201
|
Lohan S, Konshina AG, Tiwari RK, Efremov RG, Maslennikov I, Parang K. Broad-spectrum activity of membranolytic cationic macrocyclic peptides against multi-drug resistant bacteria and fungi. Eur J Pharm Sci 2024; 197:106776. [PMID: 38663759 DOI: 10.1016/j.ejps.2024.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] [Imported: 05/05/2024]
Abstract
The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria, and fungi (MIC = 3.1-12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable to standard antibiotics. Hemolysis (HC50 = 230 µg/mL) and cytotoxicity (>70 % cell viability against four different mammalian cells at 100 µg/mL) assay results demonstrated the selective lethal action of 3b against microbes over mammalian cells. A calcein dye leakage experiment substantiated the membranolytic effect of 3b and 4b, which was further confirmed by scanning electron microscopy. The behavior of 3b and 4b in aqueous solution and interaction with phospholipid bilayers were assessed by employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular dynamics (MD) simulations, providing a solid structural basis for understanding their membranolytic action. Moreover, 3b exhibited stability in human blood plasma (t1/2 = 13 h) and demonstrated no signs of resistance development against antibiotic-resistant S. aureus and E. coli. These findings underscore the potential of these newly designed amphiphilic cyclic peptides as promising anti-infective agents, especially against Gram-positive bacteria.
Collapse
|
|
1 |
|
202
|
Parang K, Wiebe LI, Knaus EE. Synthesis, in vitro anti-human immunodeficiency virus structure-activity relationships and biological stability of 5'-O-myristoyl analogue derivatives of 3'-azido-2',3'-dideoxythymidine (AZT) as potential prodrugs. Antivir Chem Chemother 1998; 9:311-323. [PMID: 9875410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] [Imported: 05/05/2024] Open
Abstract
5'-O-Myristoyl analogue derivatives of 3'-azido-2',3'-dideoxythymidine (AZT), designed as potential double-barrelled prodrugs to AZT and the myristic acid analogues, were synthesized. Their ability to protect CEM cells against human immunodeficiency virus (HIV)-induced cytopathogenicity was determined and structure-activity paradigms were developed. 3'-Azido-2',3'-dideoxy-5'-O-(4-oxatetradecanoyl)thymidine (EC50 = 1.4 nM) and 3'-azido-2',3'-deoxy-5'-O-(12-bromododecanoyl)thymidine (EC50 = 3.2 nM) were the most effective anti-HIV-1 agents, relative to AZT (EC50 = 10 nM). These myristoyl analogue derivatives were more lipophilic (calculated log P = 4.5-8.1 range) than the parent compound AZT (log P = 0.06), and a linear correlation between their log P and HPLC log retention times was observed. The ester cleavage half-lives (t1/2) for esters upon in vitro incubation with porcine liver esterase, rat plasma or rat brain homogenate was dependent on the steric bulk, and electronegative inductive effect of the alpha-substituent (H, Br, F), of the 5'-O-myristoyl analogue moiety. 3'-Azido-2',3'-dideoxy-5'-O-(11-(4-iodophenoxy) undecanoyl)-thymidine exhibited t1/2 values of 80.4, 3.7 and 150.0 min upon incubation with porcine liver esterase, rat plasma and rat brain homogenate, respectively.
Collapse
|
|
27 |
|
203
|
Parang K. Preface. Curr Pharm Des 2002; 8:i-i. [DOI: 10.2174/1381612024607153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] [Imported: 08/09/2024]
|
|
23 |
|
204
|
Ye G, Tiwari R, Parang K. Development of Src tyrosine kinase substrate binding site inhibitors. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2008; 9:605-613. [PMID: 18516760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] [Imported: 08/09/2024]
Abstract
The majority of marketed drugs or drug candidates that target protein kinases and which are currently undergoing clinical trials are ATP binding site inhibitors. The process of designing a selective inhibitor as an ATP mimic is challenging, mainly because of the presence of a large number of protein kinases that show a conserved ATP binding site. The substrate binding site of protein kinases is less conserved than the ATP binding site, and provides an opportunity to design valuable chemical tools which can be utilized to understand the catalytic mechanism of the enzyme, or to develop inhibitors with enhanced specificity. In this review, the latest developments of four classes of substrate binding site inhibitors of Src tyrosine kinase are discussed.
Collapse
|
Review |
17 |
|
205
|
Gupta S, Park SE, Mozaffari S, El-Aarag B, Parang K, Tiwari RK. Design, Synthesis, and Antiproliferative Activity of Benzopyran-4-One-Isoxazole Hybrid Compounds. Molecules 2023; 28:4220. [PMID: 37241960 PMCID: PMC10224329 DOI: 10.3390/molecules28104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] [Imported: 05/05/2024] Open
Abstract
The biological significance of benzopyran-4-ones as cytotoxic agents against multi-drug resistant cancer cell lines and isoxazoles as anti-inflammatory agents in cellular assays prompted us to design and synthesize their hybrid compounds and explore their antiproliferative activity against a panel of six cancer cell lines and two normal cell lines. Compounds 5a-d displayed significant antiproliferative activities against all the cancer cell lines tested, and IC50 values were in the range of 5.2-22.2 μM against MDA-MB-231 cancer cells, while they were minimally cytotoxic to the HEK-293 and LLC-PK1 normal cell lines. The IC50 values of 5a-d against normal HEK-293 cells were in the range of 102.4-293.2 μM. Compound 5a was screened for kinase inhibitory activity, proteolytic human serum stability, and apoptotic activity. The compound was found inactive towards different kinases, while it completely degraded after 2 h of incubation with human serum. At 5 μM concentration, it induced apoptosis in MDA-MB-231 by 50.8%. Overall, these findings suggest that new benzopyran-4-one-isoxazole hybrid compounds, particularly 5a-d, are selective anticancer agents, potentially safe for human cells, and could be synthesized at low cost. Additionally, Compound 5a exhibits potential anticancer activity mediated via inhibition of cancer cell proliferation and induction of apoptosis.
Collapse
|
research-article |
2 |
|
206
|
Akinwale AD, Parang K, Tiwari RK, Yamaki J. Mechanistic Study of Antimicrobial Effectiveness of Cyclic Amphipathic Peptide [R 4W 4] against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics (Basel) 2024; 13:555. [PMID: 38927221 PMCID: PMC11201061 DOI: 10.3390/antibiotics13060555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] [Imported: 08/09/2024] Open
Abstract
Antimicrobial peptides (AMPs) are being explored as a potential strategy to combat antibiotic resistance due to their ability to reduce susceptibility to antibiotics. This study explored whether the [R4W4] peptide mode of action is bacteriostatic or bactericidal using modified two-fold serial dilution and evaluating the synergism between gentamicin and [R4W4] against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) by a checkered board assay. [R4W4] exhibited bactericidal activity against bacterial isolates (MBC/MIC ≤ 4), with a synergistic effect with gentamicin against E. coli (FICI = 0.3) but not against MRSA (FICI = 0.75). Moreover, we investigated the mechanism of action of [R4W4] against MRSA by applying biophysical assays to evaluate zeta potential, cytoplasmic membrane depolarization, and lipoteichoic acid (LTA) binding affinity. [R4W4] at a 16 mg/mL concentration stabilized the zeta potential of MRSA -31 ± 0.88 mV to -8.37 mV. Also, [R4W4] at 2 × MIC and 16 × MIC revealed a membrane perturbation process associated with concentration-dependent effects. Lastly, in the presence of BODIPY-TR-cadaverine (BC) fluorescence dyes, [R4W4] exhibited binding affinity to LTA comparable with melittin, the positive control. In addition, the antibacterial activity of [R4W4] against MRSA remained unchanged in the absence and presence of LTA, with an MIC of 8 µg/mL. Therefore, the [R4W4] mechanism of action is deemed bactericidal, involving interaction with bacterial cell membranes, causing concentration-dependent membrane perturbation. Additionally, after 30 serial passages, there was a modest increment of MRSA strains resistant to [R4W4] and a change in antibacterial effectiveness MIC [R4W4] and vancomycin by 8 and 4 folds with a slight change in Levofloxacin MIC 1 to 2 µg/mL. These data suggest that [R4W4] warrants further consideration as a potential AMP.
Collapse
|
research-article |
1 |
|
207
|
Nam YW, Pala R, El-Sayed NS, Larin-Henriquez D, Amirrad F, Yang G, Rahman MA, Orfali R, Downey M, Parang K, Nauli SM, Zhang M. Subtype-Selective Positive Modulation of K Ca2.3 Channels Increases Cilia Length. ACS Chem Biol 2022; 17:2344-2354. [PMID: 35947779 PMCID: PMC9396613 DOI: 10.1021/acschembio.2c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] [Imported: 05/05/2024]
Abstract
Small-conductance Ca2+-activated potassium (KCa2.x) channels are gated exclusively by intracellular Ca2+. The activation of KCa2.3 channels induces hyperpolarization, which augments Ca2+ signaling in endothelial cells. Cilia are specialized Ca2+ signaling compartments. Here, we identified compound 4 that potentiates human KCa2.3 channels selectively. The subtype selectivity of compound 4 for human KCa2.3 over rat KCa2.2a channels relies on an isoleucine residue in the HA/HB helices. Positive modulation of KCa2.3 channels by compound 4 increased flow-induced Ca2+ signaling and cilia length, while negative modulation by AP14145 reduced flow-induced Ca2+ signaling and cilia length. These findings were corroborated by the increased cilia length due to the expression of Ca2+-hypersensitive KCa2.3_G351D mutant channels and the reduced cilia length resulting from the expression of Ca2+-hyposensitive KCa2.3_I438N channels. Collectively, we were able to associate functions of KCa2.3 channels and cilia, two crucial components in the flow-induced Ca2+ signaling of endothelial cells, with potential implications in vasodilation and ciliopathic hypertension.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
|
208
|
Qureshi A, Ouattara LA, El-Sayed NS, Verma A, Doncel GF, Choudhary MI, Siddiqui H, Parang K. Synthesis and Evaluation of Anti-HIV Activity of Mono- and Di-Substituted Phosphonamidate Conjugates of Tenofovir. Molecules 2022; 27:4447. [PMID: 35889320 PMCID: PMC9316519 DOI: 10.3390/molecules27144447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] [Imported: 08/09/2024] Open
Abstract
The activity of nucleoside and nucleotide analogs as antiviral agents requires phosphorylation by endogenous enzymes. Phosphate-substituted analogs have low bioavailability due to the presence of ionizable negatively-charged groups. To circumvent these limitations, several prodrug approaches have been proposed. Herein, we hypothesized that the conjugation or combination of the lipophilic amide bond with nucleotide-based tenofovir (TFV) (1) could improve the anti-HIV activity. During the current study, the hydroxyl group of phosphonates in TFV was conjugated with the amino group of L-alanine, L-leucine, L-valine, and glycine amino acids and other long fatty ester hydrocarbon chains to synthesize 43 derivatives. Several classes of derivatives were synthesized. The synthesized compounds were characterized by 1H NMR, IR, UV, and mass spectrometry. In addition, several of the synthesized compounds were evaluated as racemic mixtures for anti-HIV activity in vitro in a single round infection assay using TZM-bl cells at 100 ng/mL. TFV (1) was used as a positive control and inhibited HIV infection by 35%. Among all the evaluated compounds, the disubstituted heptanolyl ester alanine phosphonamidate with naphthol oleate (69), pentanolyl ester alanine phosphonamidate with phenol oleate (62), and butanolyl ester alanine phosphonamidate with naphthol oleate (87) ester conjugates of TFV were more potent than parent drug TFV with 79.0%, 76.5%, 71.5% inhibition, respectively, at 100 ng/mL. Furthermore, two fatty acyl amide conjugates of tenofovir alafenamide (TAF) were synthesized and evaluated for comparative studies with TAF and TFV conjugates. Tetradecanoyl TAF conjugate 95 inhibited HIV infection by 99.6% at 100 ng/mL and showed comparable activity to TAF (97-99% inhibition) at 10-100 ng/mL but was more potent than TAF when compared at molar concentration.
Collapse
|
research-article |
3 |
|
209
|
Davani-Davari D, Tiwari RK, Parang K. Future applications of cyclic antimicrobial peptides in drug delivery. Expert Opin Drug Deliv 2025; 22:383-404. [PMID: 39876578 DOI: 10.1080/17425247.2025.2460661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 01/30/2025] [Imported: 03/04/2025]
Abstract
INTRODUCTION Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes. AREAS COVERED This review explores the structural advantages and mechanisms of action of CAMPs, emphasizing their role in drug delivery. The literature analysis (2010-2024) from PubMed, Scopus, and Web of Science highlights developments in CAMP-conjugated therapies, liposomal formulations, and encapsulation systems. The review also examines their antimicrobial potency, amphipathic and cell-penetrating properties, and integration into nanocarrier technologies to enhance drug stability, bioavailability, and precision targeting. Challenges such as toxicity, scalability, and cost are also discussed. CAMPs have the potential to revolutionize drug delivery through their robustness and multifunctionality, particularly in precision medicine. EXPERT OPINION Future advancements in peptide engineering, nanotechnology, and AI-driven design are expected to enhance CAMPs' therapeutic specificity, reduce toxicity, and broaden their applications, including oncology and gene therapy, paving the way for their integration into next-generation therapeutics.
Collapse
|
Review |
1 |
|
210
|
Akhtar U, Khurshid Y, El-Aarag B, Syed B, Khan IA, Parang K, Ahmed A. Proteomic characterization and cytotoxic potential of proteins from Cuscuta (Cuscuta epithymum (L.) crude herbal product against MCF-7 human breast cancer cell line. BMC Complement Med Ther 2024; 24:195. [PMID: 38769554 PMCID: PMC11103822 DOI: 10.1186/s12906-024-04495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] [Imported: 08/09/2024] Open
Abstract
BACKGROUND The burden of breast cancer, the second leading cause of death worldwide, is increasing at an alarming rate. Cuscuta, used in traditional medicine for different ailments, including cancer, is known for containing phytochemicals that exhibit anticancer activity; however, the bioactivities of proteins from this plant remain unexplored. This study aimed to screen the cytotoxic potential of proteins from the crude herbal product of Cuscuta epithymum(L.) (CE) harvested from the host plants Alhagi maurorum and Medicago sativa. METHODS The proteins from CE were extracted using a salting-out method, followed by fractionation with a gel filtration chromatography column. Gel-free shotgun proteomics was subsequently performed for protein characterization. The viability assay using MTT was applied to deduce the cytotoxic potential of proteins against MCF-7 breast cancer cells, with further exploration of the effect of treatment on the expression of the apoptotic mediator BCL2-associated X protein (BAX) and B-cell lymphoma protein 2 (BCL-2) proteins, using western blotting to strengthen the findings from the in vitro viability assay. RESULTS The crude proteins (CP) of CE were separated into four protein peaks (P1, P2, P3, and P4) by gel filtration chromatography. The evaluation of potency showed a dose-dependent decline in the MCF-7 cell line after CP, P1, P2, and P3 treatment with the respective IC50 values of 33.8, 43.1, 34.5, and 28.6 µg/ml. The percent viability of the cells decreased significantly upon treatment with 50 µg/ml CP, P1, P2, and P3 (P < 0.001). Western-blot analysis revealed upregulation of proapoptotic protein BAX in the cells treated with CP, P3 (P < 0.01), and P2 (P < 0.05); however, the antiapoptotic protein, BCL-2 was downregulated in the cells treated with CP and P3 (P < 0.01), but no significant change was detected in P2 treated cells. The observed cytotoxic effects of proteins in the CP, P1, P2, and P3 from the in vitro viability assay and western blot depicted the bioactivity potential of CE proteins. The database search revealed the identities of functionally important proteins, including nonspecific lipid transfer protein, superoxide dismutase, carboxypeptidase, RNase H domain containing protein, and polyribonucleotide nucleotidyltransferase, which have been previously reported from other plants to exhibit anticancer activity. CONCLUSION This study indicated the cytotoxic activity of Cuscuta proteins against breast cancer MCF-7 cells and will be utilized for future investigations on the mechanistic effect of active proteins. The survey of CE proteins provided substantial data to encourage further exploration of biological activities exhibited by proteins in Cuscuta.
Collapse
|
research-article |
1 |
|
211
|
Helmy NM, Parang K. The Role of Peptides in Combatting HIV Infection: Applications and Insights. Molecules 2024; 29:4951. [PMID: 39459319 PMCID: PMC11510642 DOI: 10.3390/molecules29204951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] [Imported: 01/12/2025] Open
Abstract
Peptide-based inhibitors represent a promising approach for the treatment of HIV-1, offering a range of potential advantages, including specificity, low toxicity, and the ability to target various stages of the viral lifecycle. This review outlines the current state of research on peptide-based anti-HIV therapies, highlighting key advancements and identifying future research directions. Over the past few years, there has been significant progress in developing synthetic peptide-based drugs that target various stages of the viral life cycle, including entry and replication. These approaches aim to create effective anti-HIV therapies. Additionally, peptides have proven valuable in the development of anti-HIV vaccines. In the quest for effective HIV vaccines, discovering potent antigens and designing suitable vaccine strategies are crucial for overcoming challenges such as low immunogenicity, safety concerns, and increased viral load. Innovative strategies for vaccine development through peptide research are, therefore, a key focus area for achieving effective HIV prevention. This review aims to explore the strategies for designing peptides with anti-HIV activity and to highlight their role in advancing both therapeutic and preventive measures against HIV.
Collapse
|
Review |
1 |
|
212
|
Sardari S, Pourmorad F, Tiemoa A, Nam N, Parang K. Protein Kinases and their Modulation in the Central Nervous System. CURRENT MEDICINAL CHEMISTRY-CENTRAL NERVOUS SYSTEM AGENTS 2003; 3:341-364. [DOI: 10.2174/1568015033477677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] [Imported: 08/09/2024]
|
|
22 |
|
213
|
Alhazmi R, Tong S, Darwish S, Khanjani E, Khungar B, Chawla S, Zheng Z, Chamberlin R, Parang K, Yang S. Bis-Cinnamamide Derivatives as APE/Ref-1 Inhibitors for the Treatment of Human Melanoma. Molecules 2022; 27:2672. [PMID: 35566022 PMCID: PMC9103902 DOI: 10.3390/molecules27092672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] [Imported: 05/05/2024] Open
Abstract
Human malignant melanoma exhibits imbalances in redox status, leading to activation of many redox-sensitive signaling pathways. APE/Ref-1 is a multifunctional protein that serves as a redox chaperone that regulates many nuclear transcription factors and is an important mechanism in cancer cell survival of oxidative stress. Previous studies showed that APE/Ref-1 is a potential druggable target for melanoma therapy. In this study, we synthesized a novel APE/Ref-1 inhibitor, bis-cinnamoyl-1,12-dodecamethylenediamine (2). In a xenograft mouse model, compound 2 treatment (5 mg/kg) significantly inhibited tumor growth compared to the control group, with no significant systemic toxicity observed. We further synthesized compound 2 analogs to determine the structure-activity relationship based on their anti-melanoma activities. Among those, 4-hydroxyphenyl derivative (11) exhibited potent anti-melanoma activities and improved water solubility compared to its parental compound 2. The IC50 of compound 11 was found to be less than 0.1 μM. Compared to other known APE/Ref-1 inhibitors, compound 11 exhibited increased potency in inhibiting melanoma proliferation. As determined by luciferase reporter analyses, compound 2 was shown to effectively inhibit H2O2-activated AP-1 transcription activities. Targeting APE/Ref-1-mediated signaling using pharmaceutical inhibitors is a novel and effective strategy for melanoma treatment with potentially high impact.
Collapse
|
research-article |
3 |
|
214
|
El-Mowafi SA, Konshina AG, Mohammed EHM, Krylov NA, Efremov RG, Parang K. Structural Analysis and Activity Correlation of Amphiphilic Cyclic Antimicrobial Peptides Derived from the [W 4R 4] Scaffold. Molecules 2023; 28:8049. [PMID: 38138539 PMCID: PMC10745345 DOI: 10.3390/molecules28248049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] [Imported: 05/05/2024] Open
Abstract
In our ongoing quest to design effective antimicrobial peptides (AMPs), this study aimed to elucidate the mechanisms governing cyclic amphiphilic AMPs and their interactions with membranes. The objective was to discern the nature of these interactions and understand how peptide sequence and structure influence antimicrobial activity. We introduced modifications into the established cyclic AMP peptide, [W4R4], incorporating an extra aromatic hydrophobic residue (W), a positively charged residue (R), or the unique 2,5-diketopiperazine (DKP). This study systematically explored the structure-activity relationships (SARs) of a series of cyclic peptides derived from the [W4R4] scaffold, including the first synthesis and evaluation of [W4R4(DKP)]. Structural, dynamic, hydrophobic, and membrane-binding properties of four cyclic peptides ([W4R4], [W5R4], [W4R5], [W4R4(DKP)]) were explored using molecular dynamics simulations within a DOPC/DOPG lipid bilayer that mimics the bacterial membrane. The results revealed distinct SARs linking antimicrobial activity to parameters such as conformational plasticity, immersion depth in the bilayer, and population of the membrane binding mode. Notably, [W4R5] exhibited an optimal "activity/binding to the bacterial membrane" pattern. This multidisciplinary approach efficiently decoded finely regulated SAR profiles, laying a foundation for the rational design of novel antimicrobial peptides.
Collapse
|
research-article |
2 |
|
215
|
Darwish S, Davani-Davari D, Tong S, Tiwari RK, Yang S, Parang K. Synthesis and evaluation of cyclic peptide-dasatinib conjugates as anti-melanoma agents. Tetrahedron Lett 2024; 152:155365. [DOI: 10.1016/j.tetlet.2024.155365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] [Imported: 01/12/2025]
|
|
1 |
|
216
|
Mandal D, Lohan S, Sajid MI, Alhazza A, Tiwari RK, Parang K, Montazeri Aliabadi H. Modified Linear Peptides Effectively Silence STAT-3 in Breast Cancer and Ovarian Cancer Cell Lines. Pharmaceutics 2023; 15:666. [PMID: 36839988 PMCID: PMC9962452 DOI: 10.3390/pharmaceutics15020666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] [Imported: 05/05/2024] Open
Abstract
RNA interference (RNAi) has drawn enormous attention as a powerful tool because of its capability to interfere with mRNA and protein production. However, designing a safe and efficient delivery system in RNAi therapeutics remains challenging. Herein, we have designed and synthesized several linear peptides containing tryptophan (W) and arginine (R) residues separated by the β-alanine (βA) spacer and attached to a lipophilic fatty acyl chain, cholesterol, or PEG. The peptide backbone sequences were: Ac-C-βA-βA-W4-βA-βA-R4-CO-NH2 and Ac-K-βA-βA-W4-βA-βA-R4-CO-NH2, with only a difference in N-terminal amino acid. The cysteine side chain in the first sequence was used for the conjugation with PEG2000 and PEG550. Alternatively, the side chain of lysine in the second sequence was used for conjugation with cholesterol or oleic acid. We hypothesized that amphiphilic peptides and optimum fatty acyl chain or PEG could function as an effective siRNA carrier by complementing each structural component's self-assembly and membrane internalization properties. None of the designed peptides showed cytotoxicity up to 10 µM. Serum stability studies suggested that the newly designed peptides efficiently protected siRNA against early degradation by nucleases. Flow cytometry analysis indicated 50-90% cellular uptake of siRNA using the newly developed modified linear peptides (MLPs). Western blot results revealed more than 90% protein downregulation after targeting STAT3 in MDA-MB-231 and SKOV-3 cell lines. In summary, a new peptide class was developed to safely and efficiently deliver siRNA.
Collapse
|
research-article |
2 |
|
217
|
Alhazza A, Mahdipoor P, Hall R, Manda A, Lohan S, Parang K, Aliabadi HM. Modifying peptide/lipid-associated nucleic acids (PLANAs) for CRISPR/Cas9 ribonucleoprotein delivery. Eur J Pharm Sci 2024; 195:106708. [PMID: 38262570 DOI: 10.1016/j.ejps.2024.106708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024] [Imported: 05/05/2024]
Abstract
With the first reports on the possibility of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas)9 surfacing in 2005, the enthusiasm for protein silencing via nucleic acid delivery experienced a resurgence following a period of diminished enthusiasm due to challenges in delivering small interfering RNAs (siRNA), especially in vivo. However, delivering the components necessary for this approach into the nucleus is challenging, maybe even more than the cytoplasmic delivery of siRNA. We previously reported the birth of peptide/lipid-associated nucleic acids (PLANAs) for siRNA delivery. This project was designed to investigate the efficiency of these nanoparticles for in vitro delivery of CRISPR/Cas9 ribonucleoproteins. Our initial experiments indicated higher toxicity for PLANAs with the more efficient reverse transfection method. Therefore, polyethylene glycol (PEG) was added to the composition for PEGylation of the nanoparticles by partially replacing two of the lipid components with the PEG-conjugated counterparts. The results indicated a more significant reduction in the toxicity of the nanoparticle, less compromise in encapsulation efficiency and more PEGylation of the surface of the nanoparticles using DOPE-PEG2000 at 50 % replacement of the naïve lipid. The cell internalization and transfection efficiency showed a comparable efficiency for the PEGylated and non-PEGylated PLANAs and the commercially available Lipofectamine™ CRISPRMAX™. Next Generation Sequencing of the cloned cells showed a variety of indels in the transfected cell population. Overall, our results indicate the efficiency and safety of PEGylated PLANAs for in vitro transfection with CRISPR/Cas9 ribonucleoproteins. PEGylation has been studied extensively for in vivo delivery, and PEGylated PLANAs will be candidates for future in vivo studies.
Collapse
|
|
1 |
|
218
|
Agarwal HK, Chhikara BS, Ye G, Bhavaraju S, Dixit A, Kumar A, Doncel GF, Parang K. Synthesis and Biological Evaluation of 5'- O-Fatty Acyl Ester Derivatives of 3'-Fluoro-2',3'-dideoxythymidine as Potential Anti-HIV Microbicides. Molecules 2022; 27:3352. [PMID: 35630829 PMCID: PMC9143043 DOI: 10.3390/molecules27103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/23/2022] [Imported: 05/05/2024] Open
Abstract
A number of 5′-O-fatty acyl derivatives of 3′-fluoro-2′,3′-dideoxythymidine (FLT, 1) were synthesized. These conjugates were evaluated for their potential as topical microbicides with anti-HIV activity against cell-free (X4 and R5), cell-associated, and multidrug-resistant viruses. Compared to FLT and 3′-azido-2′,3′-dideoxythymidine (AZT), 5′-O-(12-azidododecanoyl) (5), 5′-O-myristoyl (6), and 5′-O-(12-thioethyldodecanoyl) (8) derivatives of FLT were found to be more active against both cell-free viruses (lymphocytotropic and monocytotropic strains) with EC50 values of 0.4 μM, 1.1 μM, and <0.2 μM, respectively, as well as cell-associated virus with EC50 values of 12.6, 6.4, and 2.3 μM, respectively. Conjugates 5, 6, and 8 exhibited >4 and >30 times better antiviral index than FLT and AZT, respectively. Conjugates 5 and 8 were significantly more potent than FLT against many multidrug-resistant strains. A comparison of the anti-HIV activity with the corresponding non-hydrolyzable ether conjugates suggested that ester hydrolysis to FLT and fatty acids is critical to enable anti-HIV activity. Cellular uptake studies were conducted using fluorescent derivatives of FLT attached with 5(6)-carboxyfluorescein through either β-alanine (23) or 12-aminododecanoic acid (24) spacers. The lipophilic fluorescent analog with a long chain (24) showed more than 12 times higher cellular uptake profile than the fluorescent analog with a short chain (23). These studies further confirmed that the attachment of fatty acids improved the cellular uptake of nucleoside conjugates. In addition, 5, 6, and 8 were the least cytotoxic and did not alter vaginal cell and sperm viability compared to the positive control, a commercial topical spermicide (N-9), which significantly decreased sperm and vaginal cell viability inducing the generation of proinflammatory cytokines.
Collapse
|
research-article |
3 |
|
219
|
Darwish S, Mozaffari S, Mohammed E, Mahdieh Z, Tiwari RK, Parang K. Synthesis and biological evaluation of Bicyclic Peptides containing Arginine and Tryptophan residues. CHEMICAL BIOLOGY LETTERS 2024; 11. [DOI: 10.62110/sciencein.cbl.2024.v11.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] [Imported: 09/11/2024]
|
|
1 |
|
220
|
Tiwari RAKESH, Parang K, DARWISH SHABANANWARFARAG. Synthesis and Characterization of Levofloxacin-Conjugated Amphiphilic Peptides. EGYPTIAN JOURNAL OF CHEMISTRY 2024; 0:0-0. [DOI: 10.21608/ejchem.2024.297620.9868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] [Imported: 04/02/2025]
|
|
1 |
|
221
|
Nasrolahi Shirazi A, Sajid MI, Mandal D, Stickley D, Nagasawa S, Long J, Lohan S, Parang K, Tiwari RK. Cyclic Peptide-Gadolinium Nanocomplexes as siRNA Delivery Tools. Pharmaceuticals (Basel) 2021; 14:1064. [PMID: 34832846 PMCID: PMC8617768 DOI: 10.3390/ph14111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/04/2022] [Imported: 05/05/2024] Open
Abstract
We have recently reported that a cyclic peptide containing five tryptophan, five arginine, and one cysteine amino acids [(WR)5C], was able to produce peptide-capped gadolinium nanoparticles, [(WR)5C]-GdNPs, in the range of 240 to 260 nm upon mixing with an aqueous solution of GdCl3. Herein, we report [(WR)5C]-GdNPs as an efficient siRNA delivery system. The peptide-based gadolinium nanoparticles (50 µM) did not exhibit significant cytotoxicity (~93% cell viability at 50 µM) in human leukemia T lymphoblast cells (CCRF-CEM) and triple-negative breast cancer cells (MDA-MB-231) after 48 h. Fluorescence-activated cell sorting (FACS) analysis indicated that the cellular uptakes of Alexa-488-labeled siRNA were found to be enhanced by more than 10 folds in the presence of [(WR)5C]-GdNPs compared with siRNA alone in CCRF-CEM and MDA-MB-231 cells after 6 h of incubation at 37 °C. The gene silencing efficacy of the nanoparticles was determined via the western blot technique using an over-expressed gene, STAT-3 protein, in MDA-MB-231 cells. The results showed ~62% reduction of STAT-3 was observed in MDA-MB-231 with [(WR)5C]-GdNPs at N/P 40. The integrity of the cellular membrane of CCRF-CEM cells was found to be intact when incubated with [(WR)5C]-Gd nanoparticles (50 µM) for 2 h. Confocal microscopy reveals higher internalization of siRNA in MDA-MB-231 cells using [(WR)5C]-GdNPs at N/P 40. These results provided insight about the use of the [(WR)5C]-GdNPs complex as a potent intracellular siRNA transporter that could be a nontoxic choice to be used as a transfection agent for nucleic-acid-based therapeutics.
Collapse
|
research-article |
4 |
|
222
|
Querfurth H, Marshall J, Parang K, Rioult-Pedotti MS, Tiwari R, Kwon B, Reisinger S, Lee HK. Correction: A PDK-1 allosteric agonist neutralizes insulin signaling derangements and beta-amyloid toxicity in neuronal cells and in vitro. PLoS One 2024; 19:e0304731. [PMID: 38809827 PMCID: PMC11135755 DOI: 10.1371/journal.pone.0304731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] [Imported: 08/09/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0261696.].
Collapse
|
Published Erratum |
1 |
|
223
|
Rai MS, Sajid MI, Moreno J, Parang K, Tiwari RK. Design, Synthesis, and Evaluation of Oleyl-WRH Peptides for siRNA Delivery. Pharmaceuticals (Basel) 2024; 17:1083. [PMID: 39204188 PMCID: PMC11357397 DOI: 10.3390/ph17081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] [Imported: 09/11/2024] Open
Abstract
Delivering nucleic acid therapeutics across cell membranes is a significant challenge. Cell-penetrating peptides (CPPs) containing arginine (R), tryptophan (W), and histidine (H) show promise for siRNA delivery. To improve siRNA delivery and silence a model STAT3 gene, we hypothesized that oleyl acylation to CPPs, specifically (WRH)n, would enhance STAT3 silencing efficiency in breast and ovarian cancer cells. Using Fmoc/tBu solid-phase peptide chemistry, we synthesized, purified, and characterized the oleyl-conjugated (WRH)n (n = 1-4) peptides. The peptide/siRNA complexes were non-cytotoxic at N/P 40 (~20 μM) against MDA-MB-231, MCF-7, SK-OV-3, and HEK-293 cells after 72 h incubation. All peptide/siRNA complexes showed serum stability at N/P ≥ 40. The synthesized conjugates, with a diameter of <100 nm, formed nano-complexes with siRNA and exhibited a stable range of zeta potential values (13-18 mV at N/P = 40). Confocal microscopy and flow cytometry analysis provided qualitative and quantitative evidence of a successful cellular internalization of siRNA. The peptides oleyl-(WRH)3 and oleyl-(WRH)4 showed ~60% and ~75% cellular uptake of siRNA, respectively, in both MDA-MB-231 and SK-OV-3 cells. Western blot analysis of oleyl-(WRH)4 demonstrated effective silencing of the STAT-3 gene, with ~75% silencing in MDA-MB-231 cells and ~45% in SK-OV-3 cells.
Collapse
|
research-article |
1 |
|
224
|
Correction for Bhandari et al., Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc Natl Acad Sci U S A 2012; 109:21171-21173. [PMCID: PMC3529074 DOI: 10.1073/pnas.1218152109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] [Imported: 08/09/2024] Open
|
correction |
13 |
|
225
|
Gharavi AT, Irian S, Niknejad A, Parang K, Salimi M. Harnessing exosomes as a platform for drug delivery in breast cancer: A systematic review for in vivo and in vitro studies. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200800. [PMID: 38706989 PMCID: PMC11067457 DOI: 10.1016/j.omton.2024.200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] [Imported: 08/18/2024]
Abstract
Breast cancer remains a significant global health concern, emphasizing the critical need for effective treatment strategies, especially targeted therapies. This systematic review summarizes the findings from in vitro and in vivo studies regarding the therapeutic potential of exosomes as drug delivery platforms in the field of breast cancer treatment. A comprehensive search was conducted across bibliographic datasets, including Web of Science, PubMed, and Scopus, using relevant queries from several related published articles and the Medical Subject Headings Database. Then, all morphological, biomechanical, histopathological, and cellular-molecular outcomes were systematically collected. A total of 30 studies were identified based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. These studies underwent assessment using the Systematic Review Centre for Laboratory Animal Experimentation risk of bias assessment tool. The results indicate that exosomes exhibit promise as effective drug delivery platforms, capable of hindering cancer cell viability, proliferation, migration, and angiogenesis. However, a comprehensive assessment is challenging due to some studies deviating from guidelines and having incomplete methodology. Addressing these, future studies should detail methodologies, optimize dosing, and enhance exosome production. Standardization in reporting, consistent protocols, and exploration of alternative sources are crucial.
Collapse
|
Review |
1 |
|