151
|
Ahmadibeni Y, Tiwari R, Swepson C, Pandhare J, Dash C, Doncel GF, Parang K. Synthesis and anti-HIV activities of bis-( cycloSaligenyl) pronucleotides derivatives of 3'-fluoro-3'-deoxythymidine and 3'-azido-3'-deoxythymidine. Tetrahedron Lett 2011; 52:802-805. [PMID: 26661937 PMCID: PMC4675361 DOI: 10.1016/j.tetlet.2010.12.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] [Imported: 08/09/2024]
Abstract
Anti-HIV nucleoside monophosphates have limited cellular uptake due to the presence of negatively-charged phosphate group. Bis-(cycloSaligenyl) derivatives containing two anti-HIV nucleosides, 3'-fluoro-3'-deoxythymidine (FLT) and 3'-azido-3'-deoxythymidine (AZT) were synthesized to increase intracellular delivery of nucleoside monophosphates. 2,5-Bis(hydroxymethylene)benzene-1,4-diol was selected as a monocyclic bidentate scaffold and synthesized by three different methods from bis(hydroxymethylene)cyclohexan-1,4-diene-1,4-diol, or diethyl 2,5-dihydroxyterephthalate. The reaction of the tetraol with diisopropylphosphoramidous dichloride in the presence of 2,6-lutidine, followed by conjugation reactions with nucleosides (i.e., FLT and AZT) and oxidation afforded symmetrical and unsymmetrical bis-(cycloSaligenyl) diphosphate triester products, AZT-AZT, FLT-FLT, and FLT-AZT conjugates, in 63-74% overall yields and modest anti-HIV activities (IC50 = 2.8-69.6 µM).
Collapse
|
research-article |
14 |
6 |
152
|
Chhikara BS, Ashraf S, Mozaffari S, St. Jeans N, Mandal D, Tiwari RK, Ul-Haq Z, Parang K. Phenylpyrazalopyrimidines as Tyrosine Kinase Inhibitors: Synthesis, Antiproliferative Activity, and Molecular Simulations. Molecules 2020; 25:2135. [PMID: 32370213 PMCID: PMC7249037 DOI: 10.3390/molecules25092135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] [Imported: 05/05/2024] Open
Abstract
N1-(α,β-Alkene)-substituted phenylpyrazolopyrimidine derivatives with acetyl and functionalized phenyl groups at α- and β-positions, respectively, were synthesized by the reaction of 3-phenylpyrazolopyrimidine (PhPP) with bromoacetone, followed by a chalcone reaction with differently substituted aromatic aldehydes. The Src kinase enzyme assay revealed modest inhibitory activity (half maximal inhibitory concentration, IC50 = 21.7-192.1 µM) by a number of PhPP derivatives. Antiproliferative activity of the compounds was evaluated on human leukemia (CCRF-CEM), human ovarian adenocarcinoma (SK-OV-3), breast carcinoma (MDA-MB-231), and colon adenocarcinoma (HT-29) cells in vitro. 4-Chlorophenyl carbo-enyl substituted 3-phenylpyrazolopyrimidine (10) inhibited the cell proliferation of HT-29 and SK-OV-3 by 90% and 79%, respectively, at a concentration of 50 µM after 96 h incubation. The compound showed modest inhibitory activity against c-Src (IC50 = 60.4 µM), Btk (IC50 = 90.5 µM), and Lck (IC50 = 110 µM), while it showed no activity against Abl1, Akt1, Alk, Braf, Cdk2, and PKCa. In combination with target selection and kinase profiling assay, extensive theoretical studies were carried out to explore the selectivity behavior of compound 10. Specific interactions were also explored by examining the changing trends of interactions of tyrosine kinases with the phenylpyrazolopyrimidine derivative. The results showed good agreement with the experimental selectivity pattern among c-Src, Btk, and Lck.
Collapse
|
research-article |
5 |
6 |
153
|
Sharifian A, Parang K, Zorrieh‐Amirian H, Nazarinia M, Shafiee A. Syntheses of 1‐substituted 1,2,4‐triazoles, imidazoles and benzimidazoles. J Heterocycl Chem 1994; 31:1421-1423. [DOI: 10.1002/jhet.5570310621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] [Imported: 08/09/2024]
Abstract
AbstractSubstituted 2‐phenethyl‐1,2,4‐triazoles, 1‐phenethylimidazoles 3 and 1‐phenethylbenzimidazoles 5 were synthesized from the reaction of compound 8 with tri‐n‐butyltin hydride in good yield. The reaction of substituted‐2‐phenethyl halide with 1H‐1,2,4‐triazoles, imidazoles and benzimidazoles gave a low yield. The yield was increased by the use of substituted‐2‐phenethyl p‐toluensulfonate.
Collapse
|
|
31 |
6 |
154
|
Singh A, Mehra V, Sadeghiani N, Mozaffari S, Parang K, Kumar V. Ferrocenylchalcone–uracil conjugates: synthesis and cytotoxic evaluation. Med Chem Res 2018; 27:1260-1268. [DOI: 10.1007/s00044-018-2145-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/27/2018] [Indexed: 01/29/2023] [Imported: 08/09/2024]
|
|
7 |
6 |
155
|
Penugonda S, Agarwal HK, Parang K, Mehvar R. Plasma pharmacokinetics and tissue disposition of novel dextran-methylprednisolone conjugates with peptide linkers in rats. J Pharm Sci 2010; 99:1626-1637. [PMID: 19780131 PMCID: PMC3415712 DOI: 10.1002/jps.21934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] [Imported: 08/09/2024]
Abstract
The plasma and tissue disposition of two novel dextran prodrugs of methylprednisolone (MP) containing one (DMP-1) or five (DMP-5) amino acids as linkers were studied in rats. Single 5-mg/kg doses (MP equivalent) of each prodrug or MP were administered intravenously, and blood and tissue samples were collected. Prodrug and drug concentrations were quantitated using HPLC, and noncompartmental pharmacokinetic parameters were estimated. Whereas conjugation of MP with dextran in both prodrugs substantially decreased the clearance of the drug by approximately 200-fold, the accumulations of the drug in the liver, spleen, and kidneys were significantly increased by conjugation. However, the extent of accumulation of DMP-1 in these tissues was substantially greater than that for DMP-5. Substantial amounts of MP were regenerated from both prodrugs in the liver and spleen, with the rate of release from DMP-5 being twice as fast as that from DMP-1. However, the AUCs of MP regenerated from DMP-1 in the liver and spleen were substantially higher than those after DMP-5. In contrast, in the kidneys, the AUC of MP regenerated from DMP-5 was higher than that after DMP-1 administration. These data suggest that DMP-1 may be more suitable than DMP-5 for targeting immunosuppression to the liver and spleen.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
6 |
156
|
Ahmadibeni Y, Dash C, Hanley MJ, Le Grice SFJ, Agarwal HK, Parang K. Synthesis of nucleoside 5'-O-alpha,beta-methylene-beta-triphosphates and evaluation of their potency towards inhibition of HIV-1 reverse transcriptase. Org Biomol Chem 2010; 8:1271-4. [PMID: 20204192 PMCID: PMC2928660 DOI: 10.1039/b922846b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] [Imported: 08/09/2024]
Abstract
A polymer-bound alpha,beta-methylene-beta-triphosphitylating reagent was synthesized and subjected to reactions with unprotected nucleosides, followed by oxidation, deprotection of cyanoethoxy groups, and acidic cleavage to afford nucleoside 5'-O-alpha,beta-methylene-beta-triphosphates. Among all the compounds, cytidine 5'-O-alpha,beta-methylene-beta-triphosphate inhibited RNase H activity of HIV-1 reverse transcriptase with a K(i) value of 225 microM.
Collapse
|
Research Support, N.I.H., Intramural |
15 |
6 |
157
|
Motavallizadeh S, Fallah-Tafti A, Maleki S, Shirazi AN, Pordeli M, Safavi M, Ardestani SK, Asd S, Tiwari R, Oh D, Shafiee A, Foroumadi A, Parang K, Akbarzadeh T. Synthesis and evaluation of antiproliferative activity of substituted N-(9-oxo- 9H-xanthen-4-yl)benzenesulfonamides. Tetrahedron Lett 2014; 55:373-375. [PMID: 24453382 PMCID: PMC3895536 DOI: 10.1016/j.tetlet.2013.11.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] [Imported: 05/05/2024]
Abstract
Several novel N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamides derivatives were prepared as potential antiproliferative agents. The in vitro antiproliferative activity of the synthesized compounds was investigated against a panel of tumor cell lines including breast cancer cell lines (MDA-MB-231, T-47D) and neuroblastoma cell line (SK-N-MC) using MTT colorimetric assay. Etoposide, a well-known anticancer drug, was used as a positive standard drug. Among synthesized compounds, 4-methoxy-N-(9-oxo-9H-xanthen-4-yl)benzenesulfonamide (5i) showed the highest antiproliferative activity against MDA-MB-231, T-47D, and SK-N-MC cells. Furthermore, pentafluoro derivatives 5a and 6a exhibited higher antiproliferative activity than doxorubicin against human leukemia cell line (CCRF-CEM) and breast adenocarcinoma (MDA-MB-468) cells. Structure-activity relationship studies revealed that xanthone benzenesulfonamide hybrid compounds can be used for development of new lead anticancer agents.
Collapse
|
research-article |
11 |
6 |
158
|
Muthyala MK, Chhikara BS, Parang K, Kumar A. Ionic-liquid-supported 1,5,7-triazabicyclo[4.4.0]dec-5-ene — An efficient and recyclable organocatalyst for Michael addition to α,β-unsaturated ketones. CAN J CHEM 2012; 90:290-297. [DOI: 10.1139/v11-162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] [Imported: 08/09/2024]
Abstract
A novel ionic-liquid-supported 1,5,7-triazabicyclo[4.4.0]dec-5-ene (IL–TBD) was synthesized and investigated for its ability to act as an active organocatalyst in the Michael addition of active methylene compounds and thiophenols to chalcones under solvent-free conditions. The IL–TBD afforded Michael addition products in excellent yields (82%–94%) at room temperature, and it was simply recycled and reused at least five times without significant loss of catalytic activity.
Collapse
|
|
13 |
6 |
159
|
Ahmadibeni Y, Dash C, Le Grice SFJ, Parang K. Solid-Phase Synthesis of 5'-O-β,γ-Methylenetriphosphate Derivatives of Nucleosides and Evaluation of Their Inhibitory Activity Against HIV-1 Reverse Transcriptase. Tetrahedron Lett 2010; 51:3010-3013. [PMID: 20454539 PMCID: PMC2864936 DOI: 10.1016/j.tetlet.2010.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] [Imported: 08/09/2024]
Abstract
Bis(dichlorophosphino)methane was converted to a β,γ-methylenetriphosphitylating reagent. The reagent was immobilized on aminomethyl polystyrene resin-bound linker of 4-acetoxy-3-phenylbenzyl alcohol to afford a polymer-bound β,γ-methylenetriphosphitylating reagent, which was reacted with unprotected nucleosides followed by oxidation with tert-butyl hydroperoxide, deprotection of cyanoethoxy groups with DBU, and acidic cleavage, to produce 5'-O-β,γ-methylene triphosphate nucleosides in 53-82% overall yields. Among all the compounds, cytidine 5'-O-β,γ-methylenetriphosphate inhibited completely RNase H activity of HIV-1 reverse transcriptase at 700 μM.
Collapse
|
research-article |
15 |
5 |
160
|
Tiwari RK, Parang K. Conformationally constrained peptides as protein tyrosine kinase inhibitors. Curr Pharm Des 2012; 18:2852-2866. [PMID: 22571654 DOI: 10.2174/138161212800672714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/15/2012] [Indexed: 11/22/2022] [Imported: 08/09/2024]
Abstract
Protein kinases are enzymes that catalyze the transfer of the γ-phosphate group from ATP to the hydroxyl groups in side chains of tyrosine, serine, or threonine. Protein kinases are divided in two classes: tyrosine kinases (TKs) and serine/threonine kinases (STKs). Overexpression or activation of protein tyrosine kinases (PTKs) has been found to be responsible for the development of many diseases, including cancer, inflammation, and many cardiovascular and neurodegenerative disorders. Thus, the design of PTK inhibitors (PTKIs) has become a subject of a major interest for the pharmaceutical industry. A number of marketed PTKIs that target conserved ATP binding site of PTKs were found to demonstrate toxicity (e.g., imitanib and sorafenib) or to generate resistance (e.g., imitanib and vemurafenib in chronic myeloid leukemia and metastatic melanoma, respectively). Thus, alternative strategies are urgently required for designing novel PTKIs. Linear peptides designed based on the natural protein substrates of PTKs have been introduced to target unique and non conserved PTK regions, such as substrate binding site. These compounds are more specific than the small molecules that usually target conserved ATP binding site. On the other hand, linear peptides are susceptible to hydrolysis by endogenous peptidases. Cyclization of linear peptides has led to generation of diverse conformationally constrained structures as PTKIs. Introduction of the conformational constraints enhances the stability towards proteases, the free energy upon binding, and binding affinity, but reduces the conformational entropy penalty upon receptor binding. Herein, design strategies for conformationally constrained peptides and their application as PTKIs are discussed.
Collapse
|
Review |
13 |
5 |
161
|
Yoon YK, Ali MA, Wei AC, Choon TS, Oon CE, Shirazi AN, Parang K. Correction: Discovery of a potent and highly fluorescent sirtuin inhibitor. MEDCHEMCOMM 2015; 6:2235-2235. [DOI: 10.1039/c5md90057c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] [Imported: 08/09/2024]
Abstract
Correction for ‘Discovery of a potent and highly fluorescent sirtuin inhibitor’ by Y. K. Yoon et al., Med. Chem. Commun., 2015, 6, 1857–1863.
Collapse
|
|
10 |
5 |
162
|
Mohammed EHM, Lohan S, Tiwari RK, Parang K. Amphiphilic cyclic peptide [W 4KR 5]-Antibiotics combinations as broad-spectrum antimicrobial agents. Eur J Med Chem 2022; 235:114278. [PMID: 35339840 DOI: 10.1016/j.ejmech.2022.114278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/04/2022] [Imported: 05/05/2024]
Abstract
Linear and cyclic amphiphilic peptides, (W4KR5) and [W4KR5], were evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including four multi-drug resistant strains and the corresponding four non-resistant strains. Cyclic peptide [W4KR5] showed higher antibacterial activity than the linear (W4KR5) counterpart. Cyclic [W4KR5] was subjected to combination (physical mixture or covalent conjugation) with meropenem as a model antibiotic to study the impact of the combination on antimicrobial activity. A physical mixture of meropenem and [W4KR5] showed synergistic antibacterial activity against Gram-negative P. aeruginosa (ATCC BAA-1744) and P. aeruginosa (ATCC 27883) strains. [W4KR5] was further subjected to extensive antibacterial studies against additional 10 bacteria strains, showing significant antibacterial efficacy against Gram-positive bacteria strains. Combinations studies of [W4KR5] with an additional 9 commercially available antibiotics showed significant enhancement in antibacterial activity for all tested combinations, especially with tetracycline, tobramycin, levofloxacin, clindamycin, daptomycin, polymyxin, kanamycin, and vancomycin. Time-kill kinetics assay and flow cytometry results exhibited that [W4KR5] had a time-dependent synergistic effect and membrane disruption property. These data indicate that [W4KR5] improves the antibacterial activity, presumably by facilitating the internalization of antibiotics and their interaction with the intracellular targets. This study introduces a potential strategy for treating multidrug-resistant pathogens by combining [W4KR5] and a variety of classical antibiotics to improve the antibacterial effectiveness.
Collapse
|
|
3 |
5 |
163
|
Nam YW, Cui M, Orfali R, Viegas A, Nguyen M, Mohammed EHM, Zoghebi KA, Rahighi S, Parang K, Zhang M. Hydrophobic interactions between the HA helix and S4-S5 linker modulate apparent Ca 2+ sensitivity of SK2 channels. Acta Physiol (Oxf) 2021; 231:e13552. [PMID: 32865319 PMCID: PMC7736289 DOI: 10.1111/apha.13552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] [Imported: 05/05/2024]
Abstract
AIM Small-conductance Ca2+ -activated potassium (SK) channels are activated exclusively by increases in intracellular Ca2+ that binds to calmodulin constitutively associated with the channel. Wild-type SK2 channels are activated by Ca2+ with an EC50 value of ~0.3 μmol/L. Here, we investigate hydrophobic interactions between the HA helix and the S4-S5 linker as a major determinant of channel apparent Ca2+ sensitivity. METHODS Site-directed mutagenesis, electrophysiological recordings and molecular dynamic (MD) simulations were utilized. RESULTS Mutations that decrease hydrophobicity at the HA-S4-S5 interface lead to Ca2+ hyposensitivity of SK2 channels. Mutations that increase hydrophobicity result in hypersensitivity to Ca2+ . The Ca2+ hypersensitivity of the V407F mutant relies on the interaction of the cognate phenylalanine with the S4-S5 linker in the SK2 channel. Replacing the S4-S5 linker of the SK2 channel with the S4-S5 linker of the SK4 channel results in loss of the hypersensitivity caused by V407F. This difference between the S4-S5 linkers of SK2 and SK4 channels can be partially attributed to I295 equivalent to a valine in the SK4 channel. A N293A mutation in the S4-S5 linker also increases hydrophobicity at the HA-S4-S5 interface and elevates the channel apparent Ca2+ sensitivity. The double N293A/V407F mutations generate a highly Ca2+ sensitive channel, with an EC50 of 0.02 μmol/L. The MD simulations of this double-mutant channel revealed a larger channel cytoplasmic gate. CONCLUSION The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca2+ sensitivity of SK2 channels.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
5 |
164
|
Chhikara BS, Tiwari R, Parang K. N-Myristoylglutamic Acid Derivative of 3'-Fluoro-3'-Deoxythymidine as an Organogel. Tetrahedron Lett 2012; 53:5335-5337. [PMID: 23175585 PMCID: PMC3501110 DOI: 10.1016/j.tetlet.2012.07.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] [Imported: 08/09/2024]
Abstract
Designing microbicidal gels of anti-HIV drugs for local application to prevent HIV infection is a subject of major interest. 3'-Fluoro-3'-deoxythymidine (FLT), a nucleoside reverse transcriptase inhibitor (NRTI), was conjugated with a N-myristoyl glutamate scaffold. The conjugate showed gelation at 1% (w/w) in different organic solvents, such as toluene, dichloromethane, and chloroform. The gels were opaque and stable at room temperature. The results indicate that myristoyl glutamate derivative of FLT can form an organogel. The gel could have potential application as a topical anti-HIV microbicidal agent.
Collapse
|
research-article |
13 |
5 |
165
|
Salehi D, Mozaffari S, Zoghebi K, Lohan S, Mandal D, Tiwari RK, Parang K. Amphiphilic Cell-Penetrating Peptides Containing Natural and Unnatural Amino Acids as Drug Delivery Agents. Cells 2022; 11:1156. [PMID: 35406720 PMCID: PMC8997995 DOI: 10.3390/cells11071156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] [Imported: 05/05/2024] Open
Abstract
A series of cyclic peptides, [(DipR)(WR)4], [(DipR)2(WR)3], [(DipR)3(WR)2], [(DipR)4(WR)], and [DipR]5, and their linear counterparts containing arginine (R) as positively charged residues and tryptophan (W) or diphenylalanine (Dip) as hydrophobic residues, were synthesized and evaluated for their molecular transporter efficiency. The in vitro cytotoxicity of the synthesized peptides was determined in human epithelial ovary adenocarcinoma cells (SK-OV-3), human lymphoblast peripheral blood cells (CCRF-CEM), human embryonic epithelial kidney healthy cells (HEK-293), human epithelial mammary gland adenocarcinoma cells (MDA-MB-468), pig epithelial kidney normal cells (LLC-PK1), and human epithelial fibroblast uterine sarcoma cells (MES-SA). A concentration of 5-10 µM and 3 h incubation were selected in uptake studies. The cellular uptake of a fluorescent-labeled phosphopeptide, stavudine, lamivudine, emtricitabine, and siRNA was determined in the presence of peptides via flow cytometry. Among the peptides, [DipR]5 (10 µM) was found to be the most efficient transporter and significantly improved the uptake of F'-GpYEEI, i.e., by approximately 130-fold after 3 h incubation in CCRF-CEM cells. Confocal microscopy further confirmed the improved delivery of fluorescent-labeled [DipR]5 (F'-[K(DipR)5]) alone and F'-GpYEEI in the presence of [DipR]5 in MDA-MB-231 cells. The uptake of fluorescent-labeled siRNA (F'-siRNA) in the presence of [DipR]5 with N/P ratios of 10 and 20 was found to be 30- and 50-fold higher, respectively, compared with the cells exposed to F'-siRNA alone. The presence of endocytosis inhibitors, i.e., nystatin, chlorpromazine, chloroquine, and methyl β-cyclodextrin, did not completely inhibit the cellular uptake of F'-[K(DipR)5] alone or F'-GpYEEI in the presence of [DipR]5, suggesting that a combination of mechanisms contributes to uptake. Circular dichroism was utilized to determine the secondary structure, while transmission electron microscopy was used to evaluate the particle sizes and morphology of the peptides. The data suggest the remarkable membrane transporter property of [DipR]5 for improving the delivery of various small molecules and cell-impermeable negatively charged molecules (e.g., siRNA and phosphopeptide).
Collapse
|
research-article |
3 |
5 |
166
|
Parang K, Wiebe LI, Knaus EE. Syntheses and Biological Evaluation of 5′- O-Myristoyl Derivatives of Thymidine against Human Immunodeficiency Virus. Antivir Chem Chemother 1997; 8:417-427. [DOI: 10.1177/095632029700800504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] [Imported: 08/09/2024] Open
Abstract
A series of 5′- Oacyl derivatives of thymidine (dThd) were prepared by direct acylation of thymidine using the Mitsunobu reaction. Further reaction of the bromo analogues with sodium azide gave azido ester analogues. Anti-human immunodeficiency virus type 1 (HIV-1) activities were determined against HIV-infected T4 lymphocytes. 5′- O-(12-Azidododecanoyl)thymidine exhibited moderate activity (EC50 4.6 μM) against HIV-infected T4 lymphocytes. 5- O-(2-Bromotetradecanoyl)-thymidine was found to be the most stable ester (t1/2 15.3 min) to hydrolysis by porcine liver esterase in vitro. Partition coefficients (P) in n-octanol-phosphate buffer were determined (log10 P range 4.15–6.72) and compared with the theoretical values calculated (log10 P 3.96–6.53) using the PALLAS program. Anti-HIV structure-activity data suggest that the experimental partition coefficient should be in the log10 P 4.6–4.8 range for optimum anti-HIV activity. The structures of these thymidine analogues were optimized using molecular mechanics (MM+ force field) and semi-empirical quantum mechanics PM3 calculations. The moderately active compounds adopted a similar C-2′ endo sugar conformation and exhibited similar energies for the lowest energy conformer. A quantitative structure-activity relationship (QSAR) regression equation was developed, based on the optimized structures and anti-HIV data using the SciQSAR program, which showed that log P was a determinant of anti-HIV activity.
Collapse
|
|
28 |
4 |
167
|
Carballeira NM, O'Neill R, Parang K. Racemic and optically active 2-methoxy-4-oxatetradecanoic acids: novel synthetic fatty acids with selective antifungal properties. Chem Phys Lipids 2005; 136:47-54. [PMID: 15899476 DOI: 10.1016/j.chemphyslip.2005.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 03/21/2005] [Accepted: 03/23/2005] [Indexed: 11/27/2022] [Imported: 05/05/2024]
Abstract
The unprecedented (+/-)-2-methoxy-4-oxatetradecanoic acid and the optically pure (S)-2-methoxy-4-oxatetradecanoic acid were synthesized in six steps and in 11-14% overall yields starting with either 1,2-O-isopropylidene-rac-glycerol or 1,2-O-isopropylidene-(S)-glycerol. The key step in the synthesis was the selective monosilylation of a dibutylstannylene intermediate. The title compounds displayed selective fungitoxicity in the range of 0.08-0.22 mM against Cryptococcus neoformans ATCC 66031 and Aspergillus niger ATCC 16404, but no significant activity against C. albicans ATCC 14053 and ATCC 60193 (>2.6 mM). Albeit being good substrates for N-myristoyltransferases (NMTs), the racemic and the S-enantiomer of the oxygenated 2-methoxylated compounds showed no significant difference in antifungal activity. This finding suggests an alternative mechanism of fungitoxicity other than NMT inhibition.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
4 |
168
|
Ahmadibeni Y, Parang K. Solid-supported diphosphitylating and triphosphitylating reagents for nucleoside modification. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2008; Chapter 13:Unit 13.8. [PMID: 18551427 DOI: 10.1002/0471142700.nc1308s33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] [Imported: 08/09/2024]
Abstract
This unit describes procedures for synthesis of diphosphitylating and triphosphitylating reagents. The synthesized reagents are first immobilized on appropriate polymer-bound linkers. Rigid and sterically hindered polymer-bound diphosphitylating and triphosphitylating reagents are then reacted selectively with the 5'-hydroxyl group of nucleosides in the presence of excess nucleosides. Typical oxidation with tert-butyl hydroperoxide, deprotection, and final cleavage of the products from the resins using a trifluoroacetic acid cocktail afford various nucleoside 5'-O-diphosphate and nucleoside 5'-O-triphosphate analogs. The use of the diphosphitylating and polymer-bound diphosphitylating reagents in preparation of oligodeoxynucleotides containing diphosphodiester internucleotide bridges is also described. This solid-phase strategy allows for the synthesis of the phosphorylated compounds without the need for nucleoside phosphate precursors, protected nucleosides, or purification of intermediates.
Collapse
|
|
17 |
4 |
169
|
Ahmadibeni Y, Hanley M, White M, Ayrapetov M, Lin X, Sun G, Parang K. Metal-binding properties of a dicysteine-containing motif in protein tyrosine kinases. Chembiochem 2007; 8:1592-1605. [PMID: 17674392 DOI: 10.1002/cbic.200700242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Indexed: 11/09/2022] [Imported: 08/09/2024]
Abstract
Studying the structural consequences of the direct binding of arsenite, cadmium, cobalt, nickel, and lead to a number of protein tyrosine kinases led to the discovery of the metal-binding properties of a dicysteine-containing motif in the C-terminal (CT) lobe of the kinases. Of all the synthesized peptides derived from different domains of c-Src and Csk, only peptides based on a dicysteine-containing motif located in the CT lobe of the kinase domain-CPESLHDLMCQC and CPESLHDLMC in c-Src, and CPPAVYDVMKNC in Csk-exhibited significant conformational changes in the presence of all metals, as shown by circular dichroism (CD) analyses. Furthermore, CD analysis of natural enzymes c-Src, Csk, Fyn, c-Abl, Lck, EGFR, and c-Src domains containing the CT lobe in the presence of metals showed a significant concentration-dependent conformational change. ICP-MS, (113)Cd NMR, (33)S NMR, and/or molecular modeling studies of CPESLHDLMC and CPPAVYDVMKNC confirmed the binding between the free sulfhydryl groups of the cysteine residues and Cd(II) or As(III). UV-titration studies suggested a high-affinity interaction between Cd(II) and As(III) and the peptides (K(d) values in the range of 0.6-18.3 nM).
Collapse
|
Research Support, N.I.H., Extramural |
18 |
4 |
170
|
El-Sayed NS, Sajid MI, Parang K, Tiwari RK. Synthesis, characterization, and cytotoxicity evaluation of dextran-myristoyl-ECGKRK peptide conjugate. Int J Biol Macromol 2021; 191:1204-1211. [PMID: 34597704 DOI: 10.1016/j.ijbiomac.2021.09.160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/17/2022] [Imported: 05/05/2024]
Abstract
CGKRK is a well-known tumor homing peptide with significant specificity for many types of cancer tissues. Herein, we describe the synthesis of a novel drug delivery system based on dextran decorated with myristoyl-ECGKRK peptide. The myristoylated peptide was synthesized and conjugated to dextran via an ester bond followed by purification. FT-IR and NMR confirmed the success of the conjugation reaction, while the surface morphology examination revealed that the conjugate has a characteristic porous network-like structure. Dynamic-light scattering measurements indicated the ability of the conjugate to self-assemble into nanoparticles with an average size of 248 ± 6.33 nm, and zeta potential of 10.7 mV. The cytotoxicity profiles for the peptide, dextran (Dex0), and dextran-peptide conjugate (Dex1) were evaluated against triple-negative breast cancer cells (MDA-MB-231), breast cancer cells (MCF-7), and human embryonic normal kidney cells (HEK-293). The results revealed that myristoyl-ECGKRK was noncytotoxic on the two different breast cancer cell lines up to 50 μM, but the cell viability was minimally reduced to 85% at 50 μm in HEK-293 cells. Similarly, Dex0 showed a neglected cytotoxicity profile at all tested concentrations. The Dex1 was not toxic to the cells up to a concentration of 8.3 mg/mL.
Collapse
|
|
4 |
4 |
171
|
Montazeri Aliabadi H, Totonchy J, Mahdipoor P, Parang K, Uludağ H. Suppression of Human Coronavirus 229E Infection in Lung Fibroblast Cells via RNA Interference. FRONTIERS IN NANOTECHNOLOGY 2021; 3. [DOI: 10.3389/fnano.2021.670543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] [Imported: 08/09/2024] Open
Abstract
Despite extensive efforts to repurpose approved drugs, discover new small molecules, and develop vaccines, COVID-19 pandemic is still claiming victims around the world. The current arsenal of antiviral compounds did not perform well in the past viral infections (e.g., SARS), which casts a shadow of doubt for use against the new SARS-CoV-2. Vaccines should offer the ultimate protection; however, there is limited information about the longevity of the generated immunity and the protection against possible mutations. This study uses Human Coronavirus 229E as a model coronavirus to test the hypothesis that effective delivery of virus-specific siRNAs to infected cells will result in lower viral load and reduced cell death. Two different categories of nucleic acid delivery systems, Peptide/Lipid-Associated Nucleic Acids (PLANAs) and lipophilic polymers, were investigated for their toxicity in human lung fibroblast cells and their ability to deliver specific siRNAs targeting Spike and Envelope proteins in order to prevent cell death in infected cells. Selected siRNAs were effectively delivered to human lung fibroblast cells with negligible toxicity. Cell death due to viral infection was significantly reduced with individual and combinatorial silencing of selected viral proteins. The combinatorial silencing of Spike and Envelope proteins restored the cell viability completely and eliminated plaques in the investigated system. Our cell culture data indicate promising results for the RNAi based approach as an alternative antiviral treatment.
Collapse
|
|
4 |
4 |
172
|
Pemmaraju B, Agarwal HK, Oh D, Buckheit KW, Buckheit RW, Tiwari R, Parang K. Synthesis and Biological Evaluation of 5'- O-Dicarboxylic Fatty Acyl Monoester Derivatives of Anti-HIV Nucleoside Reverse Transcriptase Inhibitors. Tetrahedron Lett 2014; 55:1983-1986. [PMID: 24791029 PMCID: PMC4001930 DOI: 10.1016/j.tetlet.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] [Imported: 05/05/2024]
Abstract
A number of 5'-O-dicarboxylic fatty acyl monoester derivatives of 3'-azido-3'-deoxythymidine (zidovudine, AZT), 2',3'-didehydro-2',3'-dideoxythymidine (stavudine, d4T), and 3'-fluoro-3'-deoxythymidine (alovudine, FLT) were synthesized to improve the lipophilicity and potentially the cellular delivery of parent polar 2', 3'-dideoxynucleoside (ddN) analogues. The compounds were evaluated for their anti-HIV activity. Three different fatty acids with varying chain length of suberic acid (octanedioic acid), sebacic acid (decanedioic acid), and dodecanedioic acid were used for the conjugation with the nucleosides. The compounds were evaluated for anti-HIV activity and cytotoxicity. All dicarboxylic ester conjugates of nucleosides exhibited significantly higher anti-HIV activity than that of the corresponding parent nucleoside analogs. Among all the tested conjugates, 5'-O-suberate derivative of AZT (EC50 = 0.10 nM) was found to be the most potent compound and showed 80-fold higher anti-HIV activity than AZT without any significant toxicity (TC50 > 500 nM).
Collapse
|
research-article |
11 |
4 |
173
|
Kim L, Lohan S, Moreno J, Zoghebi K, Tiwari RK, Parang K. Cyclic and Linear Peptides Containing Alternate WW and RR Residues as Molecular Cargo Delivery Tools. Mol Pharm 2023; 20:341-356. [PMID: 36445335 DOI: 10.1021/acs.molpharmaceut.2c00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] [Imported: 05/05/2024]
Abstract
Cell-impermeable and negatively charged compounds' cellular uptake across the cell membranes remains challenging. Herein, the synthesis of four linear [(WWRR)2, (WWRR)3, (WWRR)4, and (WWRR)5] and four cyclic ([WWRR]2, [WWRR]3, [WWRR]4, and [WWRR]5) peptides containing alternate two tryptophan (WW) and two arginine (RR) residues and their biological evaluation as molecular transporters are reported. The peptides did not show any significant cytotoxicity in different cell lines (MDA-MB-23, SK-OV-3, and HEK 293) at a concentration of 5 μM and after 3 h of incubation time. The uptake of fluorescence-labeled cargo molecules (F'-GpYEEI, F'-siRNA, and F'-3TC) in the presence of the peptides was monitored in different cell lines (SK-OV-3 and MDA-MB-231) with fluorescence-activated cell sorting. Among all the peptides, [WWRR]5 (C4) showed the highest cellular uptake of cargo molecules, indicating it can act as effective molecular transporter. Confocal microscopy in MDA-MB-231 cells showed the cellular uptake of F'-GpYEEI in the presence of C4 and the intracellular localization of fluorescence-labeled C4 (F'-C4) in the cytosol. The F'-C4 cellular uptake was found to be concentration- and time-dependent, as shown by flow cytometry in MDA-MB-231 cells. Confocal microscopy and flow cytometry of F'-C4 in MDA-MB-231 cells were examined alone and in the presence of different endocytosis inhibitors (chlorpromazine, methyl-β-cyclodextrin, chloroquine, and nystatin). The data showed that the cellular uptake of F'-C4 in the presence of chlorpromazine, chloroquine, and methyl-β-cyclodextrin was reduced but not completely eliminated, indicating that both energy-independent and energy-dependent pathways contributed to the cellular uptake of F'-C4. Similar results were obtained using the confocal microscopy of C4 and F'-GpYEEI in the presence of endocytosis inhibitors (chlorpromazine, methyl-β-cyclodextrin, chloroquine, and nystatin). These data indicate that C4 has the potential to be used as a cell-penetrating peptide and cargo transporter.
Collapse
|
|
2 |
4 |
174
|
Pemmaraju BP, Malekar S, Agarwal HK, Tiwari RK, Oh D, Doncel GF, Worthen DR, Parang K. Design, synthesis, antiviral activity, and pre-formulation development of poly-L-arginine-fatty acyl derivatives of nucleoside reverse transcriptase inhibitors. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:1-15. [PMID: 25513860 PMCID: PMC4269296 DOI: 10.1080/15257770.2014.945649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] [Imported: 05/05/2024]
Abstract
The objective of this work was to design conjugates of anti-HIV nucleosides conjugated with fatty acids and cell-penetrating poly-L-arginine (polyArg) peptides. Three conjugates of polyArg cell-penetrating peptides with fatty acyl derivatives of alovudine (FLT), lamivudine (3TC), and emtricitabine (FTC) were synthesized. In general, the compounds exhibited anti-HIV activity against X4 and R5 cell-free virus with EC50 values of 1.5-16.6 μM. FLT-CO-(CH2)12-CO-(Arg)7 exhibited EC50 values of 2.9 μM and 3.1 μM against X4 and R5 cell-free virus, respectively. The FLT conjugate was selected for further preformulation studies by determination of solution state degradation and lipid solubility. The compound was found to be stable in neutral and oxidative conditions and moderately stable in heated conditions.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
4 |
175
|
El-Sayed NS, Nam YW, Egorova PA, Nguyen HM, Orfali R, Rahman MA, Yang G, Wulff H, Bezprozvanny I, Parang K, Zhang M. Structure-Activity Relationship Study of Subtype-Selective Positive Modulators of K Ca2 Channels. J Med Chem 2022; 65:303-322. [PMID: 34962403 PMCID: PMC8758555 DOI: 10.1021/acs.jmedchem.1c01473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] [Imported: 05/05/2024]
Abstract
A series of modified N-cyclohexyl-2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidin-4-amine (CyPPA) analogues were synthesized by replacing the cyclohexane moiety with different 4-substituted cyclohexane rings, tyrosine analogues, or mono- and dihalophenyl rings and were subsequently studied for their potentiation of KCa2 channel activity. Among the N-benzene-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine derivatives, halogen decoration at positions 2 and 5 of benzene-substituted 4-pyrimidineamine in compound 2q conferred a ∼10-fold higher potency, while halogen substitution at positions 3 and 4 of benzene-substituted 4-pyrimidineamine in compound 2o conferred a ∼7-fold higher potency on potentiating KCa2.2a channels, compared to that of the parent template CyPPA. Both compounds retained the KCa2.2a/KCa2.3 subtype selectivity. Based on the initial evaluation, compounds 2o and 2q were selected for testing in an electrophysiological model of spinocerebellar ataxia type 2 (SCA2). Both compounds were able to normalize the abnormal firing of Purkinje cells in cerebellar slices from SCA2 mice, suggesting the potential therapeutic usefulness of these compounds for treating symptoms of ataxia.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
3 |