26
|
Zhao C, Zheng S, Yan Z, Deng Z, Wang R, Zhang B. CCL18 promotes the invasion and metastasis of breast cancer through Annexin A2. Oncol Rep 2020; 43:571-580. [PMID: 31894281 DOI: 10.3892/or.2019.7426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/23/2019] [Indexed: 11/06/2022] [Imported: 09/03/2024] Open
Abstract
Chemokine (C‑C motif) ligand 18 (CCL18) is derived from breast tumor‑associated macrophages (TAMs), which are primarily a macrophage subpopulation with an M2 phenotype. CCL18 binds to its receptor, PYK2 N‑terminal domain interacting receptor 1 (Nir1), and promotes tumor progression and metastasis by inducing epithelial‑mesenchymal transition (EMT) via the PI3K/Akt/GSK3β/Snail signaling pathway in breast cancer cells. Recent research shows that Annexin A2 (AnxA2) plays a significant role in the invasion, metastasis, angiogenesis, proliferation, F‑actin polymerization and multidrug resistance to chemotherapy of breast cancer. The present study aimed to elucidate the molecular mechanisms by which CCL18 promotes breast cancer progression through AnxA2 which are not fully understood. Western blot analysis showed that the expression of AnxA2 was upregulated in highly invasive breast cancer cell lines and invasive ductal carcinoma. Furthermore, through chemotaxis, scratch, Matrigel invasion, and spontaneous metastasis assays, it was demonstrated that AnxA2 enhanced the invasion of breast cancer cells and the metastasis of human breast cancer cells to lungs of SCID mice with CCL18 stimulation. Cellular F‑actin measurement assay showed that reduction of AnxA2 suppressed CCL18‑induced F‑actin polymerization though phosphorylation of integrin β1 in breast cancer cells. Immunofluorescence and western blot analysis revealed that AnxA2 promoted CCL18‑induced EMT via the PI3K/Akt/GSK3β/Snail signaling pathway, and LY294002 inhibited the phosphorylation of AnxA2 in vitro. In brief, AnxA2, as a downstream molecule of Nir 1 binding to CCL18, promotes invasion and metastasis by EMT through the PI3K/Akt/GSK3β/Snail signaling pathway in breast cancer. This study suggests that AnxA2 is a potential anti‑invasion/metastasis target for therapeutic intervention in breast cancer.
Collapse
|
|
5 |
18 |
27
|
Sun L, Zhang B, Liu Y, Shi L, Li H, Lu S. MiR125a-5p acting as a novel Gab2 suppressor inhibits invasion of glioma. Mol Carcinog 2016; 55:40-51. [PMID: 25598421 DOI: 10.1002/mc.22256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/05/2014] [Accepted: 11/03/2014] [Indexed: 12/31/2022] [Imported: 09/03/2024]
Abstract
Poor prognosis of glioma is due to the characteristics of high invasiveness. Recently, it was demonstrated that Gab2 was over-expressed and related to cellular migration and invasion in glioma, however, the mechanisms of regulation are still unknown. A better understanding of molecular events key to the carcinogenesis and tumor progression may facilitate development of new therapeutic targets and anti-glioma strategies. This study is the first to focus on miR125a-5p, which was predicted to regulate Gab2 with directly targeting the 3' un-translated region (3'UTR) of Gab2 and could inhibit migration and invasion of glioma cells by mediating Gab2 to affect cytoskeleton rearrangement and matrix metalloproteinases expression. Interestingly, further evaluation revealed that the miR125a-5p promoter was hypermethylated and that attenuating promoter methylation was sufficient to up-regulate miR125a-5p expression in glioma cells. Additionally, we reported that miR125a-5p was down-regulated in glioma as well as statistical analysis suggested that its expression level correlated with the World Health Organization grades of glioma (P < 0.05) and that patients with a low miR125a-5p level exhibited shorter survival time (P < 0.05). Taken together, these results reveal that miR125a-5p represents potential therapeutic targets in glioma by modulating Gab2.
Collapse
|
|
9 |
17 |
28
|
Luan S, Wan H, Wang S, Li H, Zhang B. Efficacy and safety of olanzapine/fluoxetine combination in the treatment of treatment-resistant depression: a meta-analysis of randomized controlled trials. Neuropsychiatr Dis Treat 2017; 13:609-620. [PMID: 28280343 PMCID: PMC5338977 DOI: 10.2147/ndt.s127453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] [Imported: 04/02/2025] Open
Abstract
BACKGROUND Whether olanzapine/fluoxetine combination (OFC) is superior to olanzapine or fluoxetine monotherapy in patients with treatment-resistant depression (TRD) remains controversial. Thus, we conducted this meta-analysis of randomized controlled trials (RCTs) to compare the efficacy and safety of OFC with olanzapine or fluoxetine monotherapy for patients with TRD. MATERIALS AND METHODS RCTs published in PubMed, Embase, Web of Science, and the ClinicalTrials.gov registry were systematically reviewed to assess the efficacy and safety of OFC. Outcomes included mean changes from baseline in Montgomery-Asberg Depression Rating Scale (MADRS), Clinical Global Impression-Severity (CGI-S), Hamilton Rating Scale for Anxiety (HAM-A), Brief Psychiatric Rating Scale (BPRS) scores, response rate, remission rate, and adverse events. Results were expressed with weighted mean difference (WMD) with 95% confidence intervals (CIs) and risk ratio (RR) with 95% CIs. RESULTS A total of five RCTs with 3,020 patients met the inclusion criteria and were included in this meta-analysis. Compared with olanzapine or fluoxetine monotherapy, OFC was associated with greater changes from baseline in MADRS (WMD =-3.37, 95% CI: -4.76, -1.99; P<0.001), HAM-A (WMD =-1.82, 95% CI: -2.25, -1.40; P<0.001), CGI-S (WMD =-0.37, 95% CI: -0.45, -0.28; P<0.001), and BPRS scores (WMD =-1.46, 95% CI: -2.16, -0.76; P<0.001). Moreover, OFC had significantly higher response rate (RR =1.35, 95% CI: 1.12, 1.63; P=0.001) and remission rate (RR =1.71, 95% CI: 1.31, 2.23; P<0.001). The incidence of treatment-related adverse events was similar between the OFC and monotherapy groups (RR =1.01, 95% CI: 0.94, 1.08; P=0.834). CONCLUSION OFC is more effective than olanzapine or fluoxetine monotherapy in the treatment of patients with TRD. Our results provided supporting evidence for the use of OFC in TRD. However, considering the limitations in this study, more large-scale, well-designed RCTs are needed to confirm these findings.
Collapse
|
research-article |
8 |
15 |
29
|
Tang JB, Sun XF, Yang HM, Zhang BG, Li ZJ, Lin ZJ, Gao ZQ. Well-oriented ZZ-PS-tag with high Fc-binding onto polystyrene surface for controlled immobilization of capture antibodies. Anal Chim Acta 2013; 776:74-78. [PMID: 23601284 DOI: 10.1016/j.aca.2013.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022] [Imported: 09/03/2024]
Abstract
The site specificity and bioactivity retention of antibodies immobilized on a solid substrate are crucial requirements for solid phase immunoassays. A fusion protein between an immunoglobulin G (IgG)-binding protein (ZZ protein) and a polystyrene-binding peptide (PS-tag) was constructed, and then used to develop a simple method for the oriented immobilization of the ZZ protein onto a PS support by the specific attachment of the PS-tag onto a hydrophilic PS. The orientation of intact IgG was achieved via the interaction of the ZZ protein and the constant fragment (Fc), thereby displayed the Fab fragment for binding antigen. The interaction between rabbit IgG anti-horseradish peroxidase (anti-HRP) and its binding partner HRP was analyzed. Results showed that the oriented ZZ-PS-tag yielded an IgG-binding activity that is fivefold higher than that produced by the passive immobilization of the ZZ protein. The advantage of the proposed immunoassay strategy was demonstrated through an enzyme-linked immunosorbent assay, in which monoclonal mouse anti-goat IgG and HRP-conjugated rabbit F(ab')2 anti-goat IgG were used to detect goat IgG. The ZZ-PS-tag presented a tenfold higher sensitivity and a wider linear range than did the passively immobilized ZZ protein. The proposed approach may be an attractive strategy for a broad range of applications involving the oriented immobilization of intact IgGs onto PS supports, in which only one type of phi-PS (ZZ-PS-tag) surface is used.
Collapse
|
|
12 |
13 |
30
|
Li H, Mu Q, Zhang G, Shen Z, Zhang Y, Bai J, Zhang L, Zhou D, Zheng Q, Shi L, Su W, Yin C, Zhang B. Linc00426 accelerates lung adenocarcinoma progression by regulating miR-455-5p as a molecular sponge. Cell Death Dis 2020; 11:1051. [PMID: 33311443 PMCID: PMC7732829 DOI: 10.1038/s41419-020-03259-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] [Imported: 09/03/2024]
Abstract
Increasing lines of evidence indicate the role of long non-coding RNAs (LncRNAs) in gene regulation and tumor development. Hence, it is important to elucidate the mechanisms of LncRNAs underlying the proliferation, metastasis, and invasion of lung adenocarcinoma (LUAD). We employed microarrays to screen LncRNAs in LUAD tissues with and without lymph node metastasis and revealed their effects on LUAD. Among them, Linc00426 was selected for further exploration in its expression, the biological significance, and the underlying molecular mechanisms. Linc00426 exhibits ectopic expression in LUAD tissues and cells. The ectopic expression has been clinically linked to tumor size, lymphatic metastasis, and tumor differentiation of patients with LUAD. The deregulation of Linc00426 contributes to a notable impairment in proliferation, invasion, metastasis, and epithelial-mesenchymal transition (EMT) in vitro and in vivo. Mechanistically, the deregulation of Linc00426 could reduce cytoskeleton rearrangement and matrix metalloproteinase expression. Meanwhile, decreasing the level of Linc00426 or increasing miR-455-5p could down-regulate the level of UBE2V1. Thus, Linc00426 may act as a competing endogenous RNA (ceRNA) to abate miR-455-5p-dependent UBE2V1 reduction. We conclude that Linc00426 accelerates LUAD progression by acting as a molecular sponge to regulate miR-455-5p, and may be a potential novel tumor marker for LUAD.
Collapse
|
research-article |
5 |
11 |
31
|
Li W, Zhang B, Li H, Zhao C, Zhong Y, Sun J, Lv S. TGF β1 mediates epithelial mesenchymal transition via β6 integrin signaling pathway in breast cancer. Cancer Invest 2014; 32:409-415. [PMID: 25019211 DOI: 10.3109/07357907.2014.933235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] [Imported: 09/03/2024]
Abstract
BACKGROUND To understand the function of β6 integrin and elucidate its signaling pathways in TGF-β-induced EMT in breast cancer. METHODS The interactions between TGF-β1 and β6 integrin were measured by coimmunoprecipitation. The EMT responses, phospherlation of PI3K/Akt and COX-2 expression were determined by real-time PCR, transwell assay, and western blot after the blockage of β6 integrin. RESULTS TGF-β1 and β6 integrin could bind with each other. Blockage of β6 integrin rescued TGF-β1-induced EMT phenotype and reduced expression of COX-2 via dephosphorylation of PI3K/Akt. CONCLUSIONS β6 integrin plays a critical role in TGF-β1-induced EMT and overexpression of COX-2 in breast cancer.
Collapse
|
|
11 |
9 |
32
|
Zhou DD, Li HL, Liu W, Zhang LP, Zheng Q, Bai J, Hu YQ, Yin CG, Lv SJ, Zhang BG. miR-193a-3p Promotes the Invasion, Migration, and Mesenchymal Transition in Glioma through Regulating BTRC. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8928509. [PMID: 33628829 PMCID: PMC7886567 DOI: 10.1155/2021/8928509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] [Imported: 09/03/2024]
Abstract
BACKGROUND The present study is aimed at exploring the specific expression of miR-193a-3p and the mechanism underlying miR-193a-3p-mediated mesenchymal transition (MT), invasion, and migration in glioma. METHODS The gene expression profile datasets of GSE39486 and GSE25676 were downloaded from the National Center for Biotechnology (NCBI). Data regarding the expression of miR-193a-3p and survival curves were derived from Chinese Glioma Genome Atlas (CGGA). Online websites including miRWalk, DIANA, and starbase were employed to predict the target genes for miR-193a-3p. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed by the Omicsbean online software. Module analysis of the protein-protein interaction (PPI) networks was performed by the plug-in Molecular Complex Detection (MCODE), and the degrees of genes were calculated by CytoHubba plug-in of Cytoscape. Survival curves were based on the Gene Expression Profile Interaction Analysis (GEPIA). Transwell, wound healing, and Western blot experiments were performed to investigate the effects of miR-193a-3p and beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) on the invasion, migration, and MT of glioma. RESULTS miR-193a-3p was highly expressed in glioma tissues and significantly correlated with poor survival in patients with glioma. The target genes for miR-193a-3p were involved in many cancer-related signaling pathways. The PPI showed 11 genes with both high degrees and MCODE scores in the network. Survival analysis demonstrated that the expression of BTRC was significantly correlated with the prognosis of patients with glioma. The results from the transwell, wound healing, and Western blot analyses suggested that miR-193a-3p promoted the invasion, migration, and MT of glioma cells, which could be reversed by BTRC. CONCLUSIONS miR-193a-3p was upregulated in patients with glioma and could affect the invasion, migration, and MT of glioma by regulating BTRC.
Collapse
|
research-article |
4 |
8 |
33
|
Hu Y, Bai J, Zhou D, Zhang L, Chen X, Chen L, Liu Y, Zhang B, Li H, Yin C. The miR-4732-5p/XPR1 axis suppresses the invasion, metastasis, and epithelial-mesenchymal transition of lung adenocarcinoma via the PI3K/Akt/GSK3β/Snail pathway. Mol Omics 2022; 18:417-429. [PMID: 35388387 DOI: 10.1039/d1mo00245g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024] [Imported: 09/03/2024]
Abstract
The roles of microRNAs (miRNAs) in the occurrence, metastasis, and prognosis of lung adenocarcinoma (LUAD) have been drawing extensive attention from researchers. The aim of this study is to identify the effects of miR-4732-5p on the migration, invasion, and metastasis of LUAD. In this study, we found that the expression of miR-4732-5p was decreased in LUAD based on the data derived from The Cancer Genome Atlas (TCGA) database, tissues, and cell lines. LUAD patients with a low expression of miR-4732-5p exhibited a lower survival rate. Meanwhile, miR-4732-5p could directly target xenotropic and polytropic retrovirus receptor 1 (XPR1), and elevated XPR1 was observed in LUAD mRNA microarrays, Gene Expression Omnibus (GEO), and The Human Protein Atlas (HPA) database. Overexpression of miR-4732-5p significantly inhibits the migration, invasion, and metastasis of LUAD in vitro and in vivo, which can be reversed by overexpression of XPR1. We also found that the PI3K/Akt/GSK3β/Snail pathway induced by EGF induced EMT could be inhibited by miR-4732-5p overexpression and XPR1 knockdown. The migration and invasion of LUAD could be converted by cytoskeletal rearrangements, and the polymerization of EGF induced F-actin in A549 cells could be inhibited by elevated miR-4732-5p. Our results suggest that miR-4732-5p exerts anti-tumor effects on the invasion and metastasis of LUAD by regulating XPR1 in vivo and in vitro, indicating that the miR-4732-5p/XPR1 axis may be a potential target for LUAD therapeutic intervention.
Collapse
|
|
3 |
7 |
34
|
Pan QX, Yang YC, Zhao NN, Zhang B, Cui L, Zhang CY. Development of a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods for enantioselective discrimination of tryptophan enantiomers. Anal Chim Acta 2023; 1272:341480. [PMID: 37355327 DOI: 10.1016/j.aca.2023.341480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/26/2023] [Imported: 09/03/2024]
Abstract
Chirality is an important property of nature and it regulates fundamental phenomena in nature and organisms. Here, we develop a chiral electrochemical sensor based on copper-amino acid mercaptide nanorods (L-CuCys NRs) to discriminate tryptophan (Trp) isomers. The chiral L-CuCys NRs are prepared in alkaline solution based on the facile coordination reaction between the sulfhydryl groups of L-Cys and copper ions. Since the stability constant (K) of L-CuCys NRs with L-Trp (752) are much higher than that of L-CuCys NRs with D-Trp (242), the cross-linking bonds between L-CuCys NRs and L-Trp are more stable than those between L-CuCys NRs and D-Trp. Consequently, this electrochemical sensor can selectively recognize the Trp isomers with an enantiomeric electrochemical difference ratio (IL-Trp/ID-Trp) of 3.22, and it exhibits a detection limit of 0.26 μM for L-Trp. Moreover, this electrochemical sensor can quantitatively measure Trp isomers in complex samples. Importantly, this electrochemical sensor has the characteristics of high stability, good repeatability, easy fabrication, low cost, and efficient discrimination of tryptophan (Trp) isomers.
Collapse
|
|
2 |
7 |
35
|
Bai J, Li H, Chen X, Chen L, Hu Y, Liu L, Zhao Y, Zuo W, Zhang B, Yin C. LncRNA-AC009948.5 promotes invasion and metastasis of lung adenocarcinoma by binding to miR-186-5p. Front Oncol 2022; 12:949951. [PMID: 36059662 PMCID: PMC9437580 DOI: 10.3389/fonc.2022.949951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] [Imported: 09/03/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) has been confirmed to play a crucial role in the development and progression of various cancer types. Here we evaluated the expression profiles of LncRNAs in Lung adenocarcinoma (LUAD) tissues and identified a novel LncRNA, termed LncRNA-AC009948.5. However, the role and potential molecular mechanisms of this novel LncRNA in LUAD carcinogenesis is unknown. METHODS Regarding the public databases and based on integrating bioinformatics analyses, we determined whether LncRNA-AC009948.5 exerts its oncogenic functions via sponging miR-186-5p in LUAD. Furthermore, we determined whether NCAPG2 was a downstream target of miR-186-5p. Moreover, the expression level and biological function of LncRNA-AC009948.5 in LUAD were determined by qRT-PCR, cell apoptosis, Edu, transwell, wound healing and western blot assays. Besides, xenograft mice were established for validation. We explored the expression of LncRNA-AC009948.5 and its roles in the prognosis of LUAD. RESULTS LncRNA expression microarray data indicate that LncRNA-AC009948.5 is upregulated in LUAD samples. The present study confirmed the upregulation of LncRNA-AC009948.5 in LUAD tissues and cells. Encreased expression of LncRNA-AC009948.5 was correlated with tumor size, lymph nodes, distant metastasis and histological grade, and poor prognosis.LncRNA-AC009948.5 knockdown significantly inhibited cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, LncRNA-AC009948.5 upregulated had opposite effects. Mechanistically, we elucidated that LncRNA-AC009948.5 could directly bind to miR-186-5p and subsequently suppress expression of the target gene of NCAPG2. CONCLUSIONS LncRNA-AC009948.5 promotes lung adenocarcinoma cells metastasis via the miR-186-5p/NCAPG2 axis and activation of the EMT process. Which may serve as potential targets for the treatment of LUAD in the future.
Collapse
|
research-article |
3 |
6 |
36
|
Chen WY, Lang ZQ, Ren C, Yang P, Zhang B. miR‑143 acts as a novel Big mitogen‑activated protein kinase 1 suppressor and may inhibit invasion of glioma. Oncol Rep 2019; 42:1194-1204. [PMID: 31322249 DOI: 10.3892/or.2019.7218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/12/2019] [Indexed: 11/05/2022] [Imported: 09/03/2024] Open
Abstract
Upregulation of the Big mitogen‑activated protein kinase (BMK)1 has been reported in glioma and other epithelial tumors. In addition, the decreased expression of BMK1 inhibits tumorigenesis, leading to the broad consensus that it functions as cell‑autonomous epithelial tumor promoter. Using two online miRNA target prediction databases, microRNA (miR)‑143 was predicted as the potential miRNA regulator of BMK1. RNA immunoprecipitation analysis and Luciferase reporter assay showed that miR‑143 binds to the 3' untranslated region of BMK1. Notably, the expression of miR‑143 has a strong association with the World Health Organization grade and survival rates in patients with glioma by statistical analysis. Furthermore, miR‑143 inhibited glioma cells migration and invasion through cytoskeletal rearrangement in vitro and in vivo through matrigel invasion assay, scratch assay, cellular F‑actin measurement, chemotaxis assay and intracranial brain tumor xenografts. Finally, DNA methylation assay showed that the downregulation of miR‑143 was due to hypermethylation of its promoter region. These results reveal that miR‑143 represents a potential therapeutic target in glioma by modulating BMK1.
Collapse
|
|
6 |
6 |
37
|
Wang X, Fu G, Wen J, Chen H, Zhang B, Zhu D. Membrane Location of Syntaxin-Binding Protein 1 Is Correlated with Poor Prognosis of Lung Adenocarcinoma. TOHOKU J EXP MED 2020; 250:263-270. [PMID: 32321873 DOI: 10.1620/tjem.250.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] [Imported: 09/03/2024]
Abstract
Lung cancer is the leading cause of cancer-related death, and adenocarcinoma is the most common histological type of lung cancer. Syntaxin-binding protein 1 (STXBP1) is essential for exocytosis of secretory vesicles. Since exocytosis is the basic cellular process of cells, we investigated STXBP1 expression and clinical significance in lung adenocarcinoma. We performed quantitative real-time polymerase chain reaction in 20 pairs of lung adenocarcinoma and paired normal tissues, and demonstrated that the relative expression levels of STXBP1 mRNA in lung adenocarcinoma was significantly higher than those in normal lung tissues. We then carried out immunohistochemistry (IHC) to determine the expression profile of STXBP1 in 276 lung adenocarcinoma specimens, and categorized patients into subgroups with low or high STXBP1 expression, based on the IHC score. Moreover, STXBP1 expression phenotypes were categorized as membrane, cytoplasm, and mixed expression (both membrane and cytoplasm) expression. High STXBP1 protein accounted for 58.0% of all the 276 cases (160/276), and membrane, cytoplasm or mixed STXBP1 accounted for 28.75%, 25.63% and 45.63% in the 160 cases of high STXBP1 expression. The clinical significances of these phenotypes were evaluated by analyzing their correlation with clinicopathological factors, as well as their prognostic values. Consequently, the whole STXBP1 expression or membranal STXBP1 expression were correlated with poor prognosis and were independent prognostic factors of lung adenocarcinoma. The whole and membranal STXBP1 expression are independent prognostic factors of lung adenocarcinoma. STXBP1 detection is capable to help screen patients who may have poor prognosis and strengthen the adjuvant therapy more precisely.
Collapse
|
|
5 |
5 |
38
|
Li CF, Chen LB, Li DD, Yang L, Zhang BG, Jin JP, Zhang Y, Zhang B. Dual‑sensitive HRE/Egr1 promoter regulates Smac overexpression and enhances radiation‑induced A549 human lung adenocarcinoma cell death under hypoxia. Mol Med Rep 2014; 10:1108-1116. [PMID: 24842518 DOI: 10.3892/mmr.2014.2233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 04/04/2014] [Indexed: 11/05/2022] [Imported: 04/02/2025] Open
Abstract
The aim of this study was to construct an expression vector carrying the hypoxia/radiation dual‑sensitive chimeric hypoxia response element (HRE)/early growth response 1 (Egr‑1) promoter in order to overexpress the therapeutic second mitochondria‑derived activator of caspases (Smac). Using this expression vector, the present study aimed to explore the molecular mechanism underlying radiotherapy‑induced A549 human lung adenocarcinoma cell death and apoptosis under hypoxia. The plasmids, pcDNA3.1‑Egr1‑Smac (pE‑Smac) and pcDNA3.1‑HRE/Egr-1‑Smac (pH/E‑Smac), were constructed and transfected into A549 human lung adenocarcinoma cells using the liposome method. CoCl2 was used to chemically simulate hypoxia, followed by the administration of 2 Gy X‑ray irradiation. An MTT assay was performed to detect cell proliferation and an Annexin V‑fluorescein isothiocyanate apoptosis detection kit was used to detect apoptosis. Quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression, respectively. Infection with the pE‑Smac and pH/E‑Smac plasmids in combination with radiation and/or hypoxia was observed to enhance the expression of Smac. Furthermore, Smac overexpression was found to enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis. The cytochrome c/caspase‑9/caspase‑3 pathway was identified to be involved in this regulation of apoptosis. Plasmid infection in combination with X‑ray irradiation was found to markedly induce cell death under hypoxia. In conclusion, the hypoxia/radiation dual‑sensitive chimeric HRE/Egr‑1 promoter was observed to enhance the expression of the therapeutic Smac, as well as enhance the radiation‑induced inhibition of cell proliferation and promotion of cycle arrest and apoptosis under hypoxia. This apoptosis was found to involve the mitochondrial pathway.
Collapse
|
|
11 |
4 |
39
|
Wang M, Ren X, Wang G, Sun X, Tang S, Zhang B, Xing X, Zhang W, Gao G, Du J, Zhang S, Liu L, Zheng X, Zhang Z, Sun C. Construction of a survival prediction model for high-and low -grade UTUC after tumor resection based on "SEER database": a multicenter study. BMC Cancer 2021; 21:999. [PMID: 34493229 PMCID: PMC8424798 DOI: 10.1186/s12885-021-08742-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] [Imported: 09/03/2024] Open
Abstract
BACKGROUND There are differences in survival between high-and low-grade Upper Tract Urothelial Carcinoma (UTUC). Our study aimed to develop a nomogram to predict overall survival (OS) of patients with high- and low-grade UTUC after tumor resection, and to explore the difference between high- and low-grade patients. METHODS Patients confirmed to have UTUC between 2004 and 2015 were selected from the Surveillance, Epidemiology and End Results (SEER) database. The UTUCs were identified and classified as high- and low-grade, and 1-, 3- and 5-year nomograms were established. The nomogram was then validated using the Chinese multicenter dataset (patients diagnosed in Shandong, China between January 2010 and October 2020). RESULTS In the high-grade UTUC patients, nine important factors related to survival after tumor resection were identified to construct nomogram. The C index of training dataset was 0.740 (95% confidence interval [CI]: 0.727-0.754), showing good calibration. The C index of internal validation dataset was 0.729(95% CI:0.707-0.750). On the other hand, Two independent predictors were identified to construct nomogram of low-grade UTUC. The C index was 0.714 (95% CI: 0.671-0.758) for the training set,0.731(95% CI:0.670-0.791) for the internal validation dataset. Encouragingly, the nomogram was clinically useful and had a good discriminative ability to identify patients at high risk. CONCLUSION We constructed a nomogram and a corresponding risk classification system predicting the OS of patients with an initial diagnosis of high-and low-grade UTUC.
Collapse
|
Multicenter Study |
4 |
4 |
40
|
Xu Y, Sun Y, Chang H, Cai J, Cao C, Zhang B, Zhang Y, Liu Y. The Expression of HPV E6/E7 mRNA In Situ Hybridization in HPV Typing-negative Cervical Cancer. Int J Gynecol Pathol 2023; 42:11-20. [PMID: 35443260 PMCID: PMC9741987 DOI: 10.1097/pgp.0000000000000870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] [Imported: 09/03/2024]
Abstract
High-risk human papillomavirus (HPV) persistent infection is the major tumorigenesis factor for cervical cancer (CC). However, the incidence of HPV-negative CC is 5% to 30% with different HPV detection methods. High-risk HPV E6/E7 mRNA in situ hybridization (RISH) can detect HPV-driven tumors. Our study aimed to explore whether HPV typing-negative CC was caused by HPV infection. The tissues of CC patients with HPV typing results, collected from cervical biopsies, conization, or hysterectomies, were submitted to RISH using RNAscope chromogenicin. Immunohistochemistry was performed to evaluate the expression of p16INK4a and Ki-67. A total of 308 women with HPV typing results were enrolled, and 30 (9.74%) cases of HPV typing were negative. In HPV typing-negative CCs, 28/30 (93.3%) were positive for RISH, which contained 22/22 (100%) squamous cell carcinomas and 6/8 (75%) adenocarcinomas. RISH was positive in 278/278 (100%) HPV typing-positive CCs, which included 232/232 (100%) squamous cell carcinomas and 46/46 (100%) adenocarcinomas. Positive RISH in HPV typing-negative CC was significantly lower than in the HPV typing-positive group ( P =0.002, 95% confidence interval: 0.848-1.027). However, this significant difference only existed in adenocarcinoma. No significant differences were seen in the expression of p16INK4a and Ki-67 (all P >0.05). HPV typing may cause misdiagnosis in 9.74% of CC patients, and HPV E6/E7 mRNA can detect HPV in CC with HPV typing-negative patients. This approach could provide a novel option to accurately detect high-risk HPVs in cervical tumors and help to eliminate the percentage of misdiagnosed HPV-related cases.
Collapse
|
research-article |
2 |
4 |
41
|
Chen M, Li Y, Sun X, Zhang B, Li W, Wang S, Zhu X, Li F, Shi L. Grb2-associated binder 2 expression and its roles in uveal melanoma invasion. Mol Med Rep 2017; 16:4577-4582. [PMID: 28791340 PMCID: PMC5646995 DOI: 10.3892/mmr.2017.7151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/25/2017] [Indexed: 11/24/2022] [Imported: 09/03/2024] Open
Abstract
Uveal melanoma (UM) is characterized by high metastasis and poor prognosis. A more improved understanding of the metastatic mechanism in UM cells is essential for the design of molecular therapy. Grb2‑associated binder 2 (Gab2) has been reported to serve important roles in the progression of various types of human cancer. However, the role of Gab2 in the migration and invasion of UM remains unclear. The present study sought to further assess the expression of Gab2 in UM and the role of Gab2 in the invasion of UM cells. Clinical UM tissue samples and UM cell lines were analyzed using western blot analysis for the expression of Gab2. RNA interference was used to investigate the effect of Gab2 on the migratory and invasive characteristics of UM cells in vitro. The expression levels of matrix metalloproteinase (MMP)2, MMP9 and fascin in Gab2‑knockdown, and control cells were also detected using western blot analysis. A total of 20 clinical UM samples and a subset of UM cell lines were investigated with uniformly high Gab2 expression. In the in vitro experiment, reduction of Gab2 using small interfering RNA inhibited the migration and invasion of UM cells by mediating MMPs, and fascin expression. These data suggest that Gab2 is a useful prognostic marker for UM and a novel therapeutic target for UM metastasis intervention.
Collapse
|
research-article |
8 |
3 |
42
|
Wang S, Li S, Wang H, Li W, Gao Y, Wang X, Fang C, Zhang B, Sun X, Li R, Shi W, Chen M, Shi L. Knockdown of ARK5 expression suppresses invasion of ovarian cancer cells. Mol Med Rep 2019; 19:2927-2934. [PMID: 30720082 DOI: 10.3892/mmr.2019.9901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 12/06/2018] [Indexed: 11/05/2022] [Imported: 09/03/2024] Open
Abstract
The aim of the current study was to investigate the effects and the molecular mechanisms of ARK5 in ovarian cancer cell invasion. The plasmid pGCsilencerU6/GFP/Neo‑RNAi‑ARK5 and the control vector with a scramble sequence were transfected into SKOV3 cells to establish ARK5‑deficient SKOV3 cells (siARK5/SKOV3) and a control cell line (Scr/SKOV3), respectively. Reverse transcription‑polymerase chain reaction (RT‑PCR) and Western blot analysis were used to determine the mRNA and protein expression levels of ARK5. Migration and invasion abilities of SKOV3 cells were determined in chemotaxis and invasion assays, respectively. The epidermal growth factor‑1 (EGF‑1)‑induced expression of matrix metallopeptidase (MMP)‑2 and MMP‑9, epithelial‑mesenchymal transition (EMT) and phosphorylation of mechanistic target of rapamycin kinase (mTOR) in siARK5/SKOV3 and Scr/SKOV3 cells were detected by western blot. RT‑PCR and western blot analyses demonstrated that the expression of ARK5 was significantly downregulated in siARK5/SKOV3 cells at the mRNA and protein levels (P<0.01). The migration and invasion abilities of siARK5/SKOV3 cells were markedly decreased compared with Scr/SKOV3 cells (P<0.01). In addition, the results demonstrated that EGF‑1‑induced expression of MMP‑2 and MMP‑9, EMT and phosphorylation of mTOR were suppressed in siARK5/SKOV3 cells as compared with Scr/SKOV3 cells (P<0.01). The current study demonstrated that ARK5 is a critical factor involved in SKOV3 cell invasion and ARK5 increases invasive potential by promoting EMT and activating the Akt‑mTOR‑MMPs pathway.
Collapse
|
|
6 |
3 |
43
|
Liu WJ, Wang LY, Sheng Z, Zhang B, Zou X, Zhang CY. RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m 6A modification writer METTL3/14 complex in human breast tissues. Biosens Bioelectron 2023; 240:115645. [PMID: 37660462 DOI: 10.1016/j.bios.2023.115645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023] [Imported: 09/03/2024]
Abstract
N6-methyladenosine (m6A) is an ubiquitous post-transcriptional modification catalyzed by METTL3/14 complex in eukaryotic mRNAs. The abnormal METTL3/14 complex activity affects multiple steps of RNA metabolism and may induce various diseases. Herein, we demonstrate the RNA methylation-driven assembly of fluorescence-encoded nanostructures for sensitive detection of m6A modification writer METTL3/14 complex in human breast tissues. METTL3/14 complex can catalyze the methylation of RNA probe to prevent it from being cleaved by MazF. The intact RNA probe is recognized by the magnetic bead (MB)-capture probe conjugates to induce duplex-specific nuclease (DSN)-assisted cyclic digestion, exposing numerous shorter ssDNAs with 3'-OH end. The shorter ssDNAs on the MB surface can act as the primers to initiate terminal deoxynucleotidyl transferase (TdT)-enhanced tyramide signal amplification (TSA), forming the Cy5 fluorescence-encoded nanostructures. After magnetic separation, the Cy5 fluorescence-encoded nanostructures are digested by DNase I to release abundant Cy5 fluorophores that can be simply quantified by fluorescence measurement. This assay achieves good specificity and high sensitivity with a detection limit of 58.8 aM, and it can screen METTL3/14 complex inhibitors and quantify METTL3/14 complex activity at the single-cell level. Furthermore, this assay can differentiate the METTL3/14 complex level in breast cancer patient tissues and healthy volunteer tissues.
Collapse
|
|
2 |
3 |
44
|
Zhao NN, Liu WJ, Tian X, Zhang B, Zhang CY. Target-activated cascade transcription amplification lights up RNA aptamers for label-free detection of metalloproteinase-2 activity. Chem Commun (Camb) 2023; 59:1058-1061. [PMID: 36606583 DOI: 10.1039/d2cc06784f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] [Imported: 09/03/2024]
Abstract
We demonstrate that target-activated cascade transcription amplification lights up RNA aptamers for label-free detection of metalloproteinase-2 (MMP-2) activity with zero background. This assay exhibits good specificity and high sensitivity with a limit of detection (LOD) of 0.6 fM. Moreover, it can analyze enzyme kinetic parameters, screen inhibitors, and accurately quantify MMP-2 in cancer cells and clinical serums.
Collapse
|
|
2 |
3 |
45
|
Wang G, Sun X, Ren X, Wang M, Wang Y, Zhang S, Li J, Lu W, Zhang B, Chen P, Shi Z, Liu L, Zhuang J. Establishment of prognostic model for postoperative patients with metaplastic breast cancer: Based on a retrospective large data analysis and Chinese multicenter study. Front Genet 2022; 13:993116. [PMID: 36092916 PMCID: PMC9454815 DOI: 10.3389/fgene.2022.993116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] [Imported: 09/03/2024] Open
Abstract
Purpose: Models for predicting postoperative overall survival of patients with metaplastic breast cancer have not yet been discovered. The purpose of this study is to establish a model for predicting postoperative overall survival of metaplastic breast cancer patients. Methods: Patients in the Surveillance, Epidemiology, and End Results database diagnosed with MBC from 2010 to 2015 were selected and randomized into a SEER training cohort and an internal validation cohort. We identified independent prognostic factors after MBC surgery based on multivariate Cox regression analysis to construct nomograms. The discriminative and predictive power of the nomogram was assessed using Harrell's consistency index (C-index) and calibration plots. The decision curve analysis (DCA) was used to evaluate the clinical usefulness of the model. We verify the performance of the prediction model with a Chinese multi-center data set. Results: Multifactorial analysis showed that age at diagnosis, T stage, N stage, M stage, tumor size, radiotherapy, and chemotherapy were important prognostic factors affecting OS. The C-index of nomogram was higher than the eighth edition of the AJCC TNM grading system in the SEER training set and validation set. The calibration chart showed that the survival rate predicted by the nomogram is close to the actual survival rate. It has also been verified in the SEER internal verification set and the Chinese multi-center data set. Conclusion: The prognostic model can accurately predict the post-surgical OS rate of patients with MBC and can provide a reference for doctors and patients to establish treatment plans.
Collapse
|
research-article |
3 |
2 |
46
|
Gao Y, Shi L, Cao Z, Zhu X, Li F, Wang R, Xu J, Zhong J, Zhang B, Lu S. Telocinobufagin inhibits the epithelial-mesenchymal transition of breast cancer cells through the phosphoinositide 3-kinase/protein kinase B/extracellular signal-regulated kinase/Snail signaling pathway. Oncol Lett 2018; 15:7837-7845. [PMID: 29725474 PMCID: PMC5920466 DOI: 10.3892/ol.2018.8349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/13/2018] [Indexed: 12/18/2022] [Imported: 09/03/2024] Open
Abstract
Telocinobufagin (TBG), an active ingredient of Venenumbufonis, exhibits an immunomodulatory activity. However, its antimetastatic activity in breast cancer remains unknown. The present study investigated whether TBG prevents breast cancer metastasis and evaluated its regulatory mechanism. TBG inhibited the migration and invasion of 4T1 breast cancer cells. Furthermore, TBG triggered the collapse of F-actin filaments in breast cancer. The epithelial-mesenchymal transition (EMT) markers, vimentin and fibronectin, were downregulated following TBG treatment. However, E-cadherin was upregulated following TBG treatment. Snail, a crucial transcriptional factor of EMT, was downregulated following TBG treatment. Signaling pathway markers, including phosphorylated protein kinase B (P-Akt), p-mechanistic target of rapamycin (mTOR) and p-extracellular signal-regulated kinase (ERK), were decreased following TBG treatment. The same results were obtained from in vivo experiments. In conclusion, in vitro and in vivo experiments reveal that TBG inhibited migration, invasion and EMT via the phosphoinositide 3-kinase (PI3K)/Akt/ERK/Snail signaling pathway in breast cancer.
Collapse
|
research-article |
7 |
2 |
47
|
王 淑, 崔 镓, 张 凯, 谷 金, 郑 远, 张 宝, 史 立. [SP13786 Inhibits the Migration and Invasion of Lung Adenocarcinoma Cell A549
by Supressing Stat3-EMT via CAFs Exosomes]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:384-393. [PMID: 34024061 PMCID: PMC8246397 DOI: 10.3779/j.issn.1009-3419.2021.104.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022] [Imported: 09/03/2024]
Abstract
BACKGROUND Fibroblast activation protein (FAP) is one of the surface markers of cancer-associated fibroblasts (CAFs) and is closely related to the malignant characterization of CAFs. SP13786 is a specific micromolecule inhibitor of FAP and this study is to investigate the effects and mechanism of SP13786 on the migration and invasion of A549 cells through regulating exosomes of CAFs. METHODS CAFs and paracancerous fibroblasts (PTFs) were isolated and subcultured from freshly resected lung adenocarcinoma tissues and paracancerous normal tissues separately. MTT assay was used to detect the proliferation of CAFs incubated by different concentrations of SP13786; PTFs-exo, CAFs-exo and CAFs+SP13786-exo were extracted by polymer precipitation method. The A549 cells were divided into Ctrl group, PTFs group, CAFs group and SP13786 group and each group was incubated with DMEM, PTFs-exo, CAFs-exo and CAFs+SP13786-exo separately. Laser confocal microscope was used to observe the endocytoses of exosomes by A549 cells. The expression of alpha-smooth muscle actin (α-SMA) and FAP in PTFs and CAFs and the expression of E-cadherin, N-cadherin, Slug, Stat3 and P-Stat3 in A549 cells were detected by immunofluorescence, immunohistochemistry and Western blot. The migration and invasion ability of A549 cells were detected by cell scratch and transwell methods. RESULTS α-SMA and FAP were expressed much higher in CAFs than that in PTFs which indicate that CAFs and PTFs were successfully obtained from lung adenocarcinoma and paracancerous tissues (P<0.05). MTT showed that the 50% inhibitory concentration (IC50) of SP13786 for CAFs was about 3.3 nmol/L. In addition, SP13786 can significantly decrease the expression of α-SMA and FAP in CAFs which means that targeted inhibition of FAP could reduce the malignant characteristics of CAFs (P<0.05). Laser confocal microscope found that exosomes from CAFs could be taken up by A549 cells and scratch and transwell tests showed that the endocytosed CAFs-exo could promote the migration and invasion of A549 cells (P<0.001), while FAP inhibitor SP13786 could inhibit the effects of CAFs-exo on A549 cells (P<0.05). Furthermore, Immunofluorescence and Western blot showed that CAFs-exo could promote EMT by decreasing E-cadherin expression and increasing N-cadherin, Slug expression in A549 cells while FAP inhibitor SP13786 could significantly supress CAFs-exo-induced epithelial-mesenchymal transition (EMT) of A549 cells (P<0.05). Moreover, the expression of P-Stat3 was obviously increased in A549 cells of CAFs group and significantly down-regulated in SP13786 group (P<0.05) whereas there was no significant difference in total Stat3 between CAFs and SP13786 groups (P>0.05). Finally, WP1066 (a specific inhibitor of Stat3) was used to comfirm whether SP13786 could influence EMT of A549 cells by inhibiting Stat3 phosphorylation via CAFs-Exo. The results showed that when the phosphorylation of Stat3 in CAFs group was inhibited by WP1066, SP13786 could not influence the P-Stat3 expression and EMT of A549 cells anymore (P>0.05). CONCLUSIONS As a specific micromolecule inhibitor of FAP, SP13786 indirectly inhibits the migration and invasion of A549 cells by affecting exosomes of CAFs. The possible mechanism is to inhibit the phosphorylation of Stat3 and thus affect the EMT of A549 cells.
Collapse
|
research-article |
4 |
2 |
48
|
Yang L, Huo R, Zhang B. Dual functional coatings with antifogging and antimicrobial performances for endoscope lens, via facile adsorption-cross-linking strategy. Colloids Surf B Biointerfaces 2021; 206:111933. [PMID: 34175741 DOI: 10.1016/j.colsurfb.2021.111933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] [Imported: 04/02/2025]
Abstract
Surface fogging causes various inconvenience for human daily life, especially for clinic inspection and medical diagnosis, hence the surfaces with reliable antifogging performances have received tremendous interests. Herein, through a facile adsorption-cross-linking strategy, a dual functional coating with both excellent antifogging/frost-resisting properties and reliable antibacterial activity has been steadily integrated onto varied substrates. A series of copolymers poly(HEAA-co-QAC-co-BP) with UV-initiable BP groups are synthesized, and then are covalently fixed on the substrate surfaces via UV triggered cross-linking reaction. The hydrophilic HEAA units endow the surface with excellent antifogging performance, while the introduced QAC groups bring essential antibacterial activity. ZOI results prove that the antibacterial activity stems from the surface contact-killing of bacteria, without releasing any bactericidal agents. Moreover, the functional surface exhibits remarkable resistance toward non-specific protein adsorption as well as no obvious effect on the hemolysis. The coating with the unique merits of both antifogging and antibacterial properties could find broad applications in antifogging fields, in particular for medical diagnosis, health monitoring, etc.
Collapse
|
|
4 |
1 |
49
|
Cui JY, Ma J, Gao XX, Sheng ZM, Pan ZX, Shi LH, Zhang BG. Unraveling the role of cancer-associated fibroblasts in colorectal cancer. World J Gastrointest Oncol 2024; 16:4565-4578. [PMID: 39678792 PMCID: PMC11577382 DOI: 10.4251/wjgo.v16.i12.4565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] [Imported: 01/12/2025] Open
Abstract
Within the intricate milieu of colorectal cancer (CRC) tissues, cancer-associated fibroblasts (CAFs) act as pivotal orchestrators, wielding considerable influence over tumor progression. This review endeavors to dissect the multifaceted functions of CAFs within the realm of CRC, thereby highlighting their indispensability in fostering CRC malignant microenvironment and indicating the development of CAFs-targeted therapeutic interventions. Through a comprehensive synthesis of current knowledge, this review delineates insights into CAFs-mediated modulation of cancer cell proliferation, invasiveness, immune evasion, and neovascularization, elucidating the intricate web of interactions that sustain the pro-tumor metabolism and secretion of multiple factors. Additionally, recognizing the high level of heterogeneity within CAFs is crucial, as they encompass a range of subtypes, including myofibroblastic CAFs, inflammatory CAFs, antigen-presenting CAFs, and vessel-associated CAFs. Innovatively, the symbiotic relationship between CAFs and the intestinal microbiota is explored, shedding light on a novel dimension of CRC pathogenesis. Despite remarkable progress, the orchestrated dynamic functions of CAFs remain incompletely deciphered, underscoring the need for continued research endeavors for therapeutic advancements in CRC management.
Collapse
|
Review |
1 |
|
50
|
Dong H, Sun K, Wang X, Cui M, Ma Y, Li K, Duan W, Zhang H, Zhang L, Sheng Z, He M, Zhang B. Repurposed genipin targeting UCP2 exhibits antitumor activity through inducing ferroptosis in glioblastoma. Acta Biochim Biophys Sin (Shanghai) 2024; 57:403-414. [PMID: 39523775 PMCID: PMC11986454 DOI: 10.3724/abbs.2024168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 11/16/2024] [Imported: 05/04/2025] Open
Abstract
Uncoupling protein-2 (UCP2) controls the antioxidant response and redox homeostasis in cancer and is considered a potent molecular target for cancer treatment. However, the specific mechanism of UCP2 inhibition and its role in glioblastoma (GBM) have not yet been elucidated. Here, we attempt to identify a UCP2 inhibitor and study the underlying molecular mechanism in GBM. Bioinformatics analysis and immunohistochemistry are used to validate the high expression of UCP2 in GBM and its prognostic significance. Drug intervention and tumor xenograft experiments are conducted to determine the inhibitory effect of genipin, a UCP2 inhibitor, on UCP2. The mitochondrial membrane potential and key ferroptosis genes are examined to determine the occurrence of ferroptosis. High expression of UCP2 in GBM is associated with poor prognosis, and inhibiting UCP2 can alleviate the malignant behavior of GBM tumors. Genipin can downregulate the expression of GPX4 and upregulate the expression of ACSL4 by inhibiting UCP2, leading to ferroptosis and alleviating the malignant behavior of tumors. In summary, UCP2 is a potential therapeutic target for GBM. Genipin, which targets UCP2, effectively inhibits GBM development by inducing ferroptosis in vivo and in vitro. These findings indicate that genipin treatment based on UCP2 targeting has potential therapeutic applications with a clinical perspective for the treatment of GBM patients.
Collapse
|
research-article |
1 |
|