1
|
Picon‐Ruiz M, Morata‐Tarifa C, Valle‐Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J Clin 2017; 67:378-397. [PMID: 28763097 PMCID: PMC5591063 DOI: 10.3322/caac.21405] [Citation(s) in RCA: 573] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] [Imported: 04/02/2025] Open
Abstract
Answer questions and earn CME/CNE Recent decades have seen an unprecedented rise in obesity, and the health impact thereof is increasingly evident. In 2014, worldwide, more than 1.9 billion adults were overweight (body mass index [BMI], 25-29.9 kg/m2 ), and of these, over 600 million were obese (BMI ≥30 kg/m2 ). Although the association between obesity and the risk of diabetes and coronary artery disease is widely known, the impact of obesity on cancer incidence, morbidity, and mortality is not fully appreciated. Obesity is associated both with a higher risk of developing breast cancer, particularly in postmenopausal women, and with worse disease outcome for women of all ages. The first part of this review summarizes the relationships between obesity and breast cancer development and outcomes in premenopausal and postmenopausal women and in those with hormone receptor-positive and -negative disease. The second part of this review addresses hypothesized molecular mechanistic insights that may underlie the effects of obesity to increase local and circulating proinflammatory cytokines, promote tumor angiogenesis and stimulate the most malignant cancer stem cell population to drive cancer growth, invasion, and metastasis. Finally, a review of observational studies demonstrates that increased physical activity is associated with lower breast cancer risk and better outcomes. The effects of recent lifestyle interventions to decrease sex steroids, insulin/insulin-like growth factor-1 pathway activation, and inflammatory biomarkers associated with worse breast cancer outcomes in obesity also are discussed. Although many observational studies indicate that exercise with weight loss is associated with improved breast cancer outcome, further prospective studies are needed to determine whether weight reduction will lead to improved patient outcomes. It is hoped that several ongoing lifestyle intervention trials, which are reviewed herein, will support the systematic incorporation of weight loss intervention strategies into care for patients with breast cancer. CA Cancer J Clin 2017;67:378-397. © 2017 American Cancer Society.
Collapse
|
Review |
8 |
573 |
2
|
Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, Azzam DJ, Picon-Ruiz M, Kim M, Ullmer W, El-Ashry D, Creighton CJ, Slingerland JM. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene 2015; 34:3107-3119. [PMID: 25151964 DOI: 10.1038/onc.2014.257] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/16/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022] [Imported: 04/02/2025]
Abstract
Vascular endothelial growth factor-A (VEGF), a potent angiogenic factor, is also implicated in self-renewal in several normal tissue types. VEGF has been shown to drive malignant stem cells but mechanisms thereof and tumor types affected are not fully characterized. Here, we show VEGF promotes breast and lung cancer stem cell (CSC) self-renewal via VEGF receptor-2 (VEGFR-2)/STAT3-mediated upregulation of Myc and Sox2. VEGF increased tumor spheres and aldehyde dehydrogenase activity, both proxies for stem cell function in vitro, in triple-negative breast cancer (TNBC) lines and dissociated primary cancers, and in lung cancer lines. VEGF exposure before injection increased breast cancer-initiating cell abundance in vivo yielding increased orthotopic tumors, and increased metastasis from orthotopic primaries and following tail vein injection without further VEGF treatment. VEGF rapidly stimulated VEGFR-2/JAK2/STAT3 binding and activated STAT3 to bind MYC and SOX2 promoters and induce their expression. VEGFR-2 knockdown or inhibition abrogated VEGF-mediated STAT3 activation, MYC and SOX2 induction and sphere formation. Notably, knockdown of either STAT3, MYC or SOX2 impaired VEGF-upregulation of pSTAT3, MYC and SOX2 expression and sphere formation. Each transcription factor, once upregulated, appears to promote sustained activation of the others, creating a feed-forward loop to drive self-renewal. Thus, in addition to angiogenic effects, VEGF promotes tumor-initiating cell self-renewal through VEGFR-2/STAT3 signaling. Analysis of primary breast and lung cancers (>1300 each) showed high VEGF expression, was prognostic of poor outcome and strongly associated with STAT3 and MYC expression, supporting the link between VEGF and CSC self-renewal. High-VEGF tumors may be most likely to escape anti-angiogenics by upregulating VEGF, driving CSC self-renewal to re-populate post-treatment. Our work highlights the need to better define VEGF-driven cancer subsets and supports further investigation of combined therapeutic blockade of VEGF or VEGFR-2 and JAK2/STAT3.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
215 |
3
|
Picon-Ruiz M, Pan C, Drews-Elger K, Jang K, Besser AH, Zhao D, Morata-Tarifa C, Kim M, Ince TA, Azzam DJ, Wander SA, Wang B, Ergonul B, Datar RH, Cote RJ, Howard GA, El-Ashry D, Torné-Poyatos P, Marchal JA, Slingerland JM. Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b-Mediated Malignant Progression. Cancer Res 2016; 76:491-504. [PMID: 26744520 DOI: 10.1158/0008-5472.can-15-0927] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/20/2015] [Indexed: 11/16/2022] [Imported: 04/02/2025]
Abstract
Consequences of the obesity epidemic on cancer morbidity and mortality are not fully appreciated. Obesity is a risk factor for many cancers, but the mechanisms by which it contributes to cancer development and patient outcome have yet to be fully elucidated. Here, we examined the effects of coculturing human-derived adipocytes with established and primary breast cancer cells on tumorigenic potential. We found that the interaction between adipocytes and cancer cells increased the secretion of proinflammatory cytokines. Prolonged culture of cancer cells with adipocytes or cytokines increased the proportion of mammosphere-forming cells and of cells expressing stem-like markers in vitro. Furthermore, contact with immature adipocytes increased the abundance of cancer cells with tumor-forming and metastatic potential in vivo. Mechanistic investigations demonstrated that cancer cells cultured with immature adipocytes or cytokines activated Src, thus promoting Sox2, c-Myc, and Nanog upregulation. Moreover, Sox2-dependent induction of miR-302b further stimulated cMYC and SOX2 expression and potentiated the cytokine-induced cancer stem cell-like properties. Finally, we found that Src inhibitors decreased cytokine production after coculture, indicating that Src is not only activated by adipocyte or cytokine exposures, but is also required to sustain cytokine induction. These data support a model in which cancer cell invasion into local fat would establish feed-forward loops to activate Src, maintain proinflammatory cytokine production, and increase tumor-initiating cell abundance and metastatic progression. Collectively, our findings reveal new insights underlying increased breast cancer mortality in obese individuals and provide a novel preclinical rationale to test the efficacy of Src inhibitors for breast cancer treatment.
Collapse
|
|
9 |
141 |
4
|
Morata-Tarifa C, Jiménez G, García MA, Entrena JM, Griñán-Lisón C, Aguilera M, Picon-Ruiz M, Marchal JA. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells. Sci Rep 2016; 6:18772. [PMID: 26752044 PMCID: PMC4707518 DOI: 10.1038/srep18772] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/19/2015] [Indexed: 01/16/2023] [Imported: 04/02/2025] Open
Abstract
Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.
Collapse
|
research-article |
9 |
90 |
5
|
Kim M, Jang K, Miller P, Picon-Ruiz M, Yeasky TM, El-Ashry D, Slingerland JM. VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene 2017; 36:5199-5211. [PMID: 28504716 PMCID: PMC5596211 DOI: 10.1038/onc.2017.4] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 02/08/2023] [Imported: 04/02/2025]
Abstract
Cancer stem cells (CSC) appear to have increased metastatic potential, but mechanisms underlying this are poorly defined. Here we show that VEGFA induction of Sox2 promotes EMT and tumor metastasis. In breast lines and primary cancer culture, VEGFA rapidly upregulates SOX2 expression, leading to SNAI2 induction, EMT, increased invasion and metastasis. We show Sox2 downregulates miR-452, which acts as a novel metastasis suppressor to directly target the SNAI2 3'-untranslated region (3'-UTR). VEGFA stimulates Sox2- and Slug-dependent cell invasion. VEGFA increases lung metastasis in vivo, and this is abrogated by miR-452 overexpression. Furthermore, SNAI2 transduction rescues metastasis suppression by miR-452. Thus, in addition to its angiogenic action, VEGFA upregulates Sox2 to drive stem cell expansion, together with miR-452 loss and Slug upregulation, providing a novel mechanism whereby cancer stem cells acquire metastatic potential. Prior work showed EMT transcription factor overexpression upregulates CSC. Present work indicates that stemness and metastasis are a two-way street: Sox2, a major mediator of CSC self-renewal, also governs the metastatic process.
Collapse
|
research-article |
8 |
83 |
6
|
Qureshi R, Picon-Ruiz M, Aurrekoetxea-Rodriguez I, Nunes de Paiva V, D'Amico M, Yoon H, Radhakrishnan R, Morata-Tarifa C, Ince T, Lippman ME, Thaller SR, Rodgers SE, Kesmodel S, Vivanco MDM, Slingerland JM. The Major Pre- and Postmenopausal Estrogens Play Opposing Roles in Obesity-Driven Mammary Inflammation and Breast Cancer Development. Cell Metab 2020; 31:1154-1172.e9. [PMID: 32492394 DOI: 10.1016/j.cmet.2020.05.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/26/2019] [Accepted: 05/11/2020] [Indexed: 12/30/2022] [Imported: 04/02/2025]
Abstract
Many inflammation-associated diseases, including cancers, increase in women after menopause and with obesity. In contrast to anti-inflammatory actions of 17β-estradiol, we find estrone, which dominates after menopause, is pro-inflammatory. In human mammary adipocytes, cytokine expression increases with obesity, menopause, and cancer. Adipocyte:cancer cell interaction stimulates estrone- and NFκB-dependent pro-inflammatory cytokine upregulation. Estrone- and 17β-estradiol-driven transcriptomes differ. Estrone:ERα stimulates NFκB-mediated cytokine gene induction; 17β-estradiol opposes this. In obese mice, estrone increases and 17β-estradiol relieves inflammation. Estrone drives more rapid ER+ breast cancer growth in vivo. HSD17B14, which converts 17β-estradiol to estrone, associates with poor ER+ breast cancer outcome. Estrone and HSD17B14 upregulate inflammation, ALDH1 activity, and tumorspheres, while 17β-estradiol and HSD17B14 knockdown oppose these. Finally, a high intratumor estrone:17β-estradiol ratio increases tumor-initiating stem cells and ER+ cancer growth in vivo. These findings help explain why postmenopausal ER+ breast cancer increases with obesity, and offer new strategies for prevention and therapy.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
65 |
7
|
Azzam DJ, Zhao D, Sun J, Minn AJ, Ranganathan P, Drews-Elger K, Han X, Picon-Ruiz M, Gilbert CA, Wander SA, Capobianco AJ, El-Ashry D, Slingerland JM. Triple negative breast cancer initiating cell subsets differ in functional and molecular characteristics and in γ-secretase inhibitor drug responses. EMBO Mol Med 2013; 5:1502-1522. [PMID: 23982961 PMCID: PMC3799576 DOI: 10.1002/emmm.201302558] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023] [Imported: 04/02/2025] Open
Abstract
Increasing evidence suggests that stem-like cells mediate cancer therapy resistance and metastasis. Breast tumour-initiating stem cells (T-ISC) are known to be enriched in CD44(+) CD24(neg/low) cells. Here, we identify two T-ISC subsets within this population in triple negative breast cancer (TNBC) lines and dissociated primary breast cancer cultures: CD44(+) CD24(low+) subpopulation generates CD44(+) CD24(neg) progeny with reduced sphere formation and tumourigenicity. CD44(+) CD24(low+) populations contain subsets of ALDH1(+) and ESA(+) cells, yield more frequent spheres and/or T-ISC in limiting dilution assays, preferentially express metastatic gene signatures and show greater motility, invasion and, in the MDA-MB-231 model, metastatic potential. CD44(+) CD24(low+) but not CD44(+) CD24(neg) express activated Notch1 intracellular domain (N1-ICD) and Notch target genes. We show N1-ICD transactivates SOX2 to increase sphere formation, ALDH1+ and CD44(+) CD24(low+) cells. Gamma secretase inhibitors (GSI) reduced sphere formation and xenograft growth from CD44(+) CD24(low+) cells, but CD44(+) CD24(neg) were resistant. While GSI hold promise for targeting T-ISC, stem cell heterogeneity as observed herein, could limit GSI efficacy. These data suggest a breast T-ISC hierarchy in which distinct pathways drive developmentally related subpopulations with different anti-cancer drug responsiveness.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
53 |
8
|
Thakkar A, Wang B, Picon-Ruiz M, Buchwald P, Ince TA. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat 2016; 157:77-90. [PMID: 27120467 PMCID: PMC4869778 DOI: 10.1007/s10549-016-3807-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] [Imported: 04/02/2025]
Abstract
Anti-estrogen and anti-HER2 treatments have been among the first and most successful examples of targeted therapy for breast cancer (BC). However, the treatment of triple-negative BC (TNBC) that lack estrogen receptor expression or HER2 amplification remains a major challenge. We previously discovered that approximately two-thirds of TNBCs express vitamin D receptor (VDR) and/or androgen receptor (AR) and hypothesized that TNBCs co-expressing AR and VDR (HR2-av TNBC) could be treated by targeting both of these hormone receptors. To evaluate the feasibility of VDR/AR-targeted therapy in TNBC, we characterized 15 different BC lines and identified 2 HR2-av TNBC lines and examined the changes in their phenotype, viability, and proliferation after VDR and AR-targeted treatment. Treatment of BC cell lines with VDR or AR agonists inhibited cell viability in a receptor-dependent manner, and their combination appeared to inhibit cell viability additively. Moreover, cell viability was further decreased when AR/VDR agonist hormones were combined with chemotherapeutic drugs. The mechanisms of inhibition by AR/VDR agonist hormones included cell cycle arrest and apoptosis in TNBC cell lines. In addition, AR/VDR agonist hormones induced differentiation and inhibited cancer stem cells (CSCs) measured by reduction in tumorsphere formation efficiency, high aldehyde dehydrogenase activity, and CSC markers. Surprisingly, we found that AR antagonists inhibited proliferation of most BC cell lines in an AR-independent manner, raising questions regarding their mechanism of action. In summary, AR/VDR-targeted agonist hormone therapy can inhibit HR2-av TNBC through multiple mechanisms in a receptor-dependent manner and can be combined with chemotherapy.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
44 |
9
|
López-Ruiz E, Perán M, Cobo-Molinos J, Jiménez G, Picón M, Bustamante M, Arrebola F, Hernández-Lamas MC, Delgado-Martínez AD, Montañez E, Marchal JA. Chondrocytes extract from patients with osteoarthritis induces chondrogenesis in infrapatellar fat pad-derived stem cells. Osteoarthritis Cartilage 2013; 21:246-258. [PMID: 23085560 DOI: 10.1016/j.joca.2012.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/21/2012] [Accepted: 10/11/2012] [Indexed: 02/02/2023] [Imported: 04/02/2025]
Abstract
OBJECTIVE Infrapatellar fat pad of patients with osteoarthritis (OA) contains multipotent and highly clonogenic adipose-derived stem cells that can be isolated by low invasive methods. Moreover, nuclear and cytoplasmic cellular extracts have been showed to be effective in induction of cell differentiation and reprogramming. The aim of this study was to induce chondrogenic differentiation of autologous mesenchymal stem cells (MSCs) obtained from infrapatellar fat pad (IFPSCs) of patients with OA using cellular extracts-based transdifferentiation method. DESIGN IFPSCs and chondrocytes were isolated and characterized by flow cytometry. IFPSCs were permeabilized with Streptolysin O and then exposed to a cell extract obtained from chondrocytes. Then, IFPSCs were cultured for 2 weeks and chondrogenesis was evaluated by morphologic and ultrastructural observations, immunologic detection, gene expression analysis and growth on 3-D poly (dl-lactic-co-glycolic acid) (PLGA) scaffolds. RESULTS After isolation, both chondrocytes and IFPSCs displayed similar expression of MSCs surface makers. Collagen II was highly expressed in chondrocytes and showed a basal expression in IFPSCs. Cells exposed to chondrocyte extracts acquired a characteristic morphological and ultrastructural chondrocyte phenotype that was confirmed by the increased proteoglycan formation and enhanced collagen II immunostaining. Moreover, chondrocyte extracts induced an increase in mRNA expression of chondrogenic genes such as Sox9, L-Sox5, Sox6 and Col2a1. Interestingly, chondrocytes, IFPSCs and transdifferentiated IFPSCs were able to grow, expand and produce extracellular matrix (ECM) on 3D PLGA scaffolds. CONCLUSIONS We demonstrate for the first time that extracts obtained from chondrocytes of osteoarthritic knees promote chondrogenic differentiation of autologous IFPSCs. Moreover, combination of transdifferentiated IFPSCs with biodegradable PLGA 3D scaffolds can serve as an efficient system for the maintenance and maturation of cartilage tissue. These findings suggest its usefulness to repair articular surface in OA.
Collapse
|
|
12 |
39 |
10
|
Marchal JA, Picón M, Perán M, Bueno C, Jiménez-Navarro M, Carrillo E, Boulaiz H, Rodríguez N, Álvarez P, Menendez P, de Teresa E, Aránega A. Purification and long-term expansion of multipotent endothelial-like cells with potential cardiovascular regeneration. Stem Cells Dev 2012; 21:562-574. [PMID: 21542697 DOI: 10.1089/scd.2011.0072] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] [Imported: 04/02/2025] Open
Abstract
Endothelial progenitor cells (EPC) represent a relatively rare cell population, and expansion of sufficient cell numbers remains a challenge. Nevertheless, human adipose-derived stem cells (hASC) can be easily isolated and possess the ability to differentiate into endothelial cells. Here, we propose the isolation and characterization of multipotent endothelial-like cells (ME-LC) with the capacity to maintain their vascular progenitor properties for long periods. hASC were isolated from lipoaspirates and cultured through distinct consecutive culture stages for 2 months to enrich ME-LC: first in Dulbecco's modified Eagle's medium-fetal bovine serum (stage I), followed by a stage of culture in absent of fetal bovine serum (stage II), a culture in SFO3 medium (stage III), and, finally, the culture of ME-LC into collagen IV-coated flasks in endothelial growth medium (EGM-2) (stage IV). ME-LC display increased expression levels of endothelial and hematopoietic lineage markers (CD45, KDR, and CXCR4) and EPC markers (CD34 and CD133), whereas the expression of CD31 was barely detectable. Reverse transcription (RT)-polymerase chain reaction assays showed expression of genes involved in early stages of EPC differentiation and decreased expression of genes associated to differentiated EPC (TIE-2, DLL4, and FLT-1). ME-LC formed capillary-like structures when grown on Matrigel, secreted increased levels of stromal cell-derived factor-1 (SDF-1), and showed the ability to migrate attracted by SDF-1, vascular endothelial growth factor, and hematopoietic growth factor cytokines. Importantly, ME-LC retained the capacity to differentiate into cardiomyocyte-like cells. We present a simplified and efficient method to generate large numbers of autologous ME-LC from lipoaspirates-derived hASC, opening up potential cell-based therapies for cardiovascular regenerative medicine.
Collapse
|
Clinical Trial |
13 |
32 |
11
|
Ramírez A, Boulaiz H, Morata-Tarifa C, Perán M, Jiménez G, Picon-Ruiz M, Agil A, Cruz-López O, Conejo-García A, Campos JM, Sánchez A, García MA, Marchal JA. HER2-signaling pathway, JNK and ERKs kinases, and cancer stem-like cells are targets of Bozepinib small compound. Oncotarget 2014; 5:3590-3606. [PMID: 24946763 PMCID: PMC4116505 DOI: 10.18632/oncotarget.1962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/12/2014] [Indexed: 12/16/2022] [Imported: 04/02/2025] Open
Abstract
Identification of novel anticancer drugs presenting more than one molecular target and efficacy against cancer stem-like cells (CSCs) subpopulations represents a therapeutic need to combat the resistance and the high risk of relapse in patients. In the present work we show how Bozepinib [(RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine], a small anti-tumor compound, demonstrated selectivity on cancer cells and showed an inhibitory effect over kinases involved in carcinogenesis, proliferation and angiogenesis. The cytotoxic effects of Bozepinib were observed in both breast and colon cancer cells expressing different receptor patterns. Bozepinib inhibited HER-2 signaling pathway and JNK and ERKs kinases. In addition, Bozepinib has an inhibitory effect on AKT and VEGF together with anti-angiogenic and anti-migratory activities. Moreover, the modulation of pathways involved in tumorigenesis by Bozepinib was also evident in microarrays analysis. Interestingly, Bozepinib inhibited both mamo- and colono-spheres formation and eliminated ALDH+ CSCs subpopulations at a low micromolar range similar to Salinomycin. Bozepinib induced the down-regulation of c-MYC, β-CATENIN and SOX2 proteins and the up-regulation of the GLI-3 hedgehog-signaling repressor. Finally, Bozepinib shows in vivo anti-tumor and anti-metastatic efficacy in xenotransplanted nude mice without presenting sub-acute toxicity. These findings support further studies on the therapeutic potential of Bozepinib in cancer patients.
Collapse
|
research-article |
11 |
21 |
12
|
Toledo B, Picon-Ruiz M, Marchal JA, Perán M. Dual Role of Fibroblasts Educated by Tumour in Cancer Behavior and Therapeutic Perspectives. Int J Mol Sci 2022; 23:15576. [PMID: 36555218 PMCID: PMC9778751 DOI: 10.3390/ijms232415576] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] [Imported: 04/02/2025] Open
Abstract
Tumours are complex systems with dynamic interactions between tumour cells, non-tumour cells, and extracellular components that comprise the tumour microenvironment (TME). The majority of TME's cells are cancer-associated fibroblasts (CAFs), which are crucial in extracellular matrix (ECM) construction, tumour metabolism, immunology, adaptive chemoresistance, and tumour cell motility. CAF subtypes have been identified based on the expression of protein markers. CAFs may act as promoters or suppressors in tumour cells depending on a variety of factors, including cancer stage. Indeed, CAFs have been shown to promote tumour growth, survival and spread, and secretome changes, but they can also slow tumourigenesis at an early stage through mechanisms that are still poorly understood. Stromal-cancer interactions are governed by a variety of soluble factors that determine the outcome of the tumourigenic process. Cancer cells release factors that enhance the ability of fibroblasts to secrete multiple tumour-promoting chemokines, acting on malignant cells to promote proliferation, migration, and invasion. This crosstalk between CAFs and tumour cells has given new prominence to the stromal cells, from being considered as mere physical support to becoming key players in the tumour process. Here, we focus on the concept of cancer as a non-healing wound and the relevance of chronic inflammation to tumour initiation. In addition, we review CAFs heterogeneous origins and markers together with the potential therapeutic implications of CAFs "re-education" and/or targeting tumour progression inhibition.
Collapse
|
Review |
3 |
21 |
13
|
Morata-Tarifa C, Picon-Ruiz M, Griñan-Lison C, Boulaiz H, Perán M, Garcia MA, Marchal JA. Validation of suitable normalizers for miR expression patterns analysis covering tumour heterogeneity. Sci Rep 2017; 7:39782. [PMID: 28051134 PMCID: PMC5209713 DOI: 10.1038/srep39782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022] [Imported: 04/02/2025] Open
Abstract
Oncogenic microRNAs (miRs) have emerged as diagnostic biomarkers and novel molecular targets for anti-cancer drug therapies. Real-time quantitative PCR (qPCR) is one of the most powerful techniques for analyzing miRs; however, the use of unsuitable normalizers might bias the results. Tumour heterogeneity makes even more difficult the selection of an adequate endogenous normalizer control. Here, we have evaluated five potential referenced small RNAs (U6, rRNA5s, SNORD44, SNORD24 and hsa-miR-24c-3p) using RedFinder algorisms to perform a stability expression analysis in i) normal colon cells, ii) colon and breast cancer cell lines and iii) cancer stem-like cell subpopulations. We identified SNORD44 as a suitable housekeeping gene for qPCR analysis comparing normal and cancer cells. However, this small nucleolar RNA was not a useful normalizer for cancer stem-like cell subpopulations versus subpopulations without stemness properties. In addition, we show for the first time that hsa-miR-24c-3p is the most stable normalizer for comparing these two subpopulations. Also, we have identified by bioinformatic and qPCR analysis, different miR expression patterns in colon cancer versus non tumour cells using the previously selected suitable normalizers. Our results emphasize the importance of select suitable normalizers to ensure the robustness and reliability of qPCR data for analyzing miR expression.
Collapse
|
research-article |
8 |
14 |
14
|
Rodríguez-Serrano F, Alvarez P, Caba O, Picón M, Marchal JA, Perán M, Prados J, Melguizo C, Rama AR, Boulaiz H, Aránega A. Promotion of human adipose-derived stem cell proliferation mediated by exogenous nucleosides. Cell Biol Int 2010; 34:917-924. [PMID: 20522021 DOI: 10.1042/cbi20100227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] [Imported: 04/02/2025]
Abstract
Adult stem cells are becoming the best option for regenerative medicine because they have low tumourigenic potential and permit autologous transplantation, even without in vitro culture. Our objectives were to evaluate the effects of exogenous nucleosides on the proliferation of hASCs (human adipose-derived stem cells), with or without co-treatment with 5-aza (5-azacytidine), and to analyse the expression of lamin A/C during cardiomyocyte differentiation of these cells. We isolated hASCs from human lipoaspirates that were positive for mesenchymal stem cell markers. We found that 5-aza induces a dose-dependent inhibition of hASC proliferation [IC50 (inhibitory concentration 50): 5.37 microM], whereas exogenous nucleosides significantly promote the proliferation of hASCs and partially revert the antiproliferative effect of the drug. Multipotentiality of isolated hASCs was confirmed by adipogenic, osteogenic and cardiomyogenic induction. 5-Aza-induced cells expressed cardiac troponins I and T and myosin light chain 2, myocardial markers that were directly correlated with lamin A/C expression. Our results support the importance of the nucleoside supplementation of media to improve conditions for the expansion and maintenance of hASCs in culture. In addition, the quantification of lamin A/C expression appears to be a good marker for the characterization of cardiomyocyte differentiation of stem cells that has rarely been used.
Collapse
|
|
15 |
11 |
15
|
Qureshi R, Picon-Ruiz M, Sho M, Van Booven D, Nunes de Paiva V, Diaz-Ruano AB, Ince TA, Slingerland J. Estrone, the major postmenopausal estrogen, binds ERa to induce SNAI2, epithelial-to-mesenchymal transition, and ER+ breast cancer metastasis. Cell Rep 2022; 41:111672. [PMID: 36384125 PMCID: PMC9798480 DOI: 10.1016/j.celrep.2022.111672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] [Imported: 04/02/2025] Open
Abstract
Recent work showed that the dominant post-menopausal estrogen, estrone, cooperates with nuclear factor κB (NF-κB) to stimulate inflammation, while pre-menopausal 17β-estradiol opposes NF-κB. Here, we show that post-menopausal estrone, but not 17β-estradiol, activates epithelial-to-mesenchymal transition (EMT) genes to stimulate breast cancer metastasis. HSD17B14, which converts 17β-estradiol to estrone, is higher in cancer than normal breast tissue and in metastatic than primary cancers and associates with earlier metastasis. Treatment with estrone, but not 17β-estradiol, and HSD17B14 overexpression both stimulate an EMT, matrigel invasion, and lung, bone, and liver metastasis in estrogen-receptor-positive (ER+) breast cancer models, while HSD17B14 knockdown reverses the EMT. Estrone:ERα recruits CBP/p300 to the SNAI2 promoter to induce SNAI2 and stimulate an EMT, while 17β-estradiol:ERα recruits co-repressors HDAC1 and NCOR1 to this site. Present work reveals novel differences in gene regulation by these estrogens and the importance of estrone to ER+ breast cancer progression. Upon loss of 17β-estradiol at menopause, estrone-liganded ERα would promote ER+ breast cancer invasion and metastasis.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
9 |
16
|
Picon-Ruiz M, Marchal JA, Slingerland JM. Obtaining Human Breast Adipose Cells for Breast Cancer Cell Co-culture Studies. STAR Protoc 2020; 1:100197. [PMID: 33377091 PMCID: PMC7757558 DOI: 10.1016/j.xpro.2020.100197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] [Imported: 04/02/2025] Open
Abstract
Primary human breast cancers invade surrounding fat and contact adipocytes, inflammatory infiltrates, and fibrous stroma. This tissue niche influences breast tumor progression. Here, we present a protocol to enable the in vitro study of the complex interactions that occur between breast cancer cells and adipose cells. We describe how to obtain different adipose cell populations, including adipose-derived stem cells, immature adipocytes, and mature adipocytes, from human breast fat tissue and detail the application for co-culture assays with breast cancer cells. For complete details on the use and execution of this protocol, please refer to Picon-Ruiz et al. (2016) and Qureshi et al. (2020).
Collapse
|
Research Support, N.I.H., Extramural |
5 |
7 |
17
|
López-Ruiz E, Perán M, Picón-Ruiz M, García MA, Carrillo E, Jiménez-Navarro M, Hernández MC, Prat I, De Teresa E, Marchal JA. Cardiomyogenic differentiation potential of human endothelial progenitor cells isolated from patients with myocardial infarction. Cytotherapy 2014; 16:1229-1237. [PMID: 24969968 DOI: 10.1016/j.jcyt.2014.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/16/2022] [Imported: 04/02/2025]
Abstract
BACKGROUND AIMS Endothelial progenitor cells (EPCs) are known to play a beneficial role by promoting postnatal vasculogenesis in pathological events, such as ischemic heart disease and peripheral artery disease. However, little is known about the potential of EPCs to restore heart damage tissue. We compared the cardiac differentiation capacity of EPCs isolated from peripheral blood of patients with acute myocardial infarction (AMI) with EPCs obtained from umbilical cord blood (UCB). METHODS EPCs from both origins were isolated by density gradient centrifugation and characterized through the use of endothelial markers (UEA-1lectin, CD133 and KDR) and endothelial cell colony-forming unit assay. Cardiac differentiation capacity of EPCs was assessed by immunofluorescence and reverse transcriptase-polymerase chain reaction after 5-azacytidine (5-aza) induction. RESULTS No significant differences were observed between the number of endothelial cell colony-forming units in peripheral blood of patients with AMI and samples from UCB. Moreover, 5-aza induced the appearance of myotube-like structures and the positive expression of sarcomeric α-actinin, cardiac troponin I and T and desmin in a similar pattern for both cell sources, which indicates a comparable acquisition of a cardiac-like phenotype. CONCLUSIONS For the first time, we have compared, in vitro, the cardiomyogenic potential of EPCs derived from patients with AMI with UCB-derived EPCs. Our data indicate that EPCs obtained from both origins have similar plasticity and functions and suggest a potential therapeutic efficacy in cardiac cell therapy.
Collapse
|
Comparative Study |
11 |
7 |
18
|
Diaz-Ruano AB, Martinez-Alarcon N, Perán M, Benabdellah K, Garcia-Martinez MDLÁ, Preda O, Ramirez-Tortosa C, Gonzalez-Hernandez A, Marchal JA, Picon-Ruiz M. Estradiol and Estrone Have Different Biological Functions to Induce NF-κB-Driven Inflammation, EMT and Stemness in ER+ Cancer Cells. Int J Mol Sci 2023; 24:1221. [PMID: 36674737 PMCID: PMC9865376 DOI: 10.3390/ijms24021221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] [Imported: 04/02/2025] Open
Abstract
In general, the risk of being diagnosed with cancer increases with age; however, the development of estrogen-receptor-positive (ER+) cancer types in women are more closely related to menopausal status than age. In fact, the general risk factors for cancer development, such as obesity-induced inflammation, show differences in their association with ER+ cancer risk in pre- and postmenopausal women. Here, we tested the role of the principal estrogens in the bloodstream before and after menopause, estradiol (E2) and estrone (E1), respectively, on inflammation, epithelial-to-mesenchymal transition (EMT) and cancer stem cell enrichment in the human ER+ cervical cancer cell line HeLa. Our results demonstrate that E1, contrary to E2, is pro-inflammatory, increases embryonic stem-transcription factors (ES-TFs) expression and induces EMT in ER+ HeLa cells. Moreover, we observed that high intratumoural expression levels of 17β-Hydroxysteroid dehydrogenase (HSD17B) isoforms involved in E1 synthesis is a poor prognosis factor, while overexpression of E2-synthetizing HSD17B isoforms is associated with a better outcome, for patients diagnosed with ER+ ovarian and uterine corpus carcinomas. This work demonstrates that E1 and E2 have different biological functions in ER+ gynaecologic cancers. These results open a new line of research in the study of ER+ cancer subtypes, highlighting the potential key oncogenic role of E1 and HSD17B E1-synthesizing enzymes in the development and progression of these diseases.
Collapse
|
research-article |
2 |
3 |
19
|
Erratum. Cytotherapy 2015; 17:242. [DOI: 10.1016/j.jcyt.2015.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] [Imported: 04/02/2025]
|
|
10 |
|
20
|
Diaz-Ruano AB, Gomez-Jimenez E, Llamas-Jimenez G, Ramirez-Muñoz A, Espejo-Hijano P, Rubio-Navarro A, Picon-Ruiz M. Advances in the use of nanoparticles for specific cell-target delivery of anti-cancer agents. Life Sci 2025; 371:123604. [PMID: 40189193 DOI: 10.1016/j.lfs.2025.123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] [Imported: 05/04/2025]
Abstract
In recent decades, cancer has emerged as one of the leading causes of death in developed countries. To revert this progression, scientists have focused on the design of new strategies for early detection of this disease and the development of more effective treatments for its eradication. Regarding the latter, one of the main research efforts has been directed toward designing more specific delivery systems for the administration of anti-tumoral agents. In this sense, the efficacy of conventional therapies used for cancer treatment, such as chemotherapy, immune checkpoint inhibitors and radiation therapy, are often limited by their lack of specificity and their potential to cause adverse secondary effects on healthy tissues. Therefore, designing specific cell-targeted delivery systems for anti-tumoral agents presents a promising approach to overcoming the limitations of conventional cancer therapies. In this review we summarize the advances in the use of nanoparticles for Specific Cell-Target Delivery of anti-tumoral agents from in vitro to clinical studies.
Collapse
|
Review |
1 |
|
21
|
Etzi F, Griñán-Lisón C, Fenu G, González-Titos A, Pisano A, Farace C, Sabalic A, Picon-Ruiz M, Marchal JA, Madeddu R. The Role of miR-486-5p on CSCs Phenotypes in Colorectal Cancer. Cancers (Basel) 2024; 16:4237. [PMID: 39766136 PMCID: PMC11674241 DOI: 10.3390/cancers16244237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] [Imported: 04/02/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third diagnosed cancer worldwide. Forty-four percent of metastatic colorectal cancer patients were diagnosed at an early stage. Despite curative resection, approximately 40% of patients will develop metastases within a few years. Previous studies indicate the presence of cancer stem cells (CSCs) and their contribution to CRC progression and metastasis. miRNAs deregulation plays a role in CSCs formation and in tumor development. In light of previous studies, we investigated the role of miR-486-5p to understand its role in CSC better. METHODS The expression of miR-486-5p was assessed in adherent cells and spheres generated from two CRC cell lines to observe the difference in expression in CSC-enriched spheroids. Afterward, we overexpressed and underexpressed this miRNA in adherent and sphere cultures through the transfection of a miR-486-5p mimic and a mimic inhibitor. RESULTS The results demonstrated that miR-486-5p exhibited a notable downregulation in CSC models, and its overexpression led to a significant decrease in colony size. CONCLUSIONS In this study, we confirmed that miR-486-5p plays an oncosuppressive role in CRC, thereby advancing our understanding of the role of this microRNA in the CSC phenotype.
Collapse
|
research-article |
1 |
|