13
|
Wayman C, Russell R, Tang K, Weibly L, Gaboardi S, Fisher L, Allers K, Jackson M, Hawcock T, Robinson N, Wilson L, Gupta J, Casey J, Gibson KR. Cligosiban, A Novel Brain-Penetrant, Selective Oxytocin Receptor Antagonist, Inhibits Ejaculatory Physiology in Rodents. J Sex Med 2019; 15:1698-1706. [PMID: 30527053 DOI: 10.1016/j.jsxm.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Few treatments are available for men with premature ejaculation (PE); oxytocin (OT) receptor antagonism in the central nervous system (CNS) is a potential new approach. AIM To determine if cligosiban selectively inhibits human OT receptors, penetrates the CNS, shows pharmacology in the CNS, and effects ejaculatory physiology in pre-clinical systems. METHODS Experiments complied with United Kingdom legislation and were subject to local ethical review. In vitro potency and selectivity of cligosiban was assessed using recombinant and native OT receptor systems including both neuronal and non-neuronal cell types. Selectivity was determined over neighboring V1A, V1B, and V2 vasopressin receptors using a combination of recombinant and native vasopressin receptor assay systems. To determine an effect on central OT receptors and on ejaculation, cligosiban was evaluated in 2 anesthetized rat models-the electromyography model of ejaculatory physiology and a model of OT-mediated CNS neuronal firing. The CNS penetration of cligosiban was also determined by measuring cerebrospinal fluid and plasma drug concentrations following an intravenous (IV) infusion in rats. MAIN OUTCOME MEASURE These were functional measures of pharmacology in vitro, in cell lines and tissues, and in vivo in rats. RESULTS Cligosiban is a potent OT receptor antagonist, with a base dissociation constant of 5.7 nmol/L against native human uterine smooth muscle cell OT receptors. Cligosiban displays similar antagonistic potency against human recombinant and rat native OT receptors, including neuronal OT receptors. Cligosiban demonstrates >100-fold selectivity over human V1A, V1B, and V2 vasopressin receptors. In the electromyography model, cligosiban (0.9 mg/kg, IV bolus) reduced the bulbospongiosum burst pattern and contraction amplitude associated with ejaculation. In the anesthetized CNS neuronal firing model, the same dosing regimen of cligosiban (0.9 mg/kg IV bolus) modulated the OT-mediated response in the nucleus tractus solitarius. After systemic dosing to rats, cligosiban showed good CNS penetration. CLINICAL IMPLICATIONS As the first highly selective and centrally penetrant OT receptor antagonist, cligosiban represents a promising compound to test the clinical hypothesis that antagonism of central OT receptors may be of therapeutic benefit in the treatment of PE. STRENGTH & LIMITATIONS The pharmacology and selectivity of cligosiban is determined using functional assays in recombinant cell lines, native cell lines, and tissue. Functional outcomes in in vivo systems are linked to CNS measures of pharmacology. The translation of the animal models of ejaculation to PE in man is unproven. CONCLUSION Cligosiban, a potent, selective OT receptor antagonist, demonstrated CNS penetration and pharmacology and, using the same dosing regimen, inhibited apomorphine-induced ejaculation in rats. Cligosiban is a promising compound to test the clinical hypothesis that antagonism of central OT receptors may be of therapeutic benefit in the treatment of PE. Wayman C, Russell R, Tang K, et al. Cligosiban, A Novel Brain Penetrant Selective Oxytocin Receptor Antagonist, Inhibits Ejaculatory Physiology in Rodents. J Sex Med 2018;15:1698-1706.
Collapse
|
25
|
Aartsen MG, Abraham K, Ackermann M, Adams J, Aguilar JA, Ahlers M, Ahrens M, Altmann D, Andeen K, Anderson T, Ansseau I, Anton G, Archinger M, Argüelles C, Arlen TC, Auffenberg J, Axani S, Bai X, Barwick SW, Baum V, Bay R, Beatty JJ, Becker Tjus J, Becker KH, BenZvi S, Berghaus P, Berley D, Bernardini E, Bernhard A, Besson DZ, Binder G, Bindig D, Blaufuss E, Blot S, Boersma DJ, Bohm C, Börner M, Bos F, Bose D, Böser S, Botner O, Braun J, Brayeur L, Bretz HP, Burgman A, Casey J, Casier M, Cheung E, Chirkin D, Christov A, Clark K, Classen L, Coenders S, Collin GH, Conrad JM, Cowen DF, Cruz Silva AH, Daughhetee J, Davis JC, Day M, de André JPAM, De Clercq C, Del Pino Rosendo E, Dembinski H, De Ridder S, Desiati P, de Vries KD, de Wasseige G, de With M, DeYoung T, Díaz-Vélez JC, di Lorenzo V, Dujmovic H, Dumm JP, Dunkman M, Eberhardt B, Ehrhardt T, Eichmann B, Euler S, Evenson PA, Fahey S, Fazely AR, Feintzeig J, Felde J, Filimonov K, Finley C, Flis S, Fösig CC, Fuchs T, Gaisser TK, Gaior R, Gallagher J, Gerhardt L, Ghorbani K, Giang W, Gladstone L, Glüsenkamp T, Goldschmidt A, Golup G, Gonzalez JG, Góra D, Grant D, Griffith Z, Haj Ismail A, Hallgren A, Halzen F, Hansen E, Hanson K, Hebecker D, Heereman D, Helbing K, Hellauer R, Hickford S, Hignight J, Hill GC, Hoffman KD, Hoffmann R, Holzapfel K, Homeier A, Hoshina K, Huang F, Huber M, Huelsnitz W, Hultqvist K, In S, Ishihara A, Jacobi E, Japaridze GS, Jeong M, Jero K, Jones BJP, Jurkovic M, Kappes A, Karg T, Karle A, Katz U, Kauer M, Keivani A, Kelley JL, Kheirandish A, Kim M, Kintscher T, Kiryluk J, Kittler T, Klein SR, Kohnen G, Koirala R, Kolanoski H, Köpke L, Kopper C, Kopper S, Koskinen DJ, Kowalski M, Krings K, Kroll M, Krückl G, Krüger C, Kunnen J, Kunwar S, Kurahashi N, Kuwabara T, Labare M, Lanfranchi JL, Larson MJ, Lennarz D, Lesiak-Bzdak M, Leuermann M, Lu L, Lünemann J, Madsen J, Maggi G, Mahn KBM, Mancina S, Mandelartz M, Maruyama R, Mase K, Maunu R, McNally F, Meagher K, Medici M, Meier M, Meli A, Menne T, Merino G, Meures T, Miarecki S, Middell E, Mohrmann L, Montaruli T, Moulai M, Nahnhauer R, Naumann U, Neer G, Niederhausen H, Nowicki SC, Nygren DR, Obertacke Pollmann A, Olivas A, Omairat A, O'Murchadha A, Palczewski T, Pandya H, Pankova DV, Pepper JA, Pérez de Los Heros C, Pfendner C, Pieloth D, Pinat E, Posselt J, Price PB, Przybylski GT, Quinnan M, Raab C, Rameez M, Rawlins K, Relich M, Resconi E, Rhode W, Richman M, Riedel B, Robertson S, Rott C, Ruhe T, Ryckbosch D, Rysewyk D, Sabbatini L, Salvado J, Sanchez Herrera SE, Sandrock A, Sandroos J, Sarkar S, Satalecka K, Schlunder P, Schmidt T, Schöneberg S, Schönwald A, Seckel D, Seunarine S, Soldin D, Song M, Spiczak GM, Spiering C, Stamatikos M, Stanev T, Stasik A, Steuer A, Stezelberger T, Stokstad RG, Stößl A, Ström R, Strotjohann NL, Sullivan GW, Sutherland M, Taavola H, Taboada I, Tatar J, Ter-Antonyan S, Terliuk A, Tešić G, Tilav S, Toale PA, Tobin MN, Toscano S, Tosi D, Tselengidou M, Turcati A, Unger E, Usner M, Vallecorsa S, Vandenbroucke J, van Eijndhoven N, Vanheule S, van Rossem M, van Santen J, Veenkamp J, Voge M, Vraeghe M, Walck C, Wallace A, Wandkowsky N, Weaver C, Wendt C, Westerhoff S, Whelan BJ, Wiebe K, Wille L, Williams DR, Wills L, Wissing H, Wolf M, Wood TR, Woolsey E, Woschnagg K, Xu DL, Xu XW, Xu Y, Yanez JP, Yodh G, Yoshida S, Zoll M. Searches for Sterile Neutrinos with the IceCube Detector. PHYSICAL REVIEW LETTERS 2016; 117:071801. [PMID: 27563950 DOI: 10.1103/physrevlett.117.071801] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous ν_{μ} or ν[over ¯]_{μ} disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos experience a strong Mikheyev-Smirnov-Wolfenstein-resonant oscillation. The exclusion limits extend to sin^{2}2θ_{24}≤0.02 at Δm^{2}∼0.3 eV^{2} at the 90% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99% confidence level for the global best-fit value of |U_{e4}|^{2}.
Collapse
|