26
|
Rocha M, Bañuls C, Bellod L, Rovira-Llopis S, Morillas C, Solá E, Víctor VM, Hernández-Mijares A. Association of serum retinol binding protein 4 with atherogenic dyslipidemia in morbid obese patients. PLoS One 2013; 8:e78670. [PMID: 24223837 PMCID: PMC3817034 DOI: 10.1371/journal.pone.0078670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/14/2013] [Indexed: 12/30/2022] [Imported: 10/07/2024] Open
Abstract
Retinol binding protein 4 (RBP4) is an adipokine that may contribute to the development of insulin resistance. However, how this adipokine is affected and its possible involvement in lipid metabolism in obese patients with varying degrees of insulin resistance is yet to be determined. A total of 299 middle-aged morbid obese patients (BMI>40 kg/m(2)) were divided in euglycemic, metabolic syndrome or type 2 diabetic. Anthropometric measurements, biochemical variables and systemic RBP4 levels were determined. RBP4 levels were significantly higher in patients with metabolic syndrome and type 2 diabetes than in euglycemic subjects (42.9±14.6; 42.3±17.0 and 37.4±11.7 µg/ml, respectively) and correlated with triglycerides but not with those of HOMA-IR in the whole population. The multivariate regression model revealed that triglycerides were the strongest predictor of systemic RBP4 levels. Analysis of lipoprotein subfractions in a subpopulation of 80 subjects showed an altered profile of insulin resistant states characterized by higher VLDL, sdLDL and small HDL percentages and lower large HDL percentage. Although RBP4 levels correlated significantly with LDL particle size and small HDL percentage, the latter parameter was independently associated only with RBP4. Our study reveals that systemic RBP4 levels could play an important role in lipid metabolism in morbid obesity, increasing triglyceride levels and contributing to the formation of small HDL.
Collapse
|
research-article |
12 |
26 |
27
|
Victor VM, Rovira-Llopis S, Saiz-Alarcon V, Sangüesa MC, Rojo-Bofill L, Bañuls C, Falcón R, Castelló R, Rojo L, Rocha M, Hernández-Mijares A. Altered mitochondrial function and oxidative stress in leukocytes of anorexia nervosa patients. PLoS One 2014; 9:e106463. [PMID: 25254642 PMCID: PMC4177818 DOI: 10.1371/journal.pone.0106463] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/06/2014] [Indexed: 11/23/2022] [Imported: 10/07/2024] Open
Abstract
CONTEXT Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. OBJECTIVE The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. DESIGN AND SETTING A multi-centre, cross-sectional case-control study was performed. PATIENTS Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women. MAIN OUTCOME MEASURES Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells. RESULTS Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05), mitochondrial membrane potential (P<0.01) and GSH levels (P<0.05), and an increase in ROS production (P<0.05) with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05), while the activity of mitochondrial complex I (P<0.001), but not that of complex III, was found to be inhibited in the same population. CONCLUSIONS Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.
Collapse
|
research-article |
11 |
24 |
28
|
Jové M, Pradas I, Naudí A, Rovira-Llopis S, Bañuls C, Rocha M, Portero-Otin M, Hernández-Mijares A, Victor VM, Pamplona R. Lipidomics reveals altered biosynthetic pathways of glycerophospholipids and cell signaling as biomarkers of the polycystic ovary syndrome. Oncotarget 2018; 9:4522-4536. [PMID: 29435121 PMCID: PMC5796992 DOI: 10.18632/oncotarget.23393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/04/2017] [Indexed: 01/12/2023] [Imported: 10/07/2024] Open
Abstract
PURPOSE In this work, a non-targeted approach was used to unravel changes in the plasma lipidome of PCOS patients. The aim is to offer new insights in PCOS patients strictly selected in order to avoid confounding factors such as dyslipemia, obesity, altered glucose/insulin metabolism, cardiovascular disease, or cancer. RESULTS Multivariate statistics revealed a specific lipidomic signature for PCOS patients without associated pathologies. This signature implies changes, mainly by down-regulation, in glycerolipid, glycerophospholipid and sphingolipid metabolism suggesting an altered biosynthetic pathway of glycerophospholipids and cell signaling as second messengers in women with PCOS. CONCLUSIONS Our study confirms that a lipidomic approach discriminates a specific phenotype from PCOS women without associated pathologies from healthy controls. METHODS In a cross-sectional pilot study, data were obtained from 34 subjects, allocated to one of two groups: a) lean, healthy controls (n = 20), b) PCOS patients (n = 14) with diagnosis based on hyperandrogenaemia, oligo-anovulation and abnormal ovaries with small follicular cysts. A detailed biochemical characterization was made and lipidomic profiling was performed via an untargeted approach using LC-ESI-QTOF MS/MS.
Collapse
|
research-article |
7 |
23 |
29
|
Pradas I, Rovira-Llopis S, Naudí A, Bañuls C, Rocha M, Hernandez-Mijares A, Pamplona R, Victor VM, Jové M. Metformin induces lipid changes on sphingolipid species and oxidized lipids in polycystic ovary syndrome women. Sci Rep 2019; 9:16033. [PMID: 31690730 PMCID: PMC6831788 DOI: 10.1038/s41598-019-52263-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] [Imported: 10/07/2024] Open
Abstract
Metformin is one of the treatments used for PCOS pathology decreasing body weight, plasma androgen, FSH and glucose levels. Unfortunately, there is little known about metformin's effects on lipid metabolism, a crucial process in PCOS pathology. We have employed a lipidomic approach to explore alterations in the plasma lipid profile of patients with PCOS following metformin treatment. The aim is to offer new insights about the effect of metformin in PCOS patients. Plasma samples were obtained from 27 subjects prior to and following 12 weeks of metformin treatment. A detailed biochemical characterization and lipidomic profile was performed. Metformin reduces BMI, HOMA-IR, FSH and androstenedione and increases DHEA-S but no changes were found in glucose levels after treatment. Multivariate statistics revealed a specific lipidomic signature due to the effect of 12 weeks of metformin treatment in PCOS patients. This signature includes changes in sphingolipid metabolism suggesting a crosstalk between these lipid species and the androgenic metabolism and a decrease in oxidized lipids reinforcing that metformin treatment improves oxidative stress status. Our study confirms the specific effect of metformin in lipid metabolism on women with PCOS after 12 weeks of treatment.
Collapse
|
Clinical Trial |
6 |
21 |
30
|
Hernandez-Mijares A, Bañuls C, Rovira-Llopis S, Diaz-Morales N, Escribano-Lopez I, de Pablo C, Alvarez A, Veses S, Rocha M, Victor VM. Effects of simvastatin, ezetimibe and simvastatin/ezetimibe on mitochondrial function and leukocyte/endothelial cell interactions in patients with hypercholesterolemia. Atherosclerosis 2016; 247:40-47. [PMID: 26868507 DOI: 10.1016/j.atherosclerosis.2016.01.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 11/29/2022] [Imported: 10/07/2024]
Abstract
BACKGROUND Cholesterol-lowering therapy has been related with several beneficial effects; however, its influence on oxidative stress and endothelial function is not fully elucidated. AIMS To investigate the effect of simvastatin and ezetimibe on mitochondrial function and leukocyte-endothelium interactions in polymorphonuclear cells of hyperlipidemic patients. METHODS Thirty-nine hyperlipidemic patients were randomly assigned to one of two groups: one received simvastatin (40 mg/day) and the other received ezetimibe (10 mg/day) for 4 weeks, after which both groups were administered combined therapy for an additional 4-week period. Lipid profile, mitochondrial parameters (oxygen consumption, reactive oxygen species (ROS) and membrane potential), glutathione levels, superoxide dismutase activity, catalase activity and leukocyte/endothelial cell interactions and adhesion molecules -VCAM-1, ICAM-1, E-selectin, were evaluated. RESULTS An improvement in lipid profile was observed after administration of simvastatin or ezetimibe alone (LDLc: -40.2 vs -19.6%, respectively), though this effect was stronger with the former (p < 0.001), and a further reduction was registered when the two were combined (LDLc: -50.7% vs -56.8%, respectively). In addition to this, simvastatin, ezetimibe and simvastatin + ezetimibe significantly increased oxygen consumption, membrane potential and glutathione content, and decreased levels of ROS, thereby improving mitochondrial function. Furthermore, simvastatin + ezetimibe increased catalase activity. In addition, simvastatin and simvastatin/ezetimibe improved leukocyte/endothelium interactions by decreasing leukocyte rolling and adhesion and increasing leukocyte rolling velocity. Finally, simvastatin, ezetimibe and simvastatin + ezetimibe reduced levels of the adhesion molecule ICAM-1, and ezetimibe + simvastatin significantly decreased levels of E-selectin. CONCLUSION Co-administration of simvastatin and ezetimibe has an additive cholesterol-lowering effect and beneficial consequences for mitochondrial function and leukocyte/endothelium interactions in leukocytes of hypercholesterolemic patients.
Collapse
|
Comparative Study |
9 |
21 |
31
|
Banuls C, Rocha M, Rovira-Llopis S, Falcon R, Castello R, Herance JR, Polo M, Blas-Garcia A, Hernandez-Mijares A, Victor VM. The pivotal role of nitric oxide: effects on the nervous and immune systems. Curr Pharm Des 2014; 20:4679-4689. [PMID: 24588818 DOI: 10.2174/1381612820666140130213510] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/29/2014] [Indexed: 11/22/2022] [Imported: 10/07/2024]
Abstract
Nitric oxide (NO) has an important role in physiological and pathological processes in general, and in particular plays a homeostatic role in the nervous and immune systems. The many different physiological functions of NO include those of a mediator of blood vessel dilation, neurotransmitter, neuromodulator and inductor of mitochondrial biogenesis. In addition, NO can transform into highly reactive and harmful molecules producing an impairment of the DNA, lipids or proteins, and thus altering their function. This dual action of NO, by which it plays an important role in homeostasis and aids the development of pathological processes, makes this molecule an interesting target for medical therapies, especially with respect to the nervous and immune systems. This review describes the multiple roles of NO played out in the nervous and immune systems during different physiological and pathophysiological processes.
Collapse
|
Review |
11 |
19 |
32
|
Diaz-Morales N, Iannantuoni F, Escribano-Lopez I, Bañuls C, Rovira-Llopis S, Sola E, Rocha M, Hernandez-Mijares A, Victor VM. Does Metformin Modulate Endoplasmic Reticulum Stress and Autophagy in Type 2 Diabetic Peripheral Blood Mononuclear Cells? Antioxid Redox Signal 2018; 28:1562-1569. [PMID: 29061071 DOI: 10.1089/ars.2017.7409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] [Imported: 10/07/2024]
Abstract
Since type 2 diabetes (T2D) is associated with oxidative stress and metformin has been shown to exert a protective role against the said stress, we wondered whether metformin treatment might also modulate endoplasmic reticulum (ER) stress and autophagy in leukocytes of T2D patients. We studied 53 T2D patients (37 of whom had been treated with metformin 1700 mg for at least 1 year) and 30 healthy volunteers. Leukocytes from both groups of T2D patients exhibited increased protein levels of 78-kDa glucose-regulated protein (GRP78) with respect to controls, whereas activating transcription factor 6 (ATF6) was enhanced specifically in nonmetformin-treated T2D, and (s-xbp1) and phosphorylated eukaryotic initiation factor 2α (p-eIF2α) increased only in the metformin-treated group. The autophagy markers beclin1 (becn1), autophagy-related 7 (atg7), and microtubule-associated protein 1A/1B-light chain 3II/I (LC3 II/I) increased in nonmetformin-treated T2D, and metformin treatment reduced mitochondrial superoxide and increased glutathione (GSH) levels. Our observations raise the question of whether metformin treatment could reduce oxidative stress and act as an ER stress modulator in T2D patients by promoting an adaptive unfolded protein response (s-xbp1 and p-eIF2α) in their leukocytes; this was in contrast with nonmetformin-treated patients whose response could be driven by the ATF6-dependent pro-apoptotic pathway. Further, our findings lead to us to form the hypothesis of an autophagy-dependent clearance of misfolded proteins in nonmetformin-treated T2D patients that could be repressed by metformin treatment.-Antioxid. Redox Signal. 28, 1562-1569.
Collapse
|
Observational Study |
7 |
19 |
33
|
Iannantuoni F, Diaz-Morales N, Escribano-Lopez I, Sola E, Roldan-Torres I, Apostolova N, Bañuls C, Rovira-Llopis S, Rocha M, Victor VM. Does Glycemic Control Modulate the Impairment of NLRP3 Inflammasome Activation in Type 2 Diabetes? Antioxid Redox Signal 2019; 30:232-240. [PMID: 29860862 DOI: 10.1089/ars.2018.7582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] [Imported: 10/07/2024]
Abstract
Since mitochondrial dysfunction is associated with NOD-like receptor family protein 3 (NLRP3) activation in type 2 diabetes (T2D), which can eventually lead to an impaired immune response, we set out to determine if glycemic control modulates the effects of T2D on the NLRP3 inflammasome. We have studied leukocytes from 61 diabetic patients [25 with glycated hemoglobin (HbA1c) ≤7% and 36 with HbA1c ≥8%] and 40 healthy controls. Total and mitochondrial reactive oxygen species (ROS) production was enhanced in T2D patients, and mitochondrial ROS was more pronounced in those with poor glycemic control. Levels of gene and protein expression of NLRP3 were decreased in both diabetic groups and more so in those with HbA1c ≥8%. In addition, there was a decrease in gene expression and serum concentrations of interleukin (IL)-1β, IL-12, and caspase-1 in line with inhibition of the NLRP3 inflammasome. Our data also suggest negative correlations between HbA1c levels and NLRP3 protein expression, serum levels of IL-12 and IL-1β, and caspase-1 messenger RNA expression. Our findings lead us to raise the hypothesis of an association between poor glycemic control in T2D and an impairment of the NLRP3 inflammasome, suggesting that glycemic control plays an important role in the immune response of diabetic subjects.
Collapse
|
|
6 |
18 |
34
|
Nigro P, Middelbeek RJW, Alves CRR, Rovira-Llopis S, Ramachandran K, Rowland LA, Møller AB, Takahashi H, Alves-Wagner AB, Vamvini M, Makarewicz NS, Albertson BG, Hirshman MF, Goodyear LJ. Exercise Training Promotes Sex-Specific Adaptations in Mouse Inguinal White Adipose Tissue. Diabetes 2021; 70:1250-1264. [PMID: 33563587 PMCID: PMC8275891 DOI: 10.2337/db20-0790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] [Imported: 10/07/2024]
Abstract
Recent studies demonstrate that adaptations to white adipose tissue (WAT) are important components of the beneficial effects of exercise training on metabolic health. Exercise training favorably alters the phenotype of subcutaneous inguinal WAT (iWAT) in male mice, including decreasing fat mass, improving mitochondrial function, inducing beiging, and stimulating the secretion of adipokines. In this study, we find that despite performing more voluntary wheel running compared with males, these adaptations do not occur in the iWAT of female mice. Consistent with sex-specific adaptations, we report that mRNA expression of androgen receptor coactivators is upregulated in iWAT from trained male mice and that testosterone treatment of primary adipocytes derived from the iWAT of male, but not female mice, phenocopies exercise-induced metabolic adaptations. Sex specificity also occurs in the secretome profile, as we identify cysteine-rich secretory protein 1 (Crisp1) as a novel adipokine that is only secreted from male iWAT in response to exercise. Crisp1 expression is upregulated by testosterone and functions to increase glucose and fatty acid uptake. Our finding that adaptations to iWAT with exercise training are dramatically greater in male mice has potential clinical implications for understanding the different metabolic response to exercise training in males and females and demonstrates the importance of investigating both sexes in studies of adipose tissue biology.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
18 |
35
|
Rocha M, Rovira-Llopis S, Bañuls C, Bellod L, Falcon R, Castello R, Morillas C, Herance JR, Hernandez-Mijares A, Victor VM. Mitochondrial dysfunction and oxidative stress in insulin resistance. Curr Pharm Des 2013; 19:5730-5741. [PMID: 23448492 DOI: 10.2174/13816128113199990373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/18/2013] [Indexed: 11/22/2022] [Imported: 10/07/2024]
Abstract
Evidence is mounting of the involvement of mitochondrial dysfunction in insulin resistance, diabetes and associated complications. This review aims to provide an overview of the effects of insulin resistance on mitochondrial function in several tissues. We consider the pathogenesis of insulin resistance from a mitochondrial perspective and contemplate potential beneficial effects of strategies aimed at modulating mitochondrial function in insulin resistance, including insulin and insulin-sensitizing drugs, antioxidants, and selectively targeting antioxidants to mitochondria.
Collapse
|
Review |
12 |
17 |
36
|
Bañuls C, Rovira-Llopis S, Falcón R, Veses S, Monzó N, Víctor VM, Rocha M, Hernández-Mijares A. Chronic consumption of an inositol-enriched carob extract improves postprandial glycaemia and insulin sensitivity in healthy subjects: A randomized controlled trial. Clin Nutr 2016; 35:600-607. [PMID: 26051494 DOI: 10.1016/j.clnu.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 11/24/2022] [Imported: 10/07/2024]
Abstract
BACKGROUND & AIMS Inositols are thought to be mediators of the insulin signalling pathway. We assessed the effects of inositols on glycaemic control in fasting and postprandial states and evaluated lipoprotein profile and LDL particle size in healthy population. METHODS A 12-week double-blind clinical trial was performed with forty healthy subjects administered either an inositol-enriched beverage (IEB) -containing 2.23 g of inositols in 250 ml- or a sucrose-sweetened beverage (SB) twice a day. Anthropometric measurements, fasting glucose levels, insulin and HOMA-IR index, lipoprotein profile and postprandial glucose concentrations (measured using the continuous glucose monitoring system (CGMS)) were recorded throughout the intervention period. RESULTS Following the 12-week trial subjects receiving the IEB exhibited a significant decrease in insulin, HOMA-IR and Apo B and an increase in LDL particle size, whereas the SB group showed increases in BMI and fasting glucose concentration. Analysis of postprandial glucose levels at breakfast, lunch and dinner revealed a mean reduction of glucose of ≈14% and a significant reduction in the area under the curve at 24 h after consumption of the IEB. CONCLUSIONS Our results show that chronic IEB supplementation induces a significant improvement in carbohydrated metabolism parameters in healthy subjects.
Collapse
|
Randomized Controlled Trial |
9 |
16 |
37
|
Rovira-Llopis S, Díaz-Morales N, Bañuls C, Blas-García A, Polo M, López-Domenech S, Jover A, Rocha M, Hernández-Mijares A, Víctor VM. Is Autophagy Altered in the Leukocytes of Type 2 Diabetic Patients? Antioxid Redox Signal 2015; 23:1050-1056. [PMID: 26218267 DOI: 10.1089/ars.2015.6447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] [Imported: 10/07/2024]
Abstract
It is unknown whether autophagy is altered in the leukocytes of type 2 diabetes (T2D) patients and whether oxidative and endoplasmic reticulum (ER) stresses regulate this mechanism. We studied anthropometric and metabolic parameters and evaluated oxidative stress, chromatin condensation, ER stress, and autophagy parameters in leukocytes of 103 T2D patients versus 109 sex- and age-matched controls. Patients showed increases in glucose, insulin, homeostasis model assessment of insulin resistance, and glycated hemoglobin (HbA1c) compared with controls (p < 0.001). Leukocytes displayed enhanced total and mitochondrial reactive oxygen species (ROS), reduced mitochondrial mass, and increased chromatin condensation (p < 0.05). ER stress was also activated in diabetic patients, who displayed augmented glucose-regulated protein 78 kDa (GRP78), phosphorylated eukaryotic translation initiation factor 2, subunit 1 alpha (P-eIF2α), and activating transcription factor 6 (ATF6) levels (p < 0.05). We also observed an increase in the autophagy markers, microtubule-associated protein light chain 3 (LC3)-II and Beclin 1 (p < 0.05), and significant positive correlations between Beclin 1 and total ROS (r = 0.667), GRP78 (r = 0.925) and P-eIF2α (r = 0.644), and between LC3-II and P-eIF2α (r = 0.636) and ATF6 (r = 0.601). Our results lead to the hypothesis that autophagy is activated in the leukocytes of T2D patients and that both oxidative and ER stress signaling pathways may be implicated in the induction of autophagy.
Collapse
|
|
10 |
15 |
38
|
López-Domènech S, Bañuls C, de Marañón AM, Abab-Jiménez Z, Morillas C, Gómez-Abril SÁ, Rovira-Llopis S, Víctor VM, Hernández-Mijares A, Rocha M. Pinitol alleviates systemic inflammatory cytokines in human obesity by a mechanism involving unfolded protein response and sirtuin 1. Clin Nutr 2018; 37:2036-2044. [PMID: 29042127 DOI: 10.1016/j.clnu.2017.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/28/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023] [Imported: 10/07/2024]
Abstract
BACKGROUND & AIMS It is known that pinitol acts as a mediator of the insulin-signaling pathway, though little is known about its anti-inflammatory effect in human obesity. Therefore, this study aimed to evaluate the effect of pinitol on peripheral blood mononuclear cells (PBMCs) and visceral (VAT) and subcutaneous adipose tissues (SAT), focusing on the involvement of endoplasmic reticulum (ER) stress and sirtuin 1 (SIRT1). METHODS In the intervention study, thirteen obese subjects consumed a pinitol-enriched beverage (PEB) for 12 weeks. In the ex vivo study, a biopsy of VAT and SAT was removed from thirty-four obese patients and incubated with D-pinitol for 48 h. RESULTS The consumption of a PEB reduced circulating levels of IL6 and TNFα and increased SIRT1 protein expression in PBMCs. Ex vivo experiments showed a decline in gene expression and protein levels of IL6 and TNFα in SAT and a reduction in ER stress parameters (ATF6 and CHOP), while VAT markers remained unaltered. Differential gene expression profiles revealed an up-regulation of SIRT1 and insulin-signaling pathways in SAT with respect to VAT. CONCLUSIONS Our results suggests that pinitol down-regulates the inflammatory pathway which may lead to novel treatment options for obesity and its metabolic disorders.
Collapse
|
Clinical Study |
7 |
13 |
39
|
Victor VM, Rocha M, Bañuls C, Rovira-Llopis S, Gómez M, Hernández-Mijares A. Mitochondrial impairment and oxidative stress in leukocytes after testosterone administration to female-to-male transsexuals. J Sex Med 2014; 11:454-461. [PMID: 24251401 DOI: 10.1111/jsm.12376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] [Imported: 10/07/2024]
Abstract
INTRODUCTION Testosterone undecanoate (T) treatment is common in female-to-male transsexuals (FtMs) but can induce impairment of mitochondrial function and oxidative stress. AIM The effect of T treatment on the mitochondrial function and redox state of leukocytes of FtMs subjects was evaluated. METHODS This was an observational study conducted in a university hospital. Fifty-seven FtMs were treated with T (1,000 mg) for 12 weeks, after which anthropometric and metabolic parameters and mitochondrial function were evaluated. MAIN OUTCOME MEASURES Anthropometric and metabolic parameters were evaluated. Mitochondrial function was studied by assessing mitochondrial oxygen (O2) consumption, membrane potential, reactive oxygen species (ROS) production, glutathione levels (GSH), and the reduced glutathione/oxidized glutathione (GSH)/(GSSG) ratio in polymorphonuclear cells. RESULTS T treatment led to mitochondrial impairment in FtMs as a result of a decrease in mitochondria O2 consumption, the membrane potential, GSH levels, and the (GSH)/(GSSG) ratio and an increase in ROS production. Mitochondrial O2 consumption and membrane potential negatively correlated with T levels, which was further confirmed that the T treatment had induced mitochondrial dysfunction. T also produced a significant increase in total testosterone, free androgenic index, and atherogenic index of plasma, and a decrease in sex hormone-binding globulin and high-density lipoprotein cholesterol. CONCLUSIONS Treatment of FtMs with T can induce impairment of mitochondrial function and a state of oxidative stress. This effect should be taken into account in order to modulate possible comorbidities in these patients.
Collapse
|
|
11 |
13 |
40
|
Víctor VM, Rovira-Llopis S, Saiz-Alarcón V, Sangüesa MC, Rojo-Bofill L, Bañuls C, de Pablo C, Álvarez Á, Rojo L, Rocha M, Hernández-Mijares A. Involvement of leucocyte/endothelial cell interactions in anorexia nervosa. Eur J Clin Invest 2015; 45:670-678. [PMID: 25944525 DOI: 10.1111/eci.12454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/22/2015] [Indexed: 12/15/2022] [Imported: 10/07/2024]
Abstract
BACKGROUND Anorexia nervosa is a common psychiatric disorder in adolescence and is related to cardiovascular complications. Our aim was to study the effect of anorexia nervosa on metabolic parameters, leucocyte-endothelium interactions, adhesion molecules and proinflammatory cytokines. MATERIALS AND METHODS This multicentre, cross-sectional, case-control study employed a population of 24 anorexic female patients and 36 controls. We evaluated anthropometric and metabolic parameters, interactions between leucocytes polymorphonuclear neutrophils (PMN) and human umbilical vein endothelial cells (HUVEC), proinflammatory cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and soluble cellular adhesion molecules (CAMs) including E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). RESULTS Anorexia nervosa was related to a decrease in weight, body mass index, waist circumference, systolic blood pressure, glucose, insulin and HOMA-IR, and an increase in HDL cholesterol. These effects disappeared after adjusting for BMI. Anorexia nervosa induced a decrease in PMN rolling velocity and an increase in PMN rolling flux and PMN adhesion. Increases in IL-6 and TNF-α and adhesion molecule VCAM-1 were also observed. CONCLUSIONS This study supports the hypothesis of an association between anorexia nervosa, inflammation and the induction of leucocyte-endothelium interactions. These findings may explain, in part at least, the increased risk of vascular disease among patients with anorexia nervosa.
Collapse
|
Multicenter Study |
10 |
12 |
41
|
Bañuls C, Rovira-Llopis S, López-Doménech S, Veses S, Víctor VM, Rocha M, Hernández-Mijares A. Effect of consumption of a carob pod inositol-enriched beverage on insulin sensitivity and inflammation in middle-aged prediabetic subjects. Food Funct 2016; 7:4379-4387. [PMID: 27713964 DOI: 10.1039/c6fo01021k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] [Imported: 10/07/2024]
Abstract
This study assessed the effects of an inositol-enriched beverage (IEB) on blood glucose levels and inflammation status in subjects with an impaired fasting glucose (IFG) state according to body mass index (BMI). This was a 12 week, double-blind, randomized, controlled trial employing forty-four IFG subjects (fasting glucose levels 100-125 mg dl-1) that were divided into two intervention groups: one receiving a IEB (n = 24) containing mainly pinitol (2.0 g twice a day), and the other a sweetened beverage based on sucrose (SB; n = 20). Anthropometric and biochemical measurements, postprandial and fasting nocturnal glycaemia (continuous glucose monitoring system), and inflammatory parameters (IL-6 and TNF-α) were analyzed at baseline and after intervention according to BMI (non-obese: BMI < 30 kg m-2 or obese: BMI ≥ 30 kg m-2). Non-obese subjects who consumed IEB exhibited a significant decrease in insulin (-14.4%), HOMA-IR index (-15.1%) and percentage of glucose change after postprandial and fasting nocturnal periods (-10.0% and -10.3%, respectively) compared with the SB group (-2.35% and 10.2%, respectively) although they did not show any change in inflammatory cytokine levels. By contrast, obese subjects who consumed IEB showed a smaller variation in glucose levels after nocturnal fasting (-4.34%) and a marked decrease in IL-6 and TNF-α (p < 0.05). These findings support that consumption of IEB in prediabetic subjects produces a response that is dependent on BMI, with a clear improvement of insulin resistance and postprandial and nocturnal glycemia in non-obese subjects and a marked anti-inflammatory response in obese subjects.
Collapse
|
Randomized Controlled Trial |
9 |
12 |
42
|
Rovira-Llopis S, Luna-Marco C, Perea-Galera L, Bañuls C, Morillas C, Victor VM. Circadian alignment of food intake and glycaemic control by time-restricted eating: A systematic review and meta-analysis. Rev Endocr Metab Disord 2024; 25:325-337. [PMID: 37993559 PMCID: PMC10943166 DOI: 10.1007/s11154-023-09853-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 11/24/2023] [Imported: 10/07/2024]
Abstract
Daily rhythms of metabolic function are supported by molecular circadian clock systems that are strongly regulated by feeding and fasting. Intermittent fasting diets have been associated with weight loss and improved metabolism. However, the effects of time-restricted eating (TRE) on glycemic parameters are still under debate. In this review, we aim to systematically analyze the effects of TRE on glycemic parameters. We searched on PubMed, EMBASE, and the Cochrane Library for controlled studies in which subjects followed TRE for at least 4 weeks. 20 studies were included in the qualitative systematic review, and 18 studies (n = 1169 subjects) were included in the meta-analysis. Overall, TRE had no significant effect on fasting glucose (Hedges's g = -0.08; 95% CI:-0.31,0.16; p = 0.52), but it did reduce HbA1c levels (Hedges's g = -0.27; 95% CI: -0.47, -0.06; p = 0.01). TRE significantly reduced fasting insulin (Hedges's g = -0.40; 95% CI: -0.73,-0.08; p = 0.01) and showed a tendency to decrease HOMA-IR (Hedges's g = -0.32; 95% CI:-0.66,0.02; p = 0.06). Interestingly, a cumulative analysis showed that the beneficial effects of TRE regarding glucose levels were less apparent as studies with later TRE windows (lTRE) were being included. Indeed, a subgroup analysis of the early TRE (eTRE) studies revealed that fasting glucose was significantly reduced by eTRE (Hedges's g = -0.38; 95% CI:-0.62, -0.14; p < 0.01). Our meta-analysis suggests that TRE can reduce HbA1c and insulin levels, and that timing of food intake is a crucial factor in the metabolic benefit of TRE, as only eTRE is capable of reducing fasting glucose levels in subjects with overweight or obesity.PROSPERO registration number CRD42023405946.
Collapse
|
Meta-Analysis |
1 |
11 |
43
|
Rovira-Llopis S, Díaz-Rúa R, Grau-del Valle C, Iannantuoni F, Abad-Jimenez Z, Bosch-Sierra N, Panadero-Romero J, Victor VM, Rocha M, Morillas C, Bañuls C. Characterization of Differentially Expressed Circulating miRNAs in Metabolically Healthy versus Unhealthy Obesity. Biomedicines 2021; 9:321. [PMID: 33801145 PMCID: PMC8004231 DOI: 10.3390/biomedicines9030321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022] [Imported: 10/07/2024] Open
Abstract
Obese individuals without metabolic comorbidities are categorized as metabolically healthy obese (MHO). MicroRNAs (miRNAs) may be implicated in MHO. This cross-sectional study explores the link between circulating miRNAs and the main components of metabolic syndrome (MetS) in the context of obesity. We also examine oxidative stress biomarkers in MHO vs. metabolically unhealthy obesity (MUO). We analysed 3536 serum miRNAs in 20 middle-aged obese individuals: 10 MHO and 10 MUO. A total of 159 miRNAs were differentially expressed, of which, 72 miRNAs (45.2%) were higher and 87 miRNAs (54.7%) were lower in the MUO group. In addition, miRNAs related to insulin signalling and lipid metabolism pathways were upregulated in the MUO group. Among these miRNAs, hsa-miR-6796-5p and hsa-miR-4697-3p, which regulate oxidative stress, showed significant correlations with glucose, triglycerides, HbA1c and HDLc. Our results provide evidence of a pattern of differentially expressed miRNAs in obesity according to MetS, and identify those related to insulin resistance and lipid metabolism pathways.
Collapse
|
research-article |
4 |
9 |
44
|
Bosch-Sierra N, Grau-del Valle C, Salom C, Zaragoza-Villena B, Perea-Galera L, Falcón-Tapiador R, Rovira-Llopis S, Morillas C, Monleón D, Bañuls C. Effect of a Very Low-Calorie Diet on Oxidative Stress, Inflammatory and Metabolomic Profile in Metabolically Healthy and Unhealthy Obese Subjects. Antioxidants (Basel) 2024; 13:302. [PMID: 38539836 PMCID: PMC10967635 DOI: 10.3390/antiox13030302] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 10/07/2024] [Imported: 10/07/2024] Open
Abstract
The purpose of the study was to determine the impact of weight loss through calorie restriction on metabolic profile, and inflammatory and oxidative stress parameters in metabolically healthy (MHO) and unhealthy (MUHO) obese individuals. A total of 74 subjects (34 MHO and 40 MUHO) received two cycles of a very low-calorie diet, alternating with a hypocaloric diet for 24 weeks. Biochemical, oxidative stress, and inflammatory markers, as well as serum metabolomic analysis by nuclear magnetic resonance, were performed at baseline and at the end of the intervention. After the diet, there was an improvement in insulin resistance, as well as a significant decrease in inflammatory parameters, enhancing oxidative damage, mitochondrial membrane potential, glutathione, and antioxidant capacity. This improvement was more significant in the MUHO group. The metabolomic analysis showed a healthier profile in lipoprotein profile. Lipid carbonyls also decrease at the same time as unsaturated fatty acids increase. We also display a small decrease in succinate, glycA, alanine, and BCAAs (valine and isoleucine), and a slight increase in taurine. These findings show that moderate weight reduction leads to an improvement in lipid profile and subfractions and a reduction in oxidative stress and inflammatory markers; these changes are more pronounced in the MUHO population.
Collapse
|
research-article |
1 |
9 |
45
|
Diaz-Morales N, Rovira-Llopis S, Escribano-Lopez I, Bañuls C, Lopez-Domenech S, Falcón R, de Maranon AM, Sola E, Jover A, Roldan I, Diez JL, Rocha M, Hernández-Mijares A, Víctor VM. Role of Oxidative Stress and Mitochondrial Dysfunction in Skeletal Muscle in Type 2 Diabetic Patients. Curr Pharm Des 2016; 22:2650-2656. [PMID: 26898744 DOI: 10.2174/1381612822666160217142949] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/16/2016] [Indexed: 11/22/2022] [Imported: 10/07/2024]
Abstract
Type 2 diabetes can increase the risk of skeletal muscle dysfunction and, consequently, that of cardiovascular diseases, including coronary artery disease and stroke. It is also related to a reduced capacity for exercise, but the underlying mechanism is only partially understood. There are several factors that contribute to the development of skeletal muscle dysfunction, of which oxidative stress and mitochondrial dysfunction are among the most important. This review discusses the role of oxidative stress in the development and progression of skeletal and cardiac dysfunction associated with diabetes. It also provides an overview of the potential actions of antioxidants in general and mitochondria-targeted antioxidants in particular in the treatment of muscle dysfunction in type 2 diabetes.
Collapse
|
Review |
9 |
8 |
46
|
Hernández-Mijares A, Bañuls C, Rovira-Llopis S, Álvarez Á, Orden S, Rubio-Puchol O, Víctor VM, Rocha M. Chronic consumption of an inositol-enriched beverage ameliorates endothelial dysfunction and oxidative stress in type 2 diabetes. J Funct Foods 2015; 18:598-607. [DOI: 10.1016/j.jff.2015.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] [Imported: 10/07/2024] Open
|
|
10 |
6 |
47
|
Bañuls C, Rovira-Llopis S, Monzó N, Solá E, Viadel B, Víctor VM, Hernández-Mijares A, Rocha M. The consumption of a bread enriched with dietary fibre and l-carnitine improves glucose homoeostasis and insulin sensitivity in patients with metabolic syndrome. J Cereal Sci 2015; 64:159-167. [DOI: 10.1016/j.jcs.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] [Imported: 10/07/2024]
|
|
10 |
6 |
48
|
Apostolova N, Rocha M, Rovira-Llopis S, Banuls C, Falcon R, Castello R, Hernandez-Mijares A, Victor VM. Mitochondria-targeted antioxidants as a therapeutic strategy for protecting endothelium in cardiovascular diseases. Curr Med Chem 2014; 21:2989-3006. [PMID: 24934349 DOI: 10.2174/0929867321666140601200416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/24/2014] [Accepted: 05/26/2014] [Indexed: 11/22/2022] [Imported: 10/07/2024]
Abstract
Endothelial dysfunction involving dysfunctional mitochondria precedes the development of cardiovascular diseases. This impairment results from an increase in reactive oxygen species, which leads to oxidative stress and a reduced bioavailability of nitric oxide. It has been demonstrated that oxidative stress and alterations in glucose and lipid homeostasis (e.g. hyperinsulinemia, hyperglycemia, insulin resistance and dyslipidemia) are linked to mitochondrial impairment and that all of them contribute to endothelial dysfunction. Anti-hyperlipidemic drugs such as statins, anti-hypertensive drugs and angiotensin receptor antagonists have been shown to exert protection through anti-oxidative stress mechanisms. Other substances with antioxidant properties, such as vitamins, are also capable of abolishing the oxidative stress associated with cardiometabolic diseases. However, the results obtained with general antioxidants in clinical trials are contradictory, perhaps due to the unspecific nature of the targets selected. This study correlates endothelial dysfunction and mitochondrial dysfunction and examines current research for the selective targeting of specific molecules (such as ·NO donors and antioxidants) to mitochondria with the aim of protecting the endothelium against oxidative stress in cardiovascular diseases.
Collapse
|
|
11 |
4 |
49
|
Canet F, Díaz-Pozo P, Luna-Marco C, Fernandez-Reyes M, Vezza T, Marti M, Salazar JD, Roldan I, Morillas C, Rovira-Llopis S, Rocha M, Víctor VM. Mitochondrial redox impairment and enhanced autophagy in peripheral blood mononuclear cells from type 1 diabetic patients. Redox Biol 2022; 58:102551. [PMID: 36455476 PMCID: PMC9713367 DOI: 10.1016/j.redox.2022.102551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] [Imported: 10/07/2024] Open
Abstract
Type 1 diabetes (T1D) involves critical metabolic disturbances that contribute to an increased cardiovascular risk. Leukocytes are key players in the onset of atherosclerosis due to their interaction with the endothelium. However, whether mitochondrial redox impairment, altered bioenergetics and abnormal autophagy in leukocytes contribute to T1D physiopathology is unclear. In this study we aimed to evaluate the bioenergetic and redox state of peripheral blood mononuclear cells (PBMCs) from T1D patients in comparison to those from healthy subjects, and to assess autophagy induction and leukocyte-endothelial interactions. T1D patients presented lower levels of fast-acting and total antioxidants in their blood, and their leukocytes produced higher amounts of total reactive oxygen species (ROS) and superoxide radical with respect to controls. Basal and ATP-linked respiration were similar in PBMCs from T1D and controls, but T1D PBMCs exhibited reduced spare respiratory capacity and a tendency toward decreased maximal respiration and reduced non-mitochondrial respiration, compared to controls. The autophagy markers P-AMPK, Beclin-1 and LC3-II/LC3-I were increased, while P62 and NBR1 were decreased in T1D PBMCs versus those from controls. Leukocytes from T1D patients displayed lower rolling velocity, higher rolling flux and more adhesion to the endothelium versus controls. Our findings show that T1D impairs mitochondrial function and promotes oxidative stress and autophagy in leukocytes, and suggest that these mechanisms contribute to an increased risk of atherosclerosis by augmenting leukocyte-endothelial interactions.
Collapse
|
research-article |
3 |
4 |
50
|
Díaz-Pozo P, Canet F, Grirrane A, Lopez-Domenech S, Herance JR, Apostolova N, Luna-Marco C, Rovira-Llopis S, Marti M, Morillas C, Rocha M, Garcia H, Victor VM. Gold Nanoparticles Supported on Ceria Nanoparticles Modulate Leukocyte-Endothelium Cell Interactions and Inflammation in Type 2 Diabetes. Antioxidants (Basel) 2022; 11:2297. [PMID: 36421483 PMCID: PMC9686981 DOI: 10.3390/antiox11112297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 10/07/2024] [Imported: 10/07/2024] Open
Abstract
Gold-ceria nanoparticles (Au/CeO2) are known to have antioxidant properties. However, whether these nanoparticles can provide benefits in type 2 diabetes mellitus (T2D) remains unknown. This work aimed to study the effects of Au/CeO2 nanoparticles at different rates of gold purity (10, 4.4, 1.79 and 0.82) on leukocyte-endothelium interactions and inflammation in T2D patients. Anthropometric and metabolic parameters, leukocyte-endothelium interactions, ROS production and NF-κB expression were assessed in 57 T2D patients and 51 healthy subjects. T2D patients displayed higher Body Mass Index (BMI) and characteristic alterations in carbohydrate and lipid metabolism. ROS production was increased in leukocytes of T2D patients and decreased by Au/CeO2 at 0.82% gold. Interestingly, Au/CeO2 0.82% modulated leukocyte-endothelium interactions (the first step in the atherosclerotic process) by increasing leukocyte rolling velocity and decreasing rolling flux and adhesion in T2D. A static adhesion assay also revealed diminished leukocyte-endothelium interactions by Au/CeO2 0.82% treatment. NF-κB (p65) levels increased in T2D patients and were reduced by Au/CeO2 treatment. Cell proliferation, viability, and apoptosis assays demonstrated no toxicity produced by Au/CeO2 nanoparticles. These results demonstrate that Au/CeO2 nanoparticles at 0.82% exert antioxidant and anti-inflammatory actions in the leukocyte-endothelium interaction of T2D patients, suggesting a protective role against the appearance of atherosclerosis and cardiovascular diseases when this condition exists.
Collapse
|
research-article |
3 |
3 |