1
|
Lymer S, Patel K, Lennon J, Blau J. Circadian clock neurons use activity-regulated gene expression for structural plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595887. [PMID: 38826237 PMCID: PMC11142243 DOI: 10.1101/2024.05.25.595887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Drosophila s-LNv circadian pacemaker neurons show dramatic structural plasticity, with their projections expanded at dawn and then retracted by dusk. This predictable plasticity makes s-LNvs ideal to study molecular mechanisms of plasticity. Although s-LNv plasticity is controlled by their molecular clock, changing s-LNv excitability also regulates plasticity. Here, we tested the idea that s-LNvs use activity-regulated genes to control plasticity. We found that inducing expression of either of the activity-regulated transcription factors Hr38 or Sr (orthologs of mammalian Nr4a1 and Egr1) is sufficient to rapidly expand s-LNv projections. Conversely, transiently knocking down expression of either Hr38 or sr blocks expansion of s-LNv projections at dawn. We show that Hr38 rapidly induces transcription of sif, which encodes a Rac1 GEF required for s-LNv plasticity rhythms. We conclude that the s-LNv molecular clock controls s-LNv excitability, which couples to an activity-regulated gene expression program to control s-LNv plasticity.
Collapse
|
2
|
Ehrlich A, Xu AA, Luminari S, Kidd S, Treiber CD, Russo J, Blau J. Tango-seq: overlaying transcriptomics on connectomics to identify neurons downstream of Drosophila clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595372. [PMID: 38826334 PMCID: PMC11142192 DOI: 10.1101/2024.05.22.595372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Knowing how neural circuits change with neuronal plasticity and differ between individuals is important to fully understand behavior. Connectomes are typically assembled using electron microscopy, but this is low throughput and impractical for analyzing plasticity or mutations. Here, we modified the trans-Tango genetic circuit-tracing technique to identify neurons synaptically downstream of Drosophila s-LNv clock neurons, which show 24hr plasticity rhythms. s-LNv target neurons were labeled specifically in adult flies using a nuclear reporter gene, which facilitated their purification and then single cell sequencing. We call this Tango-seq, and it allows transcriptomic data - and thus cell identity - to be overlayed on top of anatomical data. We found that s-LNvs preferentially make synaptic connections with a subset of the CNMa+ DN1p clock neurons, and that these are likely plastic connections. We also identified synaptic connections between s-LNvs and mushroom body Kenyon cells. Tango-seq should be a useful addition to the connectomics toolkit.
Collapse
|
3
|
Gundermann DG, Lymer S, Blau J. A rapid and dynamic role for FMRP in the plasticity of adult neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555985. [PMID: 37693612 PMCID: PMC10491314 DOI: 10.1101/2023.09.01.555985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fragile X syndrome (FXS) is a neuro-developmental disorder caused by silencing Fmr1, which encodes the RNA-binding protein FMRP. Although Fmr1 is expressed in adult neurons, it has been challenging to separate acute from chronic effects of loss of Fmr1 in models of FXS. We have used the precision of Drosophila genetics to test if Fmr1 acutely affects adult neuronal plasticity in vivo, focusing on the s-LNv circadian pacemaker neurons that show 24 hour rhythms in structural plasticity. We found that over-expressing Fmr1 for only 4 hours blocks the activity-dependent expansion of s-LNv projections without altering the circadian clock or activity-regulated gene expression. Conversely, acutely reducing Fmr1 expression prevented s-LNv projections from retracting. One FMRP target that we identified in s-LNvs is sif, which encodes a Rac1 GEF. Our data indicate that FMRP normally reduces sif mRNA translation at dusk to reduce Rac1 activity. Overall, our data reveal a previously unappreciated rapid and direct role for FMRP in acutely regulating neuronal plasticity in adult neurons, and underscore the importance of RNA-binding proteins in this process.
Collapse
|
4
|
Hackley CR, Mazzoni EO, Blau J. cAMPr: A single-wavelength fluorescent sensor for cyclic AMP. Sci Signal 2018; 11:11/520/eaah3738. [PMID: 29511120 DOI: 10.1126/scisignal.aah3738] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetically encoded fluorescent sensors enable cell-specific measurements of ions and small molecules in real time. Cyclic adenosine monophosphate (cAMP) is one of the most important signaling molecules in virtually all cell types and organisms. We describe cAMPr, a new single-wavelength cAMP sensor. We developed cAMPr in bacteria and embryonic stem cells and validated the sensor in mammalian neurons in vitro and in Drosophila circadian pacemaker neurons in intact brains. Comparison with other single-wavelength cAMP sensors showed that cAMPr improved the quantitative detection of cAMP abundance. In addition, cAMPr is compatible with both single-photon and two-photon imaging. This enabled us to use cAMPr together with the red fluorescent Ca2+ sensor RCaMP1h to simultaneously monitor Ca2+ and cAMP in Drosophila brains. Thus, cAMPr is a new and versatile genetically encoded cAMP sensor.
Collapse
|
5
|
Money N, Newman J, Demissie S, Roth P, Blau J. Anti-microbial stewardship: antibiotic use in well-appearing term neonates born to mothers with chorioamnionitis. J Perinatol 2017; 37:1304-1309. [PMID: 28981079 DOI: 10.1038/jp.2017.137] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine if implementation of a protocol based on a neonatal early-onset sepsis (EOS) calculator developed by Kaiser Permanente would safely reduce antibiotic use in well-appearing term infants born to mothers with chorioamnionitis in the unique setting of an Observation Nursery. STUDY DESIGN Data obtained from a retrospective chart review of well-appearing term infants born between 2009 and 2016 were entered into the EOS calculator to obtain management recommendations. RESULTS Three hundred and sixty-two infants met the study criteria. Management according to the EOS calculator would reduce antibiotic use from 99% to 2.5% (P<0.0001) of patients. Average length of therapy would also decrease from 2.08 to 0.05 days (P<0.0001). One infant, who remained asymptomatic, had Enterococcus bacteremia and received a 7-day course of broad-spectrum antibiotics. CONCLUSIONS Culture-positive sepsis in asymptomatic neonates born to mothers with chorioamnionitis is rare. Management according to the EOS calculator would markedly reduce the potential complications of antibiotic use. These data should initiate re-examination of existing protocols for management of this cohort of patients.
Collapse
|
6
|
Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, Baldi P, de Bekker C, Bell-Pedersen D, Blau J, Brown S, Ceriani MF, Chen Z, Chiu JC, Cox J, Crowell AM, DeBruyne JP, Dijk DJ, DiTacchio L, Doyle FJ, Duffield GE, Dunlap JC, Eckel-Mahan K, Esser KA, FitzGerald GA, Forger DB, Francey LJ, Fu YH, Gachon F, Gatfield D, de Goede P, Golden SS, Green C, Harer J, Harmer S, Haspel J, Hastings MH, Herzel H, Herzog ED, Hoffmann C, Hong C, Hughey JJ, Hurley JM, de la Iglesia HO, Johnson C, Kay SA, Koike N, Kornacker K, Kramer A, Lamia K, Leise T, Lewis SA, Li J, Li X, Liu AC, Loros JJ, Martino TA, Menet JS, Merrow M, Millar AJ, Mockler T, Naef F, Nagoshi E, Nitabach MN, Olmedo M, Nusinow DA, Ptáček LJ, Rand D, Reddy AB, Robles MS, Roenneberg T, Rosbash M, Ruben MD, Rund SSC, Sancar A, Sassone-Corsi P, Sehgal A, Sherrill-Mix S, Skene DJ, Storch KF, Takahashi JS, Ueda HR, Wang H, Weitz C, Westermark PO, Wijnen H, Xu Y, Wu G, Yoo SH, Young M, Zhang EE, Zielinski T, Hogenesch JB. Guidelines for Genome-Scale Analysis of Biological Rhythms. J Biol Rhythms 2017; 32:380-393. [PMID: 29098954 PMCID: PMC5692188 DOI: 10.1177/0748730417728663] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.
Collapse
|
7
|
Van Naarden Braun K, Grazel R, Koppel R, Lakshminrusimha S, Lohr J, Kumar P, Govindaswami B, Giuliano M, Cohen M, Spillane N, Jegatheesan P, McClure D, Hassinger D, Fofah O, Chandra S, Allen D, Axelrod R, Blau J, Hudome S, Assing E, Garg LF. Evaluation of critical congenital heart defects screening using pulse oximetry in the neonatal intensive care unit. J Perinatol 2017; 37:1117-1123. [PMID: 28749481 PMCID: PMC5633653 DOI: 10.1038/jp.2017.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/24/2017] [Accepted: 05/22/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate the implementation of early screening for critical congenital heart defects (CCHDs) in the neonatal intensive care unit (NICU) and potential exclusion of sub-populations from universal screening. STUDY DESIGN Prospective evaluation of CCHD screening at multiple time intervals was conducted in 21 NICUs across five states (n=4556 infants). RESULTS Of the 4120 infants with complete screens, 92% did not have prenatal CHD diagnosis or echocardiography before screening, 72% were not receiving oxygen at 24 to 48 h and 56% were born ⩾2500 g. Thirty-seven infants failed screening (0.9%); none with an unsuspected CCHD. False positive rates were low for infants not receiving oxygen (0.5%) and those screened after weaning (0.6%), yet higher among infants born at <28 weeks (3.8%). Unnecessary echocardiograms were minimal (0.2%). CONCLUSION Given the majority of NICU infants were ⩾2500 g, not on oxygen and not preidentified for CCHD, systematic screening at 24 to 48 h may be of benefit for early detection of CCHD with minimal burden.
Collapse
|
8
|
Lymer S, Blau J. Do Flies Count Sheep or NMDA Receptors to Go to Sleep? Cell 2016; 165:1310-1311. [PMID: 27259141 DOI: 10.1016/j.cell.2016.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The drive to sleep increases the longer that we stay awake, but this process is poorly understood at the cellular level. Now, Liu et al. show that the plasticity of a small group of neurons in the Drosophila central brain is a key component of the sleep homeostat.
Collapse
|
9
|
Cavey M, Collins B, Bertet C, Blau J. Circadian rhythms in neuronal activity propagate through output circuits. Nat Neurosci 2016; 19:587-95. [PMID: 26928065 PMCID: PMC5066395 DOI: 10.1038/nn.4263] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
Twenty-four hour rhythms in behavior are organized by a network of circadian pacemaker neurons. Rhythmic activity in this network is generated by intrinsic rhythms in clock neuron physiology and communication between clock neurons. However, it is poorly understood how the activity of a small number of pacemaker neurons is translated into rhythmic behavior of the whole animal. To understand this, we screened for signals that could identify circadian output circuits in Drosophila melanogaster. We found that leucokinin neuropeptide (LK) and its receptor (LK-R) were required for normal behavioral rhythms. This LK/LK-R circuit connects pacemaker neurons to brain areas that regulate locomotor activity and sleep. Our experiments revealed that pacemaker neurons impose rhythmic activity and excitability on LK- and LK-R-expressing neurons. We also found pacemaker neuron-dependent activity rhythms in a second circadian output pathway controlled by DH44 neuropeptide-expressing neurons. We conclude that rhythmic clock neuron activity propagates to multiple downstream circuits to orchestrate behavioral rhythms.
Collapse
|
10
|
Petsakou A, Sapsis TP, Blau J. Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy. Cell 2015; 162:823-35. [PMID: 26234154 DOI: 10.1016/j.cell.2015.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/19/2015] [Accepted: 06/13/2015] [Indexed: 01/02/2023]
Abstract
Neuronal plasticity helps animals learn from their environment. However, it is challenging to link specific changes in defined neurons to altered behavior. Here, we focus on circadian rhythms in the structure of the principal s-LNv clock neurons in Drosophila. By quantifying neuronal architecture, we observed that s-LNv structural plasticity changes the amount of axonal material in addition to cycles of fasciculation and defasciculation. We found that this is controlled by rhythmic Rho1 activity that retracts s-LNv axonal termini by increasing myosin phosphorylation and simultaneously changes the balance of pre-synaptic and dendritic markers. This plasticity is required to change clock network hierarchy and allow seasonal adaptation. Rhythms in Rho1 activity are controlled by clock-regulated transcription of Puratrophin-1-like (Pura), a Rho1 GEF. Since spinocerebellar ataxia is associated with mutations in human Puratrophin-1, our data support the idea that defective actin-related plasticity underlies this ataxia.
Collapse
|
11
|
Komakhidze T, Hoestlandt C, Dolakidze T, Shakhnazarova M, Chlikadze R, Kopaleishvili N, Goginashvili K, Kherkheulidze M, Clark A, Blau J. Cost-effectiveness of pneumococcal conjugate vaccination in Georgia. Vaccine 2015; 33 Suppl 1:A219-26. [DOI: 10.1016/j.vaccine.2014.12.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/24/2022]
|
12
|
Collins B, Kaplan HS, Cavey M, Lelito KR, Bahle AH, Zhu Z, Macara AM, Roman G, Shafer OT, Blau J. Differentially timed extracellular signals synchronize pacemaker neuron clocks. PLoS Biol 2014; 12:e1001959. [PMID: 25268747 PMCID: PMC4181961 DOI: 10.1371/journal.pbio.1001959] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022] Open
Abstract
Circadian pacemaker neurons in Drosophila are regulated by two synchronizing signals that are released at opposite times of day, generating a rhythm in intracellular cyclic AMP. Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species. Circadian molecular clocks are essential for daily cycles in animal behavior and we have a good understanding of how these clocks work in individual pacemaker neurons. However, the accuracy of these individual clocks is meaningless unless they are synchronized with one another. In this study we show that synchronizing the principal pacemaker LNv neurons in Drosophila larvae require two extracellular signals that are received at opposite times of day: namely, the neuropeptide PDF released from LNvs themselves at dawn and glutamate released from dorsal clock neurons at dusk. LNvs perceive both PDF and glutamate via G-protein coupled receptors that increase or decrease intracellular cAMP, respectively. The alternating phases of PDF and glutamate release generate oscillations in intracellular cyclic AMP. In addition to maintaining synchrony between LNvs, this rhythm is also required for molecular clock oscillations in individual larval LNvs. We show that disruption of PDF and glutamate signaling also reduces synchrony in adult LNvs. This impairs the oscillations of clock proteins and flies have delayed onset of sleep. Our data highlight the importance of intercellular signaling in ensuring synchrony between clock neurons within the circadian network. Our findings help extend the conservation of clock properties between Drosophila and mammals beyond clock genes to include clock circuitry.
Collapse
|
13
|
|
14
|
Ruben M, Drapeau MD, Mizrak D, Blau J. A mechanism for circadian control of pacemaker neuron excitability. J Biol Rhythms 2013; 27:353-64. [PMID: 23010658 DOI: 10.1177/0748730412455918] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the intracellular molecular clocks that regulate circadian (~24 h) behavioral rhythms are well understood, it remains unclear how molecular clock information is transduced into rhythmic neuronal activity that in turn drives behavioral rhythms. To identify potential clock outputs, the authors generated expression profiles from a homogeneous population of purified pacemaker neurons (LN(v)s) from wild-type and clock mutant Drosophila. They identified a group of genes with enriched expression in LN(v)s and a second group of genes rhythmically expressed in LN(v)s in a clock-dependent manner. Only 10 genes fell into both groups: 4 core clock genes, including period (per) and timeless (tim), and 6 genes previously unstudied in circadian rhythms. The authors focused on one of these 6 genes, Ir, which encodes an inward rectifier K(+) channel likely to regulate resting membrane potential, whose expression peaks around dusk. Reducing Ir expression in LN(v)s increased larval light avoidance and lengthened the period of adult locomotor rhythms, consistent with increased LN(v) excitability. In contrast, increased Ir expression made many adult flies arrhythmic and dampened PER protein oscillations. The authors propose that rhythmic Ir expression contributes to daily rhythms in LN(v) neuronal activity, which in turn feed back to regulate molecular clock oscillations.
Collapse
|
15
|
Mizrak D, Ruben M, Myers GN, Rhrissorrakrai K, Gunsalus KC, Blau J. Electrical activity can impose time of day on the circadian transcriptome of pacemaker neurons. Curr Biol 2012; 22:1871-80. [PMID: 22940468 DOI: 10.1016/j.cub.2012.07.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/29/2012] [Accepted: 07/31/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Circadian (∼24 hr) rhythms offer one of the best examples of how gene expression is tied to behavior. Circadian pacemaker neurons contain molecular clocks that control 24 hr rhythms in gene expression that in turn regulate electrical activity rhythms to control behavior. RESULTS Here we demonstrate the inverse relationship: there are broad transcriptional changes in Drosophila clock neurons (LN(v)s) in response to altered electrical activity, including a large set of circadian genes. Hyperexciting LN(v)s creates a morning-like expression profile for many circadian genes while hyperpolarization leads to an evening-like transcriptional state. The electrical effects robustly persist in per(0) mutant LN(v)s but not in cyc(0) mutant LN(v)s, suggesting that neuronal activity interacts with the transcriptional activators of the core circadian clock. Bioinformatic and immunocytochemical analyses suggest that CREB family transcription factors link LN(v) electrical state to circadian gene expression. CONCLUSIONS The electrical state of a clock neuron can impose time of day to its transcriptional program. We propose that this acts as an internal zeitgeber to add robustness and precision to circadian behavioral rhythms.
Collapse
|
16
|
Kroner E, Blau J, Arzt E. Note: An adhesion measurement setup for bioinspired fibrillar surfaces using flat probes. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:016101. [PMID: 22299997 DOI: 10.1063/1.3675888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Current adhesion measurement setups designed for experiments on bioinspired fibrillar surfaces, either commercial or constructed in-house, do not allow adhesion measurements with in situ visualization, high resolution, high force range, and controlled alignment at the same time. In this paper a new adhesion tester is presented, which enables contact experiments with controlled tilt angle (accuracy of ±0.02°). This allows the use of flat probes and thus greatly simplifies the determination of experimental parameters such as pull-off strength or Young's modulus. The deflection of a double-clamped glass beam is measured by laser interferometry with an accuracy of ±60 nm, which yields a precise force measurement over three orders of magnitude force range without changing the glass beam. Contact formation and detachment events can be visualized in situ. The current adhesion tester is designed for force measurements in the range of 1 μN to 1 N and fills the gap between macroscopic tests and atomic force microscopy measurements.
Collapse
|
17
|
Dahdal D, Reeves DC, Ruben M, Akabas MH, Blau J. Drosophila pacemaker neurons require g protein signaling and GABAergic inputs to generate twenty-four hour behavioral rhythms. Neuron 2011; 68:964-77. [PMID: 21145008 DOI: 10.1016/j.neuron.2010.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2010] [Indexed: 01/30/2023]
Abstract
Intercellular signaling is important for accurate circadian rhythms. In Drosophila, the small ventral lateral neurons (s-LN(v)s) are the dominant pacemaker neurons and set the pace of most other clock neurons in constant darkness. Here we show that two distinct G protein signaling pathways are required in LN(v)s for 24 hr rhythms. Reducing signaling in LN(v)s via the G alpha subunit Gs, which signals via cAMP, or via the G alpha subunit Go, which we show signals via Phospholipase 21c, lengthens the period of behavioral rhythms. In contrast, constitutive Gs or Go signaling makes most flies arrhythmic. Using dissociated LN(v)s in culture, we found that Go and the metabotropic GABA(B)-R3 receptor are required for the inhibitory effects of GABA on LN(v)s and that reduced GABA(B)-R3 expression in vivo lengthens period. Although no clock neurons produce GABA, hyperexciting GABAergic neurons disrupts behavioral rhythms and s-LN(v) molecular clocks. Therefore, s-LN(v)s require GABAergic inputs for 24 hr rhythms.
Collapse
|
18
|
Keene AC, Duboué ER, McDonald DM, Dus M, Suh GSB, Waddell S, Blau J. Clock and cycle limit starvation-induced sleep loss in Drosophila. Curr Biol 2010; 20:1209-15. [PMID: 20541409 DOI: 10.1016/j.cub.2010.05.029] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Neural systems controlling the vital functions of sleep and feeding in mammals are tightly interconnected: sleep deprivation promotes feeding, whereas starvation suppresses sleep. Here we show that starvation in Drosophila potently suppresses sleep, suggesting that these two homeostatically regulated behaviors are also integrated in flies. The sleep-suppressing effect of starvation is independent of the mushroom bodies, a previously identified sleep locus in the fly brain, and therefore is regulated by distinct neural circuitry. The circadian clock genes Clock (Clk) and cycle (cyc) are critical for proper sleep suppression during starvation. However, the sleep suppression is independent of light cues and of circadian rhythms as shown by the fact that starved period mutants sleep like wild-type flies. By selectively targeting subpopulations of Clk-expressing neurons, we localize the observed sleep phenotype to the dorsally located circadian neurons. These findings show that Clk and cyc act during starvation to modulate the conflict of whether flies sleep or search for food.
Collapse
|
19
|
Abstract
Period (PER) proteins are essential parts of the molecular clocks that control circadian rhythms in flies and mammals. Phosphorylation regulates PER's stability and subcellular localization; however, the physiologically relevant sites have been difficult to identify in spite of knowing the relevant kinase. In this issue of Genes & Development, Chiu and colleagues (1758-1772) identify a key phosphorylation site on PER that recruits the F-box protein Slimb to trigger PER degradation and set clock speed.
Collapse
|
20
|
Blau J, Blanchard F, Collins B, Dahdal D, Knowles A, Mizrak D, Ruben M. What is there left to learn about the Drosophila clock? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:243-50. [PMID: 18419281 DOI: 10.1101/sqb.2007.72.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Circadian rhythms offer probably the best understanding of how genes control behavior, and much of this understanding has come from studies in Drosophila. More recently, genetic manipulation of clock neurons in Drosophila has helped identify how daily patterns of activity are programmed by different clock neuron groups. Here, we review some of the more recent findings on the fly molecular clock and ask what more the fly model can offer to circadian biologists.
Collapse
|
21
|
Collins B, Blau J. Even a stopped clock tells the right time twice a day: circadian timekeeping in Drosophila. Pflugers Arch 2007; 454:857-67. [PMID: 17226053 DOI: 10.1007/s00424-006-0188-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 11/03/2006] [Indexed: 11/30/2022]
Abstract
"Even a stopped clock tells the right time twice a day, and for once I'm inclined to believe Withnail is right. We are indeed drifting into the arena of the unwell... What we need is harmony. Fresh air. Stuff like that" "Bruce Robinson (1986, ref. 1)". Although a stopped Drosophila clock probably does not tell the right time even once a day, recent findings have demonstrated that accurate circadian time-keeping is dependent on harmony between groups of clock neurons within the brain. Furthermore, when harmony between the environment and the endogenous clock is lost, as during jet lag, we definitely feel unwell. In this review, we provide an overview of the current understanding of circadian rhythms in Drosophila, focussing on recent discoveries that demonstrate how approximately 100 neurons within the Drosophila brain control the behaviour of the whole fly, and how these rhythms respond to the environment.
Collapse
MESH Headings
- Adaptation, Biological/genetics
- Adaptation, Biological/physiology
- Adaptation, Biological/radiation effects
- Animals
- Biological Clocks/physiology
- Biological Clocks/radiation effects
- Circadian Rhythm/physiology
- Circadian Rhythm/radiation effects
- Drosophila/anatomy & histology
- Drosophila/physiology
- Drosophila Proteins/physiology
- Drosophila Proteins/radiation effects
- Feedback, Physiological
- Genes, Insect/physiology
- Light
- Models, Neurological
- Mutagenesis, Site-Directed
- Nerve Net/physiology
- Nerve Net/radiation effects
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/physiology
- Photoreceptor Cells, Invertebrate/radiation effects
- Thermosensing/genetics
- Thermosensing/physiology
Collapse
|
22
|
Abstract
The accepted dogma in circadian biology is that the transcription factor CLOCK lies at the heart of the molecular clock that drives behavioral and molecular rhythms. In this issue of Neuron, the generation of CLOCK-deficient mice with only subtle clock defects by DeBruyne et al. shakes up this view of the mammalian clock.
Collapse
|
23
|
Collins B, Mazzoni EO, Stanewsky R, Blau J. Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr Biol 2006; 16:441-9. [PMID: 16527739 DOI: 10.1016/j.cub.2006.01.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although most circadian clock components are conserved between Drosophila and mammals, the roles assigned to the CRYPTOCHROME (CRY) proteins are very different: Drosophila CRY functions as a circadian photoreceptor, whereas mammalian CRY proteins (mCRY1 and 2) are transcriptional repressors essential for molecular clock oscillations. RESULTS Here we demonstrate that Drosophila CRY also functions as a transcriptional repressor. We found that RNA levels of genes directly activated by the transcription factors CLOCK (CLK) and CYCLE (CYC) are derepressed in cry(b) mutant eyes. Conversely, while overexpression of CRY and PERIOD (PER) in the eye repressed CLK/CYC activity, neither PER nor CRY repressed individually. Drosophila CRY also repressed CLK/CYC activity in cell culture. Repression by CRY appears confined to peripheral clocks, since neither cry(b) mutants nor overexpression of PER and CRY together in pacemaker neurons significantly affected molecular or behavioral rhythms. Increasing CLK/CYC activity by removing two repressors, PER and CRY, led to ectopic expression of the timeless clock gene, similar to overexpression of Clk itself. CONCLUSIONS Drosophila CRY functions as a transcriptional repressor required for the oscillation of peripheral circadian clocks and for the correct specification of clock cells.
Collapse
|
24
|
Cyran SA, Yiannoulos G, Buchsbaum AM, Saez L, Young MW, Blau J. The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J Neurosci 2006; 25:5430-7. [PMID: 15930393 PMCID: PMC1361277 DOI: 10.1523/jneurosci.0263-05.2005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Period (PER), Timeless (TIM), and Double-Time (DBT) proteins are essential components of one feedback loop in the Drosophila circadian molecular clock. PER and TIM physically interact. Coexpression of PER and TIM promotes their nuclear accumulation and influences the activity of DBT: although DBT phosphorylates and destabilizes PER, this is suppressed by TIM. Experiments using Drosophila cells in culture have indicated that PER can translocate to the nucleus without TIM and will repress transcription in a DBT-potentiated manner. In this study, we examined the control of PER subcellular localization in Drosophila clock cells in vivo. We found that PER can translocate to the nucleus in tim(01) null mutants but only if DBT kinase activity is inhibited. We also found that nuclear PER is a potent transcriptional repressor in dbt mutants in vivo without TIM. Thus, in vivo, DBT regulates PER subcellular localization, in addition to its previously documented role as a mediator of PER stability. However, DBT does not seem essential for transcriptional repression by PER. It was reported previously that overexpression of a second kinase, Shaggy (SGG)/Glycogen Synthase Kinase 3, accelerates PER nuclear accumulation. Here, we show that these effects of SGG on PER nuclear accumulation require TIM. We propose a revised clock model that incorporates this tight kinase regulation of PER and TIM nuclear entry.
Collapse
|
25
|
|