176
|
Agarwal HK, Buckheit KW, Buckheit RW, Parang K. Synthesis and anti-HIV activities of symmetrical dicarboxylate esters of dinucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2012; 22:5451-5454. [PMID: 22858097 DOI: 10.1016/j.bmcl.2012.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022] [Imported: 08/09/2024]
Abstract
Three nucleoside analogues, 3'-fluoro-2',3'-dideoxythymidine (FLT), 3'-azido-2',3'-dideoxythymidine (AZT), and 2',3'-dideoxy-3'-thiacytidine (3TC) were conjugated with three different dicarboxylic acids to afford the long chain dicarboxylate esters of nucleosides. In general, dinucleoside ester conjugates of FLT and 3TC with long chain dicarboxylic acids exhibited higher anti-HIV activity than their parent nucleosides. Dodecanoate and tetradecanoate dinucleoside ester derivatives of FLT were found to be the most potent compounds with EC(50) values of 0.8-1.0 nM and 3-4 nM against HIV-1(US/92/727) and HIV-1(IIIB) cells, respectively. The anti-HIV activity of the 3TC conjugates containing long chain dicarboxylate diester (EC(50)=3-60 nM) was improved by 1.5-66 fold when compared to 3TC (EC(50)=90-200 nM). This study reveals that the symmetrical ester conjugation of dicarboxylic acids with a number of nucleosides results in conjugates with improved anti-HIV profile.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
3 |
177
|
Sanner MF, Zoghebi K, Hanna S, Mozaffari S, Rahighi S, Tiwari RK, Parang K. Cyclic Peptides as Protein Kinase Inhibitors: Structure-Activity Relationship and Molecular Modeling. J Chem Inf Model 2021; 61:3015-3026. [PMID: 34000187 PMCID: PMC8238896 DOI: 10.1021/acs.jcim.1c00320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 05/05/2024]
Abstract
Under-expression or overexpression of protein kinases has been shown to be associated with unregulated cell signal transduction in cancer cells. Therefore, there is major interest in designing protein kinase inhibitors as anticancer agents. We have previously reported [WR]5, a peptide containing alternative arginine (R) and tryptophan (W) residues as a non-competitive c-Src tyrosine kinase inhibitor. A number of larger cyclic peptides containing alternative hydrophobic and positively charged residues [WR]x (x = 6-9) and hybrid cyclic-linear peptides, [R6K]W6 and [R5K]W7, containing R and W residues were evaluated for their protein kinase inhibitory potency. Among all the peptides, cyclic peptide [WR]9 was found to be the most potent tyrosine kinase inhibitor. [WR]9 showed higher inhibitory activity (IC50 = 0.21 μM) than [WR]5, [WR]6, [WR]7, and [WR]8 with IC50 values of 0.81, 0.57, 0.35, and 0.33 μM, respectively, against c-Src kinase as determined by a radioactive assay using [γ-33P]ATP. Consistent with the result above, [WR]9 inhibited other protein kinases such as Abl kinase activity with an IC50 value of 0.35 μM, showing 2.2-fold higher inhibition than [WR]5 (IC50 = 0.79 μM). [WR]9 also inhibited PKCa kinase activity with an IC50 value of 2.86 μM, approximately threefold higher inhibition than [WR]5 (IC50 = 8.52 μM). A similar pattern was observed against Braf, c-Src, Cdk2/cyclin A1, and Lck. [WR]9 exhibited IC50 values of <0.25 μM against Akt1, Alk, and Btk. These data suggest that [WR]9 is consistently more potent than other cyclic peptides with a smaller ring size and hybrid cyclic-linear peptides [R6K]W6 and [R5K]W7 against selected protein kinases. Thus, the presence of R and W residues in the ring, ring size, and the number of amino acids in the structure of the cyclic peptide were found to be critical in protein kinase inhibitory potency. We identified three putative binding pockets through automated blind docking of cyclic peptides [WR](5-9). The most populated pocket is located between the SH2, SH3, and N-lobe domains on the opposite side of the ATP binding site. The second putative pocket is formed by the same domains and located on the ATP binding site side of the protein. Finally, a third pocket was identified between the SH2 and SH3 domains. These results are consistent with the non-competitive nature of the inhibition displayed by these molecules. Molecular dynamics simulations of the protein-peptide complexes indicate that the presence of either [WR]5 or [WR]9 affects the plasticity of the protein and in particular the volume of the ATP binding site pocket in different ways. These results suggest that the second pocket is most likely the site where these peptides bind and offer a plausible rationale for the increased affinity of [WR]9.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
3 |
178
|
Kumar S, Singh D, Kumari P, Malik RS, Poonam, Parang K, Tiwari RK. PEGylation and Cell-Penetrating Peptides: Glimpse into the Past and Prospects in the Future. Curr Top Med Chem 2020; 20:337-348. [PMID: 31994461 DOI: 10.2174/1568026620666200128142603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/30/2019] [Accepted: 10/20/2019] [Indexed: 11/22/2022] [Imported: 05/05/2024]
Abstract
Several drug molecules have shown low bioavailability and pharmacokinetic profile due to metabolism by enzymes, excretion by the renal system, or due to other physiochemical properties of drug molecules. These problems have resulted in the loss of efficacy and the gain of side effects associated with drug molecules. PEGylation is one of the strategies to overcome these pharmacokinetic issues and has been successful in the clinic. Cell-penetrating Peptides (CPPs) help to deliver molecules across biological membranes and could be used to deliver cargo selectively to the intracellular site or to the drug target. Hence CPPs could be used to improve the efficacy and selectivity of the drug. However, due to the peptidic nature of CPPs, they have a low pharmacokinetic profile. Using PEGylation and CPPs together as a component of a drug delivery system, the and efficacy of drug molecules could be improved. The other important pharmacokinetic properties such as short half-life, solubility, stability, absorption, metabolism, and elimination could be also improved. Here in this review, we summarized PEGylated CPPs or PEGylation based formulations for CPPs used in a drug delivery system for several biomedical applications until August 2019.
Collapse
|
Review |
5 |
3 |
179
|
Banerjee A, Sayeh N, Nasrolahi Shirazi A, Tiwari R, Parang K, Yadav A. Arginine-rich Cyclic Peptides Enhance Cellular Delivery of Anticancer Agents: Molecular Insights. LETT DRUG DES DISCOV 2016; 13:591-604. [DOI: 10.2174/1570180813999160429113034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 08/09/2024]
|
|
9 |
3 |
180
|
Agarwal HK, Doncel GF, Parang K. Synthesis and anti-HIV activities of suramin conjugates of 3'-fluoro- 2',3'-dideoxythymidine and 3'-azido-2',3'-dideoxythymidine. Med Chem 2012; 8:193-197. [PMID: 22385137 DOI: 10.2174/157340612800493737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/30/2011] [Accepted: 04/26/2011] [Indexed: 11/22/2022] [Imported: 08/09/2024]
Abstract
Conjugates between suramin, a polyanionic naphthalene sulfonate derivative, and nucleoside reverse transcriptase inhibitors (NRTIs), 3'-azido-2',3'-dideoxythymidine (AZT) and 3'-fluoro-2',3'-dideoxythymidine (FLT), were designed to create an antiretroviral with multiple mechanisms of action that could be developed as an anti-HIV topical microbicide candidate. The anti-HIV activity of these conjugates was compared with that of suramin and the corresponding physical mixtures of suramin and nucleosides. The conjugates were synthesized as sulfonate esters by reaction of suramin with the nucleoside analogs in the presence of phosphorus pentoxide, and were tested against X4 and R5 labadapted strains of HIV-1. Suramin conjugates of AZT (EC50= 19.4 μg/ml) and FLT (EC50= 23.6 μg/ml) demonstrated improved anti-HIV activity against X4 strain of virus by 2.5 and 2 fold, respectively, when compared with suramin. The physical mixtures of suramin with nucleosides significantly improved anti-HIV activity of suramin against X4 strain by more than 55 fold.
Collapse
|
|
13 |
3 |
181
|
Sayeh N, Shirazi A, Oh D, Sun J, Rowley D, Banerjee A, Yadav A, Tiwari R, Parang K. Amphiphilic Triazolyl Peptides: Synthesis and Evaluation as Nanostructures. CURR ORG CHEM 2014; 18:2665-2671. [DOI: 10.2174/138527281820141028110625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 08/09/2024]
|
|
11 |
3 |
182
|
Ye G, Schuler AD, Ahmadibeni Y, Morgan JR, Faruqui A, Huang K, Sun G, Zebala JA, Parang K. Synthesis and evaluation of phosphopeptides containing iminodiacetate groups as binding ligands of the Src SH2 domain. Bioorg Chem 2009; 37:133-42. [PMID: 19539345 PMCID: PMC2754053 DOI: 10.1016/j.bioorg.2009.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 11/25/2022] [Imported: 08/09/2024]
Abstract
Phosphopeptide pTyr-Glu-Glu-Ile (pYEEI) has been introduced as an optimal Src SH2 domain ligand. Peptides, Ac-K(IDA)pYEEIEK(IDA) (1), Ac-KpYEEIEK (2), Ac-K(IDA)pYEEIEK (3), and Ac-KpYEEIEK(IDA) (4), containing 0-2 iminodiacetate (IDA) groups at the N- and C-terminal lysine residues were synthesized and evaluated as the Src SH2 domain binding ligands. Fluorescence polarization assays showed that peptide 1 had a higher binding affinity (K(d) = 0.6 microM) to the Src SH2 domain when compared with Ac-pYEEI (K(d) = 1.7 microM), an optimal Src SH2 domain ligand, and peptides 2-4 (K(d) = 2.9-52.7 microM). The binding affinity of peptide 1 to the SH2 domain was reduced by more than 2-fold (K(d) = 1.6 microM) upon addition of Ni(2+) (300 microM), possibly due to modest structural effect of Ni(2+) on the protein as shown by circular dichroism experimental results. The binding affinity of 1 was restored in the presence of EDTA (300 microM) (K(d) = 0.79 microM). These studies suggest that peptides containing IDA groups may be used for designing novel SH2 domain binding ligands.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
3 |
183
|
Kumar S, Mandal D, El-Mowafi SA, Mozaffari S, Tiwari RK, Parang K. Click-Free Synthesis of a Multivalent Tricyclic Peptide as a Molecular Transporter. Pharmaceutics 2020; 12:842. [PMID: 32899170 PMCID: PMC7558522 DOI: 10.3390/pharmaceutics12090842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023] [Imported: 05/05/2024] Open
Abstract
The cellular delivery of cell-impermeable and water-insoluble molecules remains an ongoing challenge to overcome. Previously, we reported amphipathic cyclic peptides c[WR]4 and c[WR]5 consisting of alternate arginine and tryptophan residues as nuclear-targeting molecular transporters. These peptides contain an optimal balance of positive charge and hydrophobicity, which is required for interactions with the phospholipid bilayer to facilitate their application as a drug delivery system. To further optimize them, we synthesized and evaluated a multivalent tricyclic peptide as an efficient molecular transporter. The monomeric cyclic peptide building blocks were synthesized using Fmoc/tBu solid-phase chemistry and cyclization in the solution and conjugated with each other through an amide bond to afford the tricyclic peptide, which demonstrated modest antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli (E. coli) with a minimum inhibitory concentration (MIC) of 64-128 µg/mL. The tricyclic peptide was found to be nontoxic up to 30 µM in the breast cancer cell lines (MDA-MB-231). The presence of tricyclic peptide enhanced cellular uptakes of fluorescently-labeled phosphopeptide (F'-GpYEEI, 18-fold), anti-HIV drugs (lamivudine (F'-3TC), emtricitabine (F'-FTC), and stavudine (F'-d4T), 1.7-12-fold), and siRNA (3.3-fold) in the MDA-MB-231 cell lines.
Collapse
|
research-article |
5 |
3 |
184
|
Mohammed EHM, Mandal D, Mozaffari S, Abdel-Hamied Zahran M, Mostafa Osman A, Kumar Tiwari R, Parang K. Comparative Molecular Transporter Properties of Cyclic Peptides Containing Tryptophan and Arginine Residues Formed through Disulfide Cyclization. Molecules 2020; 25:2581. [PMID: 32498339 PMCID: PMC7321319 DOI: 10.3390/molecules25112581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 11/17/2022] [Imported: 05/05/2024] Open
Abstract
We have previously reported cyclic cell-penetrating peptides [WR]5 and [WR]4 as molecular transporters. To optimize further the utility of our developed peptides for targeted therapy in cancer cells using the redox condition, we designed a new generation of peptides and evaluated their cytotoxicity as well as uptake behavior against different cancer cell lines. Thus, cyclic [C(WR)xC] and linear counterparts (C(WR)xC), where x = 4-5, were synthesized using Fmoc/tBu solid-phase peptide synthesis, purified, and characterized. The compounds did not show any significant cytotoxicity (at 25 µM) against ovarian (SK-OV-3), leukemia (CCRF-CEM), gastric adenocarcinoma (CRL-1739), breast carcinoma (MDA-MB-231), and normal kidney (LLCPK) cells after 24 and 72 h incubation. Both cyclic [C(WR)5C] and linear (C(WR)5C) demonstrated comparable molecular transporter properties versus [WR]5 in the delivery of a phosphopeptide (F'-GpYEEI) in CCRF-CEM cells. The uptake of F'-GpYEEI in the presence of 1,4-dithiothreitol (DTT) as the reducing agent was significantly improved in case of l(C(WR)5C), while it was not changed by [C(WR)5C]. Fluorescence microscopy also demonstrated a significant uptake of F'-GpYEEI in the presence of l(C(WR)5C). Cyclic [C(WR)5C] improved the uptake of the fluorescent-labeled anti-HIV drugs F'-d4T, F'-3TC, and F'-FTC by 3.0-4.9-fold. These data indicate that both [C(WR)5C] and linear (C(WR)5C) peptides can act as molecular transporters.
Collapse
|
Comparative Study |
5 |
3 |
185
|
Shirazi AN, Park SE, Rad S, Baloyan L, Mandal D, Sajid MI, Hall R, Lohan S, Zoghebi K, Parang K, Tiwari RK. Cyclic Peptide-Gadolinium Nanoparticles for Enhanced Intracellular Delivery. Pharmaceutics 2020; 12:792. [PMID: 32825689 PMCID: PMC7557599 DOI: 10.3390/pharmaceutics12090792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/28/2022] [Imported: 05/05/2024] Open
Abstract
A cyclic peptide containing one cysteine and five alternating tryptophan and arginine amino acids [(WR)5C] was synthesized using Fmoc/tBu solid-phase methodology. The ability of the synthesized cyclic peptide to produce gadolinium nanoparticles through an in situ one-pot mixing of an aqueous solution of GdCl3 with [(WR)5C] peptide solution was evaluated. Transmission electron microscopy showed the formed peptide-Gd nanoparticles in star-shape morphology with a size of ~250 nm. Flow cytometry investigation showed that the cellular uptake of a cell-impermeable fluorescence-labeled phosphopeptide (F'-GpYEEI, where F' = fluorescein) was approximately six times higher in the presence of [(WR)5C]-Gd nanoparticles than those of F'-GpYEEI alone in human leukemia adenocarcinoma (CCRF-CEM) cells after 2 h incubation. The antiproliferative activities of cisplatin and carboplatin (5 µM) were increased in the presence of [(WR)5C]-GdNPs (50 μM) by 41% and 18%, respectively, after 72-h incubation in CCRF-CEM cells. The intracellular release of epirubicin, an anticancer drug, from the complex showed that 15% and 60% of the drug was released intracellularly within 12 and 48 h, respectively. This report provides insight about using a non-toxic MRI agent, gadolinium nanoparticles, for the delivery of various types of molecular cargos.
Collapse
|
research-article |
5 |
3 |
186
|
Tiwari R, Parang K. Protein conjugates of SH3-domain ligands and ATP-competitive inhibitors as bivalent inhibitors of protein kinases. Chembiochem 2009; 10:2445-2448. [PMID: 19731277 DOI: 10.1002/cbic.200900462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Indexed: 11/10/2022] [Imported: 08/09/2024]
|
|
16 |
2 |
187
|
Oh D, Darwish SA, Shirazi AN, Tiwari RK, Parang K. Corrigendum: Amphiphilic Bicyclic Peptides as Cellular Delivery Agents. ChemMedChem 2016; 11:2095. [PMID: 27647739 DOI: 10.1002/cmdc.201600431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] [Imported: 05/05/2024]
|
Published Erratum |
9 |
2 |
188
|
Khayyatnejad Shoushtari S, Zoghebi K, Sajid MI, Tiwari RK, Parang K. Hybrid Cyclic-Linear Cell-Penetrating Peptides Containing Alternative Positively Charged and Hydrophobic Residues as Molecular Transporters. Mol Pharm 2021; 18:3909-3919. [PMID: 34491768 DOI: 10.1021/acs.molpharmaceut.1c00594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] [Imported: 05/05/2024]
Abstract
The cell membrane properties create a significant obstacle in intracellular delivery of cell-impermeable and negatively charged molecules. Herein, we report the synthesis and biological evaluation of a novel series of hybrid cyclic-linear peptides containing alternative positive and hydrophobic amino acids on the ring and side chain [(RW)5]K(RW)X (X = 1-5) to compare their molecular transporter efficiency. The peptides were synthesized through Fmoc solid-phase peptide synthesis. In vitro cytotoxicity of the peptides showed that the peptides did not exhibit any significant cytotoxicity at the concentration of 10 μM in human leukemia carcinoma cell line (CCRF-CEM), human ovarian adenocarcinoma cells (SK-OV-3), human epithelial embryonic kidney healthy (HEK-293), and human epithelial mammary gland adenocarcinoma cells (MDA-MB-231) after 3 h incubation. The cellular uptake of a fluorescence-labeled phosphopeptide (F'-GpYEEI) and anti-human immunodeficiency virus (HIV) drugs (lamivudine (F'-3TC), emtricitabine (F'-FTC), Stavudine (F'-d4T)), where F' is carboxyfluorescein, was measured in the presence of the peptides in CCRF-CEM and SK-OV-3 cells. Among all peptides, [(RW)5K](RW)5 (10 μM) was the most efficient transporter that improved the cellular uptake of F'-GpYEEI (2 μM) by 18- and 11-fold in CCRF-CEM and SK-OV-3, respectively, compared with F'-GpYEEI alone. Fluorescence-activated cell sorting (FACS) analysis results indicated that the cellular uptake of fluorescence-labeled peptide (F'-[(RW)5K](RW)5) was only partially inhibited by chlorpromazine as an endocytosis inhibitor after 3 h incubation in MDA-MB-231 cells. These data suggest the potential of this series of hybrid cyclic-linear peptides as cell-penetrating peptides and molecular transporters.
Collapse
|
|
4 |
2 |
189
|
Dash C, Ahmadibeni Y, Hanley MJ, Pandhare J, Gotte M, Le Grice SFJ, Parang K. Inhibition of multi-drug resistant HIV-1 reverse transcriptase by nucleoside β-triphosphates. Bioorg Med Chem Lett 2011; 21:3519-22. [PMID: 21605974 PMCID: PMC3114884 DOI: 10.1016/j.bmcl.2011.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/01/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022] [Imported: 08/09/2024]
Abstract
Despite the success of potent reverse transcriptase (RT) inhibitors against human immunodeficiency virus type 1 (HIV-1) in combination regimens, the development of drug resistant RTs constitutes a major hurdle for the long-term efficacy of current antiretroviral therapy. Nucleoside β-triphosphate analogs of adenosine and nucleoside reverse transcriptase inhibitors (NRTIs) (3'-azido-2',3'-dideoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine (FLT), and 2',3'-didehydro-2',3'-dideoxythymidine (d4T)) were synthesized and their inhibitory activities were evaluated against wild-type and multidrug resistant HIV-1 RTs. Adenosine β-triphosphate (1) and AZT β-triphosphate (2) completely inhibited the DNA polymerase activity of wild type, the NRTI multi resistant, and nonnucleoside RT inhibitors (NNRTI) resistant HIV-1 RT at 10nM, 10 and 100 μM, respectively.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
2 |
190
|
Mushtaq M, Naz S, Parang K, Ul-Haq Z. Exploiting Dengue Virus Protease as a Therapeutic Target: Current Status, Challenges and Future Avenues. Curr Med Chem 2021; 28:7767-7802. [PMID: 34212826 DOI: 10.2174/0929867328666210629152929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 11/22/2022] [Imported: 05/05/2024]
Abstract
Dengue, the oldest and the most prevalent mosquito-borne illness, is caused by the dengue virus (DENV), from the family of Flaviviridae. It infects approximately 400 million individuals per annum, with approximately half of the global population residing in high-risk areas. The factors attributed to the geographic expansion of dengue, include urbanization, population density, modern means of transportation, international travels, habit modification, climate change, virus genetics, vector capacity, and poor vector control. Despite the significant progress made in the past against dengue, no effective antiviral therapy is currently available. Among the structural and non-structural proteins encoded by DENV genome, the NS2B-NS3 protease complex is amongst the extensively studied targets for the development of antiviral therapeutics owing to its multiple roles in virus life cycle. Furthermore, protease inhibitors were found to be successful in Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV). Likewise, several peptidic, peptide derived/peptidomimetic, and small molecules inhibitors have been identified as DENV protease inhibitors. Unfortunately, none of them have resulted in a clinically approved drug. Considering all the abovementioned facts, this review descriptively explains the molecular mechanism and therapeutic potential of DENV protease along with an up to date information on various competitive inhibitors reported against DENV protease. This review might be helpful for the researchers working in this area to understand the critical aspects of DENV protease that will help them develop effective and novel inhibitors against DENV to protect lives of millions of people worldwide.
Collapse
|
Review |
4 |
2 |
191
|
Manchanda P, Parshad B, Kumar A, Tiwari RK, Shirazi AN, Parang K, Sharma SK. Design, Synthesis, and Evaluation of the Kinase Inhibition Potential of Pyridylpyrimidinylaminophenyl Derivatives. Arch Pharm (Weinheim) 2017; 350. [PMID: 28317151 DOI: 10.1002/ardp.201600390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 01/04/2023] [Imported: 05/05/2024]
Abstract
In view of potent kinase inhibitors for the treatment of myriad human disorders, we synthesized some structurally variant amide/cyclic amide derivatives based on pyridylpyrimidinylaminophenyl amine, the key pharmacophore of the kinase inhibitor drug molecule, imatinib, and evaluated their kinase inhibition potency. Among the various synthesized amides, compound 20, a cyclic amide/pyridin-2(1H)-one derivative, exhibited an IC50 value comparable to that of the drug imatinib against c-Src kinase, and another compound (14) containing a 2-((4-methyl-2-oxo-2H-chromen-6-yl)oxy)acetamide demonstrated an IC50 value of 8.39 μM. Furthermore, the constitution of the cyclic amide derivative was confirmed by the single-crystal X-ray diffraction technique. These results may serve as a gateway for developing novel next-generation kinase inhibitors.
Collapse
|
|
8 |
2 |
192
|
Agarwal HK, Parang K. Application of solid-phase chemistry for the synthesis of 3'-fluoro-3'-deoxythymidine. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2007; 26:317-322. [PMID: 17454740 DOI: 10.1080/15257770701257608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] [Imported: 05/05/2024]
Abstract
Reported solution-phase methods for the synthesis of 3'-fluoro-3'-deoxythymidine (FLT) are cumbersome, require purification of intermediates, and include several protecting/deprotecting steps. To circumvent these problems, a solid-phase strategy was designed for the synthesis of FLT. Thymidine was immobilized on trityl resin via the 5'-hydroxyl group. The subsequent mesylation of the free 3'-hydroxyl group in the presence of methanesulfonyl chloride afforded the polymer-bound 3'-O-mesylthymidine. Nucleophilic substitution of the mesyl moiety by hydroxyl group in the presence of sodium hydroxide produced the polymer-bound threothymidine. Fluorination with diethylaminosulfur trifluoride followed by acidic cleavage of the polymer-bound FLT in the presence of trifluoroacetic acid afforded FLT.
Collapse
|
|
18 |
2 |
193
|
Querfurth H, Marshall J, Parang K, Rioult-Pedotti MS, Tiwari R, Kwon B, Reisinger S, Lee HK. A PDK-1 allosteric agonist neutralizes insulin signaling derangements and beta-amyloid toxicity in neuronal cells and in vitro. PLoS One 2022; 17:e0261696. [PMID: 35061720 PMCID: PMC8782417 DOI: 10.1371/journal.pone.0261696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/08/2021] [Indexed: 01/09/2023] [Imported: 05/05/2024] Open
Abstract
The Alzheimer's brain is affected by multiple pathophysiological processes, which include a unique, organ-specific form of insulin resistance that begins early in its course. An additional complexity arises from the four-fold risk of Alzheimer's Disease (AD) in type 2 diabetics, however there is no definitive proof of causation. Several strategies to improve brain insulin signaling have been proposed and some have been clinically tested. We report findings on a small allosteric molecule that reverses several indices of insulin insensitivity in both cell culture and in vitro models of AD that emphasize the intracellular accumulation of β-amyloid (Aβi). PS48, a chlorophenyl pentenoic acid, is an allosteric activator of PDK-1, which is an Akt-kinase in the insulin/PI3K pathway. PS48 was active at 10 nM to 1 μM in restoring normal insulin-dependent Akt activation and in mitigating Aβi peptide toxicity. Synaptic plasticity (LTP) in prefrontal cortical slices from normal rat exposed to Aβ oligomers also benefited from PS48. During these experiments, neither overstimulation of PI3K/Akt signaling nor toxic effects on cells was observed. Another neurotoxicity model producing insulin insensitivity, utilizing palmitic acid, also responded to PS48 treatment, thus validating the target and indicating that its therapeutic potential may extend outside of β-amyloid reliance. The described in vitro and cell based-in vitro coupled enzymatic assay systems proved suitable platforms to screen a preliminary library of new analogs.
Collapse
|
research-article |
3 |
2 |
194
|
Helmy NM, Parang K. Cyclic Peptides with Antifungal Properties Derived from Bacteria, Fungi, Plants, and Synthetic Sources. Pharmaceuticals (Basel) 2023; 16:892. [PMID: 37375840 PMCID: PMC10301978 DOI: 10.3390/ph16060892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] [Imported: 05/05/2024] Open
Abstract
Fungal infections remain a significant concern for human health. The emergence of microbial resistance, the improper use of antimicrobial drugs, and the need for fewer toxic antifungal treatments in immunocompromised patients have sparked substantial interest in antifungal research. Cyclic peptides, classified as antifungal peptides, have been in development as potential antifungal agents since 1948. In recent years, there has been growing attention from the scientific community to explore cyclic peptides as a promising strategy for combating antifungal infections caused by pathogenic fungi. The identification of antifungal cyclic peptides from various sources has been possible due to the widespread interest in peptide research in recent decades. It is increasingly important to evaluate narrow- to broad-spectrum antifungal activity and the mode of action of synthetic and natural cyclic peptides for both synthesized and extracted peptides. This short review aims to highlight some of the antifungal cyclic peptides isolated from bacteria, fungi, and plants. This brief review is not intended to present an exhaustive catalog of all known antifungal cyclic peptides but rather seeks to showcase selected cyclic peptides with antifungal properties that have been isolated from bacteria, fungi, plants, and synthetic sources. The addition of commercially available cyclic antifungal peptides serves to corroborate the notion that cyclic peptides can serve as a valuable source for the development of antifungal drugs. Additionally, this review discusses the potential future of utilizing combinations of antifungal peptides from different sources. The review underscores the need for the further exploration of the novel antifungal therapeutic applications of these abundant and diverse cyclic peptides.
Collapse
|
Review |
2 |
2 |
195
|
Ye G, Ayrapetov M, Nam NH, Sun G, Parang K. Solid-phase binding assays of peptides using EGFP-Src SH2 domain fusion protein and biotinylated Src SH2 domain. Bioorg Med Chem Lett 2005; 15:4994-4997. [PMID: 16169725 DOI: 10.1016/j.bmcl.2005.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/02/2005] [Accepted: 08/02/2005] [Indexed: 11/26/2022] [Imported: 05/05/2024]
Abstract
Two solid-phase binding assays were designed and evaluated for their potential use in comparing the affinity of peptides to the Src SH2 domain. Resin beads attached to peptides were incubated with the enhanced green fluorescence protein(EGFP)-Src SH2 domain fusion protein or the biotinylated Src SH2 domain and extensively washed. The beads-attached tetrapeptides with high affinities to the EGFP-Src SH2 domain showed more fluorescence intensity than those beads containing tetrapeptides with weak binding affinities, as shown by fluorescence microscopy and fluorescence imaging system. Only the beads attached to pYEEI produced a dark purple color on incubation of the beads, respectively, with the biotinylated Src kinases SH2 domain, alkaline phosphatase-coupled streptavidin, and BCIP/NBT. These solid-phase binding assays may have potential applications for the screening of peptides for the Src kinases SH2 domains.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
2 |
196
|
Yoon Y, Chia T, Quah C, Lim W, Oo C, Shirazi A, Parang K, Choon T. Novel Fluorescent Benzimidazoles: Synthesis, Characterization, Crystal Structure and Evaluation of Their Anticancer Properties. LETT ORG CHEM 2017; 14:33-38. [DOI: 10.2174/1570178614666161205123900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 08/09/2024]
|
|
8 |
2 |
197
|
Beni Y, Dash C, Parang K. Synthesis of β-triphosphotriester pronucleotides. Tetrahedron Lett 2015; 56:2247-2250. [PMID: 26661734 PMCID: PMC4675357 DOI: 10.1016/j.tetlet.2015.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] [Imported: 05/05/2024]
Abstract
Dinucleoside phosphorochloridite were synthesized from phosphorus trichloride and three nucleoside analogues, 3'-fluoro-2',3'-dideoxythymidine (FLT), 2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC), and 2',3'-dideoxy-3'-thiacytidine (3TC), in a multistep synthesis. Polymer-bound N-Boc p-acetoxybenzyl 5'-O-2'-deoxythymidine was reacted with dinucleoside phosphorochloridite in the presence of 2,6-lutidine, followed by the reaction with dodecyl alcohol and 5-(ethylthio)-1H-tetrazole, oxidation with tert-butyl hydroperoxide, and acidic cleavage, respectively, to afford the β-triphosphotriester derivatives containing three different nucleosides.
Collapse
|
research-article |
10 |
1 |
198
|
Ahmadibeni Y, Parang K. Solid-supported reagents for synthesis of nucleoside monothiophosphates, dithiodiphosphates, and trithiotriphosphates. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2009; Chapter 13:Unit13.9. [PMID: 19319857 DOI: 10.1002/0471142700.nc1309s36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] [Imported: 08/09/2024]
Abstract
This unit describes procedures for the selective synthesis of nucleoside monothiophosphates, dithiodiphosphates, and trithiotriphosphates from solid-supported phosphitylating reagents. Rigid and sterically hindered polymer-bound 1,3,2-oxathiaphospholane is reacted selectively with the 5'-hydroxyl group of nucleosides in the presence of 1H-tetrazole. Sulfurization in the presence of Beaucage's reagent (3H-1,2-benzodithiole-3-one 1,1-dioxide) followed by ring-opening with 3-hydroxypropionitrile and basic cleavage in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) through the elimination of polymer-bound ethylene episulfide afford nucleoside monothiophosphates. Furthermore, reaction of polymer-bound diphosphitylating and triphosphitylating reagents, prepared from polymer-bound benzyl alcohol, with unprotected nucleosides, sulfurization with Beaucage's reagent, and acidic cleavage using trifluoroacetic acid cocktail produce nucleoside dithiodiphosphates and trithiotriphosphates in moderate yields.
Collapse
|
|
16 |
1 |
199
|
Rao MS, Chhikara BS, Tiwari R, Shirazi AN, Parang K, Kumar A. Microwave-assisted and scandium triflate catalyzed synthesis of tetrahydrobenzo[a]xanthen-11-ones. MONATSHEFTE FÜR CHEMIE - CHEMICAL MONTHLY 2012; 143:263-268. [DOI: 10.1007/s00706-011-0577-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] [Imported: 08/09/2024]
|
|
13 |
1 |
200
|
Darwish S, Parang K, Marshall J, Goebel DJ, Tiwari R. Efficient synthesis of CN2097 using in situ activation of sulfhydryl group. Tetrahedron Lett 2017; 58:3053-3056. [PMID: 28824209 PMCID: PMC5557301 DOI: 10.1016/j.tetlet.2017.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] [Imported: 05/05/2024]
Abstract
CN2097 (R7Cs-sCYK[KTE(β-Ala)]V) is a rationally designed peptidomimetic that shows effectiveness in preclinical models for the treatment of neurological disorders, such as Angelman syndrome, traumatic brain injury (TBI) and stroke. Because of its therapeutic activity for the treatment of human CNS disorders, there was an urgent need to develop an efficient strategy for large-scale synthesis of CN2097. The synthesis of CN2097 was accomplished using Fmoc/tBu solid phase chemistry in multiple steps. Two different peptide fragments (activated polyarginine peptide Npys-sCR7 and CYK[KTE(β-Ala)]V) were synthesized, followed by solution phase coupling in water. Activation of the polyarginine (CR7) was achieved in situ during cleavage of protected peptide (C(Trt)R(Pbf)7) from the Rink amide resin using 5 equiv. of 2,2-dithopyridine in TFA:TIS:H2O (95:2.5:2.5, v/v/v) for 4 h. The disulfide coupling was efficient which provided a 60% yield.
Collapse
|
research-article |
8 |
0 |