1
|
Lin Y, Ghazanfar S, Wang KYX, Gagnon-Bartsch JA, Lo KK, Su X, Han ZG, Ormerod JT, Speed TP, Yang P, Yang JYH. scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets. Proc Natl Acad Sci U S A 2019; 116:9775-9784. [PMID: 31028141 PMCID: PMC6525515 DOI: 10.1073/pnas.1820006116] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] [Imported: 04/02/2025] Open
Abstract
Concerted examination of multiple collections of single-cell RNA sequencing (RNA-seq) data promises further biological insights that cannot be uncovered with individual datasets. Here we present scMerge, an algorithm that integrates multiple single-cell RNA-seq datasets using factor analysis of stably expressed genes and pseudoreplicates across datasets. Using a large collection of public datasets, we benchmark scMerge against published methods and demonstrate that it consistently provides improved cell type separation by removing unwanted factors; scMerge can also enhance biological discovery through robust data integration, which we show through the inference of development trajectory in a liver dataset collection.
Collapse
|
Evaluation Study |
6 |
111 |
2
|
Dai YJ, Wang YY, Huang JY, Xia L, Shi XD, Xu J, Lu J, Su XB, Yang Y, Zhang WN, Wang PP, Wu SF, Huang T, Mi JQ, Han ZG, Chen Z, Chen SJ. Conditional knockin of Dnmt3a R878H initiates acute myeloid leukemia with mTOR pathway involvement. Proc Natl Acad Sci U S A 2017; 114:5237-5242. [PMID: 28461508 PMCID: PMC5441829 DOI: 10.1073/pnas.1703476114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] [Imported: 04/02/2025] Open
Abstract
DNMT3A is frequently mutated in acute myeloid leukemia (AML). To explore the features of human AML with the hotspot DNMT3A R882H mutation, we generated Dnmt3a R878H conditional knockin mice, which developed AML with enlarged Lin-Sca1+cKit+ cell compartments. The transcriptome and DNA methylation profiling of bulk leukemic cells and the single-cell RNA sequencing of leukemic stem/progenitor cells revealed significant changes in gene expression and epigenetic regulatory patterns that cause differentiation arrest and growth advantage. Consistent with leukemic cell accumulation in G2/M phase, CDK1 was up-regulated due to mTOR activation associated with DNA hypomethylation. Overexpressed CDK1-mediated EZH2 phosphorylation resulted in an abnormal trimethylation of H3K27 profile. The mTOR inhibitor rapamycin elicited a significant therapeutic response in Dnmt3aR878H/WT mice.
Collapse
|
research-article |
8 |
63 |
3
|
Su X, Shi Y, Zou X, Lu ZN, Xie G, Yang JYH, Wu CC, Cui XF, He KY, Luo Q, Qu YL, Wang N, Wang L, Han ZG. Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development. BMC Genomics 2017; 18:946. [PMID: 29202695 PMCID: PMC5715535 DOI: 10.1186/s12864-017-4342-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] [Imported: 04/02/2025] Open
Abstract
BACKGROUND The differentiation and maturation trajectories of fetal liver stem/progenitor cells (LSPCs) are not fully understood at single-cell resolution, and a priori knowledge of limited biomarkers could restrict trajectory tracking. RESULTS We employed marker-free single-cell RNA-Seq to characterize comprehensive transcriptional profiles of 507 cells randomly selected from seven stages between embryonic day 11.5 and postnatal day 2.5 during mouse liver development, and also 52 Epcam-positive cholangiocytes from postnatal day 3.25 mouse livers. LSPCs in developing mouse livers were identified via marker-free transcriptomic profiling. Single-cell resolution dynamic developmental trajectories of LSPCs exhibited contiguous but discrete genetic control through transcription factors and signaling pathways. The gene expression profiles of cholangiocytes were more close to that of embryonic day 11.5 rather than other later staged LSPCs, cuing the fate decision stage of LSPCs. Our marker-free approach also allows systematic assessment and prediction of isolation biomarkers for LSPCs. CONCLUSIONS Our data provide not only a valuable resource but also novel insights into the fate decision and transcriptional control of self-renewal, differentiation and maturation of LSPCs.
Collapse
|
research-article |
8 |
55 |
4
|
Ghazanfar S, Lin Y, Su X, Lin DM, Patrick E, Han ZG, Marioni JC, Yang JYH. Investigating higher-order interactions in single-cell data with scHOT. Nat Methods 2020; 17:799-806. [PMID: 32661426 PMCID: PMC7610653 DOI: 10.1038/s41592-020-0885-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] [Imported: 04/02/2025]
Abstract
Single-cell genomics has transformed our ability to examine cell fate choice. Examining cells along a computationally ordered 'pseudotime' offers the potential to unpick subtle changes in variability and covariation among key genes. We describe an approach, scHOT-single-cell higher-order testing-which provides a flexible and statistically robust framework for identifying changes in higher-order interactions among genes. scHOT can be applied for cells along a continuous trajectory or across space and accommodates various higher-order measurements including variability or correlation. We demonstrate the use of scHOT by studying coordinated changes in higher-order interactions during embryonic development of the mouse liver. Additionally, scHOT identifies subtle changes in gene-gene correlations across space using spatially resolved transcriptomics data from the mouse olfactory bulb. scHOT meaningfully adds to first-order differential expression testing and provides a framework for interrogating higher-order interactions using single-cell data.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
41 |
5
|
Su X, Zhao L, Shi Y, Zhang R, Long Q, Bai S, Luo Q, Lin Y, Zou X, Ghazanfar S, Tao K, Yang G, Wang L, He KY, Cui X, He J, Wu JX, Han B, Yan B, Deng B, Wang N, Li X, Yang P, Hou S, Sun J, Yang JYH, Chen J, Han ZG. Clonal evolution in liver cancer at single-cell and single-variant resolution. J Hematol Oncol 2021; 14:22. [PMID: 33531041 PMCID: PMC7852352 DOI: 10.1186/s13045-021-01036-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 01/04/2023] [Imported: 04/02/2025] Open
Abstract
Genetic heterogeneity of tumor is closely related to its clonal evolution, phenotypic diversity and treatment resistance, and such heterogeneity has only been characterized at single-cell sub-chromosomal scale in liver cancer. Here we reconstructed the single-variant resolution clonal evolution in human liver cancer based on single-cell mutational profiles. The results indicated that key genetic events occurred early during tumorigenesis, and an early metastasis followed by independent evolution was observed in primary liver tumor and intrahepatic metastatic portal vein tumor thrombus. By parallel single-cell RNA-Seq, the transcriptomic phenotype of HCC was found to be related with genetic heterogeneity. For the first time we reconstructed the single-cell and single-variant clonal evolution in human liver cancer, and dissection of both genetic and phenotypic heterogeneity will facilitate better understanding of their relationship.
Collapse
|
Letter |
4 |
37 |
6
|
Yuan Y, Shi Y, Su X, Zou X, Luo Q, Feng DD, Cai W, Han ZG. Cancer type prediction based on copy number aberration and chromatin 3D structure with convolutional neural networks. BMC Genomics 2018; 19:565. [PMID: 30367576 PMCID: PMC6101087 DOI: 10.1186/s12864-018-4919-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] [Imported: 04/02/2025] Open
Abstract
BACKGROUND With the developments of DNA sequencing technology, large amounts of sequencing data have been produced that provides unprecedented opportunities for advanced association studies between somatic mutations and cancer types/subtypes which further contributes to more accurate somatic mutation based cancer typing (SMCT). In existing SMCT methods however, the absence of high-level feature extraction is a major obstacle in improving the classification performance. RESULTS We propose DeepCNA, an advanced convolutional neural network (CNN) based classifier, which utilizes copy number aberrations (CNAs) and HiC data, to address this issue. DeepCNA first pre-process the CNA data by clipping, zero padding and reshaping. Then, the processed data is fed into a CNN classifier, which extracts high-level features for accurate classification. Experimental results on the COSMIC CNA dataset indicate that 2D CNN with both cell lines of HiC data lead to the best performance. We further compare DeepCNA with three widely adopted classifiers, and demonstrate that DeepCNA has at least 78% improvement of performance. CONCLUSIONS This paper demonstrates the advantages and potential of the proposed DeepCNA model for processing of somatic point mutation based gene data, and proposes that its usage may be extended to other complex genotype-phenotype association studies.
Collapse
|
research-article |
7 |
20 |
7
|
Shi Y, Guo Z, Su X, Meng L, Zhang M, Sun J, Wu C, Zheng M, Shang X, Zou X, Cheng W, Yu Y, Cai Y, Zhang C, Cai W, Da LT, He G, Han ZG. DeepAntigen: a novel method for neoantigen prioritization via 3D genome and deep sparse learning. Bioinformatics 2020; 36:4894-4901. [PMID: 32592462 DOI: 10.1093/bioinformatics/btaa596] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/30/2022] [Imported: 04/02/2025] Open
Abstract
MOTIVATION The mutations of cancers can encode the seeds of their own destruction, in the form of T-cell recognizable immunogenic peptides, also known as neoantigens. It is computationally challenging, however, to accurately prioritize the potential neoantigen candidates according to their ability of activating the T-cell immunoresponse, especially when the somatic mutations are abundant. Although a few neoantigen prioritization methods have been proposed to address this issue, advanced machine learning model that is specifically designed to tackle this problem is still lacking. Moreover, none of the existing methods considers the original DNA loci of the neoantigens in the perspective of 3D genome which may provide key information for inferring neoantigens' immunogenicity. RESULTS In this study, we discovered that DNA loci of the immunopositive and immunonegative MHC-I neoantigens have distinct spatial distribution patterns across the genome. We therefore used the 3D genome information along with an ensemble pMHC-I coding strategy, and developed a group feature selection-based deep sparse neural network model (DNN-GFS) that is optimized for neoantigen prioritization. DNN-GFS demonstrated increased neoantigen prioritization power comparing to existing sequence-based approaches. We also developed a webserver named deepAntigen (http://yishi.sjtu.edu.cn/deepAntigen) that implements the DNN-GFS as well as other machine learning methods. We believe that this work provides a new perspective toward more accurate neoantigen prediction which eventually contribute to personalized cancer immunotherapy. AVAILABILITY AND IMPLEMENTATION Data and implementation are available on webserver: http://yishi.sjtu.edu.cn/deepAntigen. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
|
5 |
18 |
8
|
Shi Y, Su XB, He KY, Wu BH, Zhang BY, Han ZG. Chromatin accessibility contributes to simultaneous mutations of cancer genes. Sci Rep 2016; 6:35270. [PMID: 27762310 PMCID: PMC5071887 DOI: 10.1038/srep35270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022] [Imported: 04/02/2025] Open
Abstract
Somatic mutations of many cancer genes tend to co-occur (termed co-mutations) in certain patterns during tumor initiation and progression. However, the genetic and epigenetic mechanisms that contribute to the co-mutations of these cancer genes have yet to be explored. Here, we systematically investigated the association between the somatic co-mutations of cancer genes and high-order chromatin conformation. Significantly, somatic point co-mutations in protein-coding genes were closely associated with high-order spatial chromatin folding. We propose that these regions be termed Spatial Co-mutation Hotspots (SCHs) and report their occurrence in different cancer types. The conserved mutational signatures and DNA sequences flanking these point co-mutations, as well as CTCF-binding sites, are also enriched within the SCH regions. The genetic alterations that are harboured in the same SCHs tend to disrupt cancer driver genes involved in multiple signalling pathways. The present work demonstrates that high-order spatial chromatin organisation may contribute to the somatic co-mutations of certain cancer genes during tumor development.
Collapse
|
research-article |
9 |
15 |
9
|
Wu JX, He KY, Zhang ZZ, Qu YL, Su XB, Shi Y, Wang N, Wang L, Han ZG. LZP is required for hepatic triacylglycerol transportation through maintaining apolipoprotein B stability. PLoS Genet 2021; 17:e1009357. [PMID: 33591966 PMCID: PMC7909667 DOI: 10.1371/journal.pgen.1009357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/26/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] [Imported: 04/02/2025] Open
Abstract
The conserved zona pellucida (ZP) domain is found in hundreds of extracellular proteins that are expressed in various organs and play a variety of roles as structural components, receptors and tumor suppressors. A liver-specific zona pellucida domain-containing protein (LZP), also named OIT3, has been shown to be mainly expressed in human and mouse hepatocytes; however, the physiological function of LZP in the liver remains unclear. Here, we show that Lzp deletion inhibited very low-density lipoprotein (VLDL) secretion, leading to hepatic TG accumulation and lower serum TG levels in mice. The apolipoprotein B (apoB) levels were significantly decreased in the liver, serum, and VLDL particles of LZP-deficient mice. In the presence of LZP, which is localized to the endoplasmic reticulum (ER) and Golgi apparatus, the ER-associated degradation (ERAD) of apoB was attenuated; in contrast, in the absence of LZP, apoB was ubiquitinated by AMFR, a known E3 ubiquitin ligase specific for apoB, and was subsequently degraded, leading to lower hepatic apoB levels and inhibited VLDL secretion. Interestingly, hepatic LZP levels were elevated in mice challenged with a high-fat diet and humans with simple hepatic steatosis, suggesting that LZP contributes to the physiological regulation of hepatic TG homeostasis. In general, our data establish an essential role for LZP in hepatic TG transportation and VLDL secretion by preventing the AMFR-mediated ubiquitination and degradation of apoB and therefore provide insight into the molecular function of LZP in hepatic lipid metabolism.
Collapse
|
research-article |
4 |
14 |
10
|
Su X, Tsang JSH. Existence of a robust haloacid transport system in a Burkholderia species bacterium. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:187-192. [PMID: 23022134 DOI: 10.1016/j.bbamem.2012.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/10/2012] [Accepted: 09/20/2012] [Indexed: 11/22/2022] [Imported: 04/02/2025]
Abstract
Bacterium Burkholderia sp. MBA4 can utilize haloacids as the sole carbon and energy source for growth. We have previously reported that a haloacid operon, encoding for a dehalogenase (Deh4a) and an associated permease (Deh4p), was responsible for the transformation and uptake of haloacids in MBA4. A disruption of deh4p in MBA4 caused a decrease in monochloroacetate (MCA) uptake, confirming its role as a haloacid transporter. However, this disruptant retained 68% of its MCA-uptake activity indicating the possibility of an alternative system. In this study, we report the identification of a second MCA-inducible haloacid transporter (Dehp2) in MBA4. Its function was confirmed by gene disruption and heterologous expression in Escherichia coli. A dehp2(-) mutant has 30% less, and an E. coli expressing Dehp2 has 40% more, of wildtype MCA-uptake activity. Quantitative RT-PCR illustrated that the minor loss of MCA-uptake activity in single disruptants of deh4p and dehp2 was partly due to a compensatory expression of the alternative gene. Competition assay and kinetics study revealed that Deh4p has a higher affinity for MCA while Dehp2 prefers chloropropionate. A deh4p(-)dehp2(-) double mutant retained 36% of MCA-uptake activity, indicating a robustness of the haloacid uptake systems. The MCA uptake activities mediated by Deh4p, Dehp2 and the uncharacterized system were completely abolished by protonophore carbonyl cyanide 3-chlorophenylhydrazone, suggesting that transmembrane electrochemical gradient is the driving force for MCA uptake.
Collapse
|
|
12 |
12 |
11
|
Su X, Deng L, Kong KF, Tsang JSH. Enhanced degradation of haloacid by heterologous expression in related Burkholderia species. Biotechnol Bioeng 2013; 110:2687-2696. [PMID: 23568428 DOI: 10.1002/bit.24917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/08/2013] [Accepted: 03/21/2013] [Indexed: 11/07/2022] [Imported: 04/02/2025]
Abstract
Haloacids are environmental pollutant and can be transformed to non-toxic alkanoic acids by microbial dehalogenase. Bacterium Burkholderia species MBA4 was enriched from soil for its ability to bioremediate haloacids such as mono-chloroacetate (MCA), mono-bromoacetate (MBA), 2-mono-chloropropionate, and 2-mono-bromopropionate. MBA4 produces an inducible dehalogenase Deh4a that catalyzes the dehalogenation process. The growth of MBA4 on haloacid also relies on the presence of a haloacid-uptake system. Similar dehalogenase genes can be found in the genome of many related species. However, wildtype Burkholderia caribensis MWAP64, Burkholderia phymatum STM815, and Burkholderia xenovorans LB400 were not able to grow on MCA. When a plasmid containing the regulatory and structural gene of Deh4a was transformed to these species, they were able to grow on haloacid. The specific enzyme activities in these recombinants ranges from 2- to 30-fold that of MBA4 in similar condition. Reverse transcription-quantitative real-time PCR showed that the relative transcript levels in these recombinant strains ranges from 9 to over 1,600 times that of MBA4 in similar condition. A recombinant has produced nearly five times of dehalogenase that MBA4 could ever achieve. While the expressions of Deh4a were more relaxed in these phylogenetically related species, an MCA-uptake activity was found to be inducible. These metabolically engineered strains are better degraders than the haloacid-enriched MBA4.
Collapse
|
|
12 |
10 |
12
|
Su X, Long Q, Bo J, Shi Y, Zhao LN, Lin Y, Luo Q, Ghazanfar S, Zhang C, Liu Q, Wang L, He K, He J, Cui X, Yang JYH, Han ZG, Yang G, Sha JJ. Mutational and transcriptomic landscapes of a rare human prostate basal cell carcinoma. Prostate 2020; 80:508-517. [PMID: 32119131 DOI: 10.1002/pros.23965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/11/2020] [Indexed: 12/11/2022] [Imported: 04/02/2025]
Abstract
BACKGROUND As a rare subtype of prostate carcinoma, basal cell carcinoma (BCC) has not been studied extensively and thus lacks systematic molecular characterization. METHODS Here, we applied single-cell genomic amplification and RNA-Seq to a specimen of human prostate BCC (CK34βE12+ /P63+ /PAP- /PSA- ). The mutational landscape was obtained via whole exome sequencing of the amplification mixture of 49 single cells, and the transcriptomes of 69 single cells were also obtained. RESULTS The five putative driver genes mutated in BCC are CASC5, NUTM1, PTPRC, KMT2C, and TBX3, and the top three nucleotide substitutions are C>T, T>C, and C>A, similar to common prostate cancer. The distribution of the variant allele frequency values indicated that these single cells are from the same tumor clone. The 69 single cells were clustered into tumor, stromal, and immune cells based on their global transcriptomic profiles. The tumor cells specifically express basal cell markers like KRT5, KRT14, and KRT23 and epithelial markers EPCAM, CDH1, and CD24. The transcription factor covariance network analysis showed that the BCC tumor cells have distinct regulatory networks. By comparison with current prostate cancer datasets, we found that some of the bulk samples exhibit basal cell signatures. Interestingly, at single-cell resolution the gene expression patterns of prostate BCC tumor cells show uniqueness compared with that of common prostate cancer-derived circulating tumor cells. CONCLUSIONS This study, for the first time, discloses the comprehensive mutational and transcriptomic landscapes of prostate BCC, which lays a foundation for the understanding of its tumorigenesis mechanism and provides new insights into prostate cancers in general.
Collapse
|
|
5 |
8 |
13
|
Shi Q, Zhuang F, Liu JT, Li N, Chen YX, Su XB, Yao AH, Yao QP, Han Y, Li SS, Qi YX, Jiang ZL. Single-cell analyses reveal functional classification of dendritic cells and their potential roles in inflammatory disease. FASEB J 2019; 33:3784-3794. [PMID: 30496701 DOI: 10.1096/fj.201801489r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] [Imported: 04/02/2025]
Abstract
Dendritic cells (DCs) have crucial roles in immune-related diseases. However, it is difficult to explore DCs because of their rareness and heterogeneity. Although previous studies had been performed to detect the phenotypic characteristics of DC populations, the functional diversity has been ignored. Using a combination of flow cytometry, single-cell quantitative PCR, and bioinformatic analysis, we depicted the DC panorama with not only phenotypic but also functional markers. Functional classification of DCs in mouse lymphoid tissue (spleen) and nonlymphoid tissue (liver) was performed. The results revealed that expression of macrophage scavenger receptor 1 ( MSR1) and C-C motif chemokine receptors ( CCR) 1, CCR2, and CCR4 were elevated in liver DCs, suggesting increased lipid uptake and migration abilities. The enriched expression of costimulatory molecule CD80, TLR9, and TLR adaptor MYD88 in spleen DCs indicated a more-mature phenotype, enhanced pathogen recognition, and T-cell stimulation abilities. Furthermore, we compared DCs in the atherosclerotic mouse models with healthy controls. In addition to the quantitative increase in DCs in the liver and spleen of the apolipoprotein E-knockout ( ApoE-/-) mice, the functional expression patterns of the DCs also changed at the single-cell level. These results promote our understanding of the participation of DCs in inflammatory diseases and have potential applications in DC clinical assessment.-Shi, Q., Zhuang, F., Liu, J.-T., Li, N., Chen, Y.-X., Su, X.-B., Yao, A.-H., Yao, Q.-P., Han, Y., Li, S.-S., Qi, Y.-X., Jiang, Z.-L. Single-cell analyses reveal functional classification of dendritic cells and their potential roles in inflammatory disease.
Collapse
|
|
6 |
7 |
14
|
Su X, Kong KF, Tsang JSH. Transports of acetate and haloacetate in Burkholderia species MBA4 are operated by distinct systems. BMC Microbiol 2012; 12:267. [PMID: 23167477 PMCID: PMC3552994 DOI: 10.1186/1471-2180-12-267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 11/17/2012] [Indexed: 12/04/2022] [Imported: 04/02/2025] Open
Abstract
BACKGROUND Acetate is a commonly used substrate for biosynthesis while monochloroacetate is a structurally similar compound but toxic and inhibits cell metabolism by blocking the citric acid cycle. In Burkholderia species MBA4 haloacetate was utilized as a carbon and energy source for growth. The degradation of haloacid was mediated by the production of an inducible dehalogenase. Recent studies have identified the presence of a concomitantly induced haloacetate-uptake activity in MBA4. This uptake activity has also been found to transport acetate. Since acetate transporters are commonly found in bacteria it is likely that haloacetate was transported by such a system in MBA4. RESULTS The haloacetate-uptake activity of MBA4 was found to be induced by monochloroacetate (MCA) and monobromoacetate (MBA). While the acetate-uptake activity was also induced by MCA and MBA, other alkanoates: acetate, propionate and 2-monochloropropionate (2MCPA) were also inducers. Competing solute analysis showed that acetate and propionate interrupted the acetate- and MCA- induced acetate-uptake activities. While MCA, MBA, 2MCPA, and butyrate have no effect on acetate uptake they could significantly quenched the MCA-induced MCA-uptake activity. Transmembrane electrochemical potential was shown to be a driving force for both acetate- and MCA- transport systems. CONCLUSIONS Here we showed that acetate- and MCA- uptake in Burkholderia species MBA4 are two transport systems that have different induction patterns and substrate specificities. It is envisaged that the shapes and the three dimensional structures of the solutes determine their recognition or exclusion by the two transport systems.
Collapse
|
research-article |
13 |
5 |
15
|
Su X, Li R, Kong KF, Tsang JSH. Transport of haloacids across biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:3061-3070. [PMID: 27668346 DOI: 10.1016/j.bbamem.2016.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/28/2022] [Imported: 04/02/2025]
Abstract
Haloacids are considered to be environmental pollutants, but some of them have also been tested in clinical research. The way that haloacids are transported across biological membranes is important for both biodegradation and drug delivery purposes. In this review, we will first summarize putative haloacids transporters and the information about haloacids transport when studying carboxylates transporters. We will then introduce MCT1 and SLC5A8, which are respective transporter for antitumor agent 3-bromopyruvic acid and dichloroacetic acid, and monochloroacetic acid transporters Deh4p and Dehp2 from a haloacids-degrading bacterium. Phylogenetic analysis of these haloacids transporters and other monocarboxylate transporters reveals their evolutionary relationships. Haloacids transporters are not studied to the extent that they deserve compared with their great application potentials, thus future inter-discipline research are desired to better characterize their transport mechanisms for potential applications in both environmental and clinical fields.
Collapse
|
Review |
9 |
4 |
16
|
He K, Wang GX, Zhao LN, Cui XF, Su XB, Shi Y, Xie TP, Hou SW, Han ZG. Cinobufagin Is a Selective Anti-Cancer Agent against Tumors with EGFR Amplification and PTEN Deletion. Front Pharmacol 2021; 12:775602. [PMID: 34925034 PMCID: PMC8672866 DOI: 10.3389/fphar.2021.775602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] [Imported: 04/02/2025] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant brain tumor, and almost half of the patients carrying EGFR-driven tumor with PTEN deficiency are resistant to EGFR-targeted therapy. EGFR amplification and/or mutation is reported in various epithelial tumors. This series of studies aimed to identify a potent compound against EGFR-driven tumor. We screened a chemical library containing over 600 individual compounds purified from Traditional Chinese Medicine against GBM cells with EGFR amplification and found that cinobufagin, the major active ingredient of Chansu, inhibited the proliferation of EGFR amplified GBM cells and PTEN deficiency enhanced its anti-proliferation effects. Cinobufagin also strongly inhibited the proliferation of carcinoma cell lines with wild-type or mutant EGFR expression. In contrast, the compound only weakly inhibited the proliferation of cancer cells with low or without EGFR expression. Cinobufagin blocked EGFR phosphorylation and its downstream signaling, which additionally induced apoptosis and cytotoxicity in EGFR amplified cancer cells. In vivo, cinobufagin blocked EGFR signaling, inhibited cell proliferation, and elicited apoptosis, thereby suppressing tumor growth in both subcutaneous and intracranial U87MG-EGFR xenograft mouse models and increasing the median survival of nude mice bearing intracranial U87MG-EGFR tumors. Cinobufagin is a potential therapeutic agent for treating malignant glioma and other human cancers expressing EGFR.
Collapse
|
research-article |
4 |
4 |
17
|
Shi Y, Zhang M, Meng L, Su X, Shang X, Guo Z, Li Q, Lin M, Zou X, Luo Q, Yu Y, Wu Y, Da L, Cai TW, He G, Han ZG. A novel neoantigen discovery approach based on chromatin high order conformation. BMC Med Genomics 2020; 13:62. [PMID: 32854726 PMCID: PMC7450556 DOI: 10.1186/s12920-020-0708-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] [Imported: 04/02/2025] Open
Abstract
BACKGROUND High-throughput sequencing technology has yielded reliable and ultra-fast sequencing for DNA and RNA. For tumor cells of cancer patients, when combining the results of DNA and RNA sequencing, one can identify potential neoantigens that stimulate the immune response of the T cell. However, when the somatic mutations are abundant, it is computationally challenging to efficiently prioritize the identified neoantigen candidates according to their ability of activating the T cell immuno-response. METHODS Numerous prioritization or prediction approaches have been proposed to address this issue but none of them considers the original DNA loci of the neoantigens from the perspective of 3D genome. Based on our previous discoveries, we propose to investigate the distribution of neoantigens with different immunogenicity abilities in 3D genome and propose to adopt this important information into neoantigen prediction. RESULTS We retrospect the DNA origins of the immuno-positive and immuno-negative neoantigens in the context of 3D genome and discovered that DNA loci of the immuno-positive neoantigens and immuno-negative neoantigens have very different distribution pattern. Specifically, comparing to the background 3D genome, DNA loci of the immuno-positive neoantigens tend to locate at specific regions in the 3D genome. We thus used this information into neoantigen prediction and demonstrated the effectiveness of this approach. CONCLUSION We believe that the 3D genome information will help to increase the precision of neoantigen prioritization and discovery and eventually benefit precision and personalized medicine in cancer immunotherapy.
Collapse
|
research-article |
5 |
3 |
18
|
Su X, Bai S, Xie G, Shi Y, Zhao L, Yang G, Tian F, He KY, Wang L, Li X, Long Q, Han ZG. Accurate tumor clonal structures require single-cell analysis. Ann N Y Acad Sci 2022; 1517:213-224. [PMID: 36081327 DOI: 10.1111/nyas.14897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] [Imported: 04/02/2025]
Abstract
Tumor clonal structure is closely related to future progression, which has been mainly investigated as mutation abundance clustering in bulk samples. With relatively limited studies at single-cell resolution, a systematic comparison of the two approaches is still lacking. Here, using bulk and single-cell mutational data from the liver and colorectal cancers, we checked whether co-mutations determined by single-cell analysis had corresponding bulk variant allele frequency (VAF) peaks. While bulk analysis suggested the absence of subclonal peaks and, possibly, neutral evolution in some cases, the single-cell analysis identified coexisting subclones. The overlaps of bulk VAF ranges for co-mutations from different subclones made it difficult to separate them. Complex subclonal structures and dynamic evolution could be hidden under the seemingly clonal neutral pattern at the bulk level, suggesting single-cell analysis is necessary to avoid underestimation of tumor heterogeneity.
Collapse
|
|
3 |
3 |
19
|
Guo Z, Liu L, Feng M, Su K, Chi R, Li K, Lu Q, Su X, Da L, Cao S, Zhang M, Meng L, Cao D, Wang J, He G, Shi Y. 3D genome assisted protein–protein interaction prediction. FUTURE GENERATION COMPUTER SYSTEMS 2022; 137:87-96. [DOI: 10.1016/j.future.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] [Imported: 04/02/2025]
|
|
3 |
3 |
20
|
Su X, Li R, Tsang JSH. The 228bp upstream non-coding region of haloacids transporter gene dehp2 has regulated promoter activity. Gene 2016; 593:322-329. [PMID: 27576348 DOI: 10.1016/j.gene.2016.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/20/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022] [Imported: 04/02/2025]
Abstract
Biodegradation is an effective way to remove environmental pollutants haloacids, and haloacids uptake is an important step besides cytoplasmic dehalogenation. Previous study has identified a robust haloacids transport system in Burkholderia caribensis MBA4 with two homologous genes deh4p and dehp2 as major players. Both genes are inducible by monochloroacetate (MCA), and dehp2 is conserved among the Burkholderia genus with a two component system upstream. Here we show that dehp2 is not in the same operon with the upstream two component system, and fusion with lacZ confirmed the presence of MCA-inducible promoter activity in the 228bp upstream non-coding region of dehp2. Serial deletion confirmed 112bp upstream is enough for basic promoter activity, but sequence further upstream is useful for enhanced promoter activity. Electrophoretic mobility shift assay of the 228bp region showed a retardation complex with stronger hybridization in the induced condition, suggesting a positive regulation pattern. Regulator(s) binding region was found to lie between -228 to -113bp of dehp2. Quantitative real-time PCR showed that the expressions of dehp2 orthologs in three other Burkholderia species were also MCA-inducible, similar as dehp2. The 5' non-coding regions of these dehp2 orthologs have high sequence similarity with dehp2 promoter, and 100bp upstream of dehp2 orthologs is especially conserved. Our study identified a promoter of haloacids transporter gene that is conserved in the Burkholderia genus, which will benefit future exploitation of them for effective biodegradation of haloacids.
Collapse
|
|
9 |
2 |
21
|
Zou X, Liu Y, Wang M, Zou J, Shi Y, Su X, Xu J, Tong HHY, Ji Y, Gui L, Hao J. scCURE identifies cell types responding to immunotherapy and enables outcome prediction. CELL REPORTS METHODS 2023; 3:100643. [PMID: 37989083 PMCID: PMC10694528 DOI: 10.1016/j.crmeth.2023.100643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] [Imported: 04/02/2025]
Abstract
A deep understanding of immunotherapy response/resistance mechanisms and a highly reliable therapy response prediction are vital for cancer treatment. Here, we developed scCURE (single-cell RNA sequencing [scRNA-seq] data-based Changed and Unchanged cell Recognition during immunotherapy). Based on Gaussian mixture modeling, Kullback-Leibler (KL) divergence, and mutual nearest-neighbors criteria, scCURE can faithfully discriminate between cells affected or unaffected by immunotherapy intervention. By conducting scCURE analyses in melanoma and breast cancer immunotherapy scRNA-seq data, we found that the baseline profiles of specific CD8+ T and macrophage cells (identified by scCURE) can determine the way in which tumor microenvironment immune cells respond to immunotherapy, e.g., antitumor immunity activation or de-activation; therefore, these cells could be predictive factors for treatment response. In this work, we demonstrated that the immunotherapy-associated cell-cell heterogeneities revealed by scCURE can be utilized to integrate the therapy response mechanism study and prediction model construction.
Collapse
|
research-article |
2 |
2 |
22
|
Su X, Shi Y, Li R, Lu ZN, Zou X, Wu JX, Han ZG. Application of qPCR assays based on haloacids transporter gene dehp2 for discrimination of Burkholderia and Paraburkholderia. BMC Microbiol 2019; 19:36. [PMID: 30744555 PMCID: PMC6371555 DOI: 10.1186/s12866-019-1411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/31/2019] [Indexed: 12/05/2022] [Imported: 04/02/2025] Open
Abstract
BACKGROUND A major facilitator superfamily transporter Dehp2 was recently shown to be playing an important role in transport and biodegradation of haloacids in Paraburkholderia caribensis MBA4, and Dehp2 is phylogenetically conserved in Burkholderia sensu lato. RESULTS We designed both Burkholderia sensu stricto-specific and Paraburkholderia-specific qPCR assays based on dehp2 and 16S rRNA, and validated the qPCR assays in 12 bacterial strains. The qPCR assays could detect single species of Burkholderia sensu stricto or Paraburkholderia with high sensitivity and discriminate them in mixtures with high specificity over a wide dynamic range of relative concentrations. At relatively lower cost compared with sequencing-based approach, the qPCR assays will facilitate discrimination of Burkholderia sensu stricto and Paraburkholderia in a large number of samples. CONCLUSIONS For the first time, we report the utilization of a haloacids transporter gene for discriminative purpose in Burkholderia sensu lato. This enables not only quick decision on proper handling of putative pathogenic samples in Burkholderia sensu stricto group but also future exploitation of relevant species in Paraburkholderia group for haloacids biodegradation purposes.
Collapse
|
research-article |
6 |
1 |
23
|
Zou Y, Wu J, Cheng S, Cheng D, Chen T, Guo X, Tang L, Su X, Zhang M, Zhang X, Liu Y, Zhang J, Bao Q, Hou S, Sun P, Li Y, Han B. Hepatic stellate cell-specific Kcnma1 deletion mitigates metabolic dysfunction-associated steatotic liver disease progression via upregulating Amphiregulin secretion. Mol Metab 2025; 97:102164. [PMID: 40348016 DOI: 10.1016/j.molmet.2025.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/25/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] [Imported: 06/04/2025] Open
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health concern, with limited effective treatments. KCNMA1 potassium channel has been implicated in the pathogenesis of various metabolic diseases. However, whether and how KCNMA1 regulates MASLD have been elusive. METHODS Global, hepatic stellate cells (HSCs)-specific, and hepatocyte-specific Kcnma1 knockout mice were fed either a standard chow or a high-fat diet (HFD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, qPCR and western blotting. HSCs conditioned medium (CM) treatment hepatocytes experiment model and three-dimensional (3D) hepatocytes-HSCs spheroids were employed to study lipid accumulation in hepatocytes. A Cytokine Antibody Array was used to analyze the cytokine profile. RESULTS Our study demonstrated that global Kcnma1 deletion prevented diet-induced hepatic steatosis and improved insulin sensitivity. Further analyses using HSC-specific and hepatocyte-specific Kcnma1 knockout MASLD mouse models revealed that the protective effect against hepatic steatosis was predominantly mediated by Kcnma1 deletion in HSCs, rather than in hepatocytes. CM transfer experiment and 3D spheroid studies show Kcnma1 deletion effectively prevents lipid accumulation in hepatocytes. Mechanically, Kcnma1-deficient HSCs secrete Amphiregulin (AREG) to regulate lipid metabolism in hepatocytes via epidermal growth factor receptor (EGFR) signaling. Of clinical significance, AREG levels were notably reduced in the liver tissue of MASLD patients, while injection of recombinant AREG protein significantly ameliorated MASLD in mice. CONCLUSIONS Our study uncovers a novel mechanism in which Kcnma1 deletion in HSCs enhances AREG secretion, thereby reducing lipid accumulation in hepatocytes through the AREG/EGFR signaling, ultimately inhibiting the progression of MASLD.
Collapse
|
|
1 |
|
24
|
Lu X, Chen Y, Shi Y, Shi Y, Su X, Chen P, Wu D, Shi H. Exercise and exerkines: Mechanisms and roles in anti-aging and disease prevention. Exp Gerontol 2025; 200:112685. [PMID: 39818278 DOI: 10.1016/j.exger.2025.112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025] [Imported: 04/02/2025]
Abstract
Aging is a complex biological process characterized by increased inflammation and susceptibility to various age-related diseases, including cognitive decline, osteoporosis, and type 2 diabetes. Exercise has been shown to modulate mitochondrial function, immune responses, and inflammatory pathways, thereby attenuating aging through the regulation of exerkines secreted by diverse tissues and organs. These bioactive molecules, which include hepatokines, myokines, adipokines, osteokines, and neurokines, act both locally and systemically to exert protective effects against the detrimental aspects of aging. This review provides a comprehensive summary of different forms of exercise for older adults and the multifaceted role of exercise in anti-aging, focusing on the biological functions and sources of these exerkines. We further explore how exerkines combat aging-related diseases, such as type 2 diabetes and osteoporosis. By stimulating the secretion of these exerkines, exercise supports healthy longevity by promoting tissue homeostasis and metabolic balance. Additionally, the integration of exercise-induced exerkines into therapeutic strategies represents a promising approach to mitigating age-related pathologies at the molecular level. As our understanding deepens, it may pave the way for personalized interventions leveraging physical activity to enhance healthspan and improve quality of life.
Collapse
|
Review |
1 |
|
25
|
Wang L, Deng CH, Luo Q, Su XB, Shang XY, Song SJ, Cheng S, Qu YL, Zou X, Shi Y, Wang Q, Du SC, Han ZG. Inhibition of Arid1a increases stem/progenitor cell-like properties of liver cancer. Cancer Lett 2022; 546:215869. [PMID: 35964817 DOI: 10.1016/j.canlet.2022.215869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/01/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022] [Imported: 04/02/2025]
Abstract
ARID1A, a key subunit of the SWI/SNF chromatin remodeling complex, exhibits recurrent mutations in various types of human cancers, including liver cancer. However, the function of ARID1A in the pathogenesis of liver cancer remains controversial. Here, we demonstrate that Arid1a knockout may result in states of different cell differentiation, as indicated by single-cell RNA sequencing (scRNA-seq) analysis. Bulk RNA-seq also revealed that Arid1a deficiency upregulated these genes related to cell stemness and differentiation, but downregulated genes related to the hepatic functions. Furthermore, we confirmed that deficiency of Arid1a increased the expression of hepatic stem/progenitor cell markers, such as Cd133 and Epcam, and enhanced the self-renewal ability of cells. Mechanistic studies revealed that Arid1a loss remodeled the chromatin accessibility of some genes related to liver functions. Thus, Arid1a deficiency might contribute to cancer development by increasing the number of stem/progenitor-like cells through dysregulating the expression of these genes related to cell stemness, differentiation and liver functions.
Collapse
|
|
3 |
|