCI domain containing 2 (PCID2) promotes colorectal cancer through directly degrading a tumor suppressor promyelocytic leukemia (PML). Oncogene 2025; 44:634-636. [PMID: 39939727 PMCID: PMC11850279 DOI: 10.1038/s41388-025-03304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] [Imported: 03/04/2025]
|
Published Erratum |
1 |
|
25
|
Zhang J. Dysbiosis exists in unaffected relatives of inflammatory bowel disease (IBD): emphasising the critical phases in the developmental trajectory of gut microbiota. Gut 2024:gutjnl-2024-333425. [PMID: 39715670 DOI: 10.1136/gutjnl-2024-333425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024] [Imported: 02/10/2025]
|
|
1 |
|