1
|
Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW. double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 1998; 94:83-95. [PMID: 9674430 DOI: 10.1016/s0092-8674(00)81224-6] [Citation(s) in RCA: 608] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have isolated three alleles of a novel Drosophila clock gene, double-time (dbt). Short- (dbtS) and long-period (dbtL) mutants alter both behavioral rhythmicity and molecular oscillations from previously identified clock genes, period and timeless. A third allele, dbtP, causes pupal lethality and eliminates circadian cycling of per and tim gene products in larvae. In dbtP mutants, PER proteins constitutively accumulate, remain hypophosphorylated, and no longer depend on TIM proteins for their accumulation. We propose that the normal function of DOUBLETIME protein is to reduce the stability and thus the level of accumulation of monomeric PER proteins. This would promote a delay between per/tim transcription and PER/TIM complex function, which is essential for molecular rhythmicity.
Collapse
|
|
27 |
608 |
2
|
Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 1998; 94:97-107. [PMID: 9674431 DOI: 10.1016/s0092-8674(00)81225-8] [Citation(s) in RCA: 539] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cloning of double-time (dbt) is reported. DOUBLETIME protein (DBT) is most closely related to human casein kinase Iepsilon. dbtS and dbtL mutations, which alter period length of Drosophila circadian rhythms, produce single amino acid changes in conserved regions of the predicted kinase. dbtP mutants, which eliminate rhythms of per and tim expression and constitutively overproduce hypophosphorylated PER proteins, abolish most dbt expression. dbt mRNA appears to be expressed in the same cell types as are per and tim and shows no evident oscillation in wild-type heads. DBT is capable of binding to PER in vitro and in Drosophila cells, suggesting that a physical association of PER and DBT regulates PER phosphorylation and accumulation in vivo.
Collapse
|
Comparative Study |
27 |
539 |
3
|
Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NRJ, Hardin PE, Young MW, Storti RV, Blau J. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 2003; 112:329-41. [PMID: 12581523 DOI: 10.1016/s0092-8674(03)00074-6] [Citation(s) in RCA: 403] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Drosophila circadian clock consists of two interlocked transcriptional feedback loops. In one loop, dCLOCK/CYCLE activates period expression, and PERIOD protein then inhibits dCLOCK/CYCLE activity. dClock is also rhythmically transcribed, but its regulators are unknown. vrille (vri) and Par Domain Protein 1 (Pdp1) encode related transcription factors whose expression is directly activated by dCLOCK/CYCLE. We show here that VRI and PDP1 proteins feed back and directly regulate dClock expression. Repression of dClock by VRI is separated from activation by PDP1 since VRI levels peak 3-6 hours before PDP1. Rhythmic vri transcription is required for molecular rhythms, and here we show that the clock stops in a Pdp1 null mutant, identifying Pdp1 as an essential clock gene. Thus, VRI and PDP1, together with dClock itself, comprise a second feedback loop in the Drosophila clock that gives rhythmic expression of dClock, and probably of other genes, to generate accurate circadian rhythms.
Collapse
|
Comment |
22 |
403 |
4
|
Nitabach MN, Blau J, Holmes TC. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 2002; 109:485-95. [PMID: 12086605 DOI: 10.1016/s0092-8674(02)00737-7] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Electrical silencing of Drosophila circadian pacemaker neurons through targeted expression of K+ channels causes severe deficits in free-running circadian locomotor rhythmicity in complete darkness. Pacemaker electrical silencing also stops the free-running oscillation of PERIOD (PER) and TIMELESS (TIM) proteins that constitutes the core of the cell-autonomous molecular clock. In contrast, electrical silencing fails to abolish PER and TIM oscillation in light-dark cycles, although it does impair rhythmic behavior. On the basis of these findings, we propose that electrical activity is an essential element of the free-running molecular clock of pacemaker neurons along with the transcription factors and regulatory enzymes that have been previously identified as required for clock function.
Collapse
|
|
23 |
356 |
5
|
Abstract
We identified a novel regulatory loop within Drosophila's circadian clock. A screen for clock-controlled genes recovered vrille (vri), a transcription factor essential for embryonic development. vri is expressed in circadian pacemaker cells in larval and adult brains. vri RNA levels oscillate with a circadian rhythm. Cycling is directly regulated by the transcription factors dCLOCK and CYCLE, which are also required for oscillations of period and timeless RNA. Eliminating the normal vri cycle suppresses period and timeless expression and causes long-period behavioral rhythms and arrhythmicity, indicating that cycling vri is required for a functional Drosophila clock. We also show that dCLOCK and VRI independently regulate levels of a neuropeptide, pigment dispersing factor, which appears to regulate overt behavior.
Collapse
|
|
26 |
328 |
6
|
Blau J, Xiao H, McCracken S, O'Hare P, Greenblatt J, Bentley D. Three functional classes of transcriptional activation domain. Mol Cell Biol 1996; 16:2044-55. [PMID: 8628270 PMCID: PMC231191 DOI: 10.1128/mcb.16.5.2044] [Citation(s) in RCA: 233] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have studied the abilities of different transactivation domains to stimulate the initiation and elongation (postinitiation) steps of RNA polymerase II transcription in vivo. Nuclear run-on and RNase protection analyses revealed three classes of activation domains: Sp1 and CTF stimulated initiation (type I); human immunodeficiency virus type 1 Tat fused to a DNA binding domain stimulated predominantly elongation (type IIA); and VP16, p53, and E2F1 stimulated both initiation and elongation (type IIB). A quadruple point mutation of VP16 converted it from a type IIB to a type I activator. Type I and type IIA activators synergized with one another but not with type IIB activators. This observation implies that synergy can result from the concerted action of factors stimulating two different steps in transcription: initiation and elongation. The functional differences between activators may be explained by the different contacts they make with general transcription factors. In support of this idea, we found a correlation between the abilities of activators, including Tat, to stimulate elongation and their abilities to bind TFIIH.
Collapse
|
research-article |
29 |
233 |
7
|
Yankulov K, Blau J, Purton T, Roberts S, Bentley DL. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 1994; 77:749-59. [PMID: 8205623 DOI: 10.1016/0092-8674(94)90058-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report that a variety of transactivators stimulate elongation by RNA polymerase II. Activated transcription complexes have high processivity and are able to read through pausing and termination sites efficiently. In contrast, nonactivated and "squelched" transcription mostly arrests prematurely. Activators differ in the extent to which they stimulate processivity; for example, GAL4-VP16 and GAL4-E1a are more effective than GAL4-AH. The stimulation of elongation can be as important as the stimulation of initiation in activating expression of a reporter gene. We suggest that setting the competence of polymerase II to elongate is an integral part of the initiation step that is controlled by activators cooperating with the general transcription factors.
Collapse
|
|
31 |
201 |
8
|
Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, Baldi P, de Bekker C, Bell-Pedersen D, Blau J, Brown S, Ceriani MF, Chen Z, Chiu JC, Cox J, Crowell AM, DeBruyne JP, Dijk DJ, DiTacchio L, Doyle FJ, Duffield GE, Dunlap JC, Eckel-Mahan K, Esser KA, FitzGerald GA, Forger DB, Francey LJ, Fu YH, Gachon F, Gatfield D, de Goede P, Golden SS, Green C, Harer J, Harmer S, Haspel J, Hastings MH, Herzel H, Herzog ED, Hoffmann C, Hong C, Hughey JJ, Hurley JM, de la Iglesia HO, Johnson C, Kay SA, Koike N, Kornacker K, Kramer A, Lamia K, Leise T, Lewis SA, Li J, Li X, Liu AC, Loros JJ, Martino TA, Menet JS, Merrow M, Millar AJ, Mockler T, Naef F, Nagoshi E, Nitabach MN, Olmedo M, Nusinow DA, Ptáček LJ, Rand D, Reddy AB, Robles MS, Roenneberg T, Rosbash M, Ruben MD, Rund SSC, Sancar A, Sassone-Corsi P, Sehgal A, Sherrill-Mix S, Skene DJ, Storch KF, Takahashi JS, Ueda HR, Wang H, Weitz C, Westermark PO, Wijnen H, Xu Y, Wu G, Yoo SH, Young M, Zhang EE, Zielinski T, Hogenesch JB. Guidelines for Genome-Scale Analysis of Biological Rhythms. J Biol Rhythms 2017; 32:380-393. [PMID: 29098954 PMCID: PMC5692188 DOI: 10.1177/0748730417728663] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.
Collapse
|
Journal Article |
8 |
187 |
9
|
Keene AC, Duboué ER, McDonald DM, Dus M, Suh GSB, Waddell S, Blau J. Clock and cycle limit starvation-induced sleep loss in Drosophila. Curr Biol 2010; 20:1209-15. [PMID: 20541409 DOI: 10.1016/j.cub.2010.05.029] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 10/19/2022]
Abstract
Neural systems controlling the vital functions of sleep and feeding in mammals are tightly interconnected: sleep deprivation promotes feeding, whereas starvation suppresses sleep. Here we show that starvation in Drosophila potently suppresses sleep, suggesting that these two homeostatically regulated behaviors are also integrated in flies. The sleep-suppressing effect of starvation is independent of the mushroom bodies, a previously identified sleep locus in the fly brain, and therefore is regulated by distinct neural circuitry. The circadian clock genes Clock (Clk) and cycle (cyc) are critical for proper sleep suppression during starvation. However, the sleep suppression is independent of light cues and of circadian rhythms as shown by the fact that starved period mutants sleep like wild-type flies. By selectively targeting subpopulations of Clk-expressing neurons, we localize the observed sleep phenotype to the dorsally located circadian neurons. These findings show that Clk and cyc act during starvation to modulate the conflict of whether flies sleep or search for food.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
171 |
10
|
Cyran SA, Yiannoulos G, Buchsbaum AM, Saez L, Young MW, Blau J. The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J Neurosci 2006; 25:5430-7. [PMID: 15930393 PMCID: PMC1361277 DOI: 10.1523/jneurosci.0263-05.2005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Period (PER), Timeless (TIM), and Double-Time (DBT) proteins are essential components of one feedback loop in the Drosophila circadian molecular clock. PER and TIM physically interact. Coexpression of PER and TIM promotes their nuclear accumulation and influences the activity of DBT: although DBT phosphorylates and destabilizes PER, this is suppressed by TIM. Experiments using Drosophila cells in culture have indicated that PER can translocate to the nucleus without TIM and will repress transcription in a DBT-potentiated manner. In this study, we examined the control of PER subcellular localization in Drosophila clock cells in vivo. We found that PER can translocate to the nucleus in tim(01) null mutants but only if DBT kinase activity is inhibited. We also found that nuclear PER is a potent transcriptional repressor in dbt mutants in vivo without TIM. Thus, in vivo, DBT regulates PER subcellular localization, in addition to its previously documented role as a mediator of PER stability. However, DBT does not seem essential for transcriptional repression by PER. It was reported previously that overexpression of a second kinase, Shaggy (SGG)/Glycogen Synthase Kinase 3, accelerates PER nuclear accumulation. Here, we show that these effects of SGG on PER nuclear accumulation require TIM. We propose a revised clock model that incorporates this tight kinase regulation of PER and TIM nuclear entry.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
19 |
117 |
11
|
Mazzoni EO, Desplan C, Blau J. Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Neuron 2005; 45:293-300. [PMID: 15664180 DOI: 10.1016/j.neuron.2004.12.038] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 10/28/2004] [Accepted: 11/23/2004] [Indexed: 10/25/2022]
Abstract
Circadian pacemaker neurons contain a molecular clock that oscillates with a period of approximately 24 hr, controlling circadian rhythms of behavior. Pacemaker neurons respond to visual system inputs for clock resetting, but, unlike other neurons, have not been reported to transmit rapid signals to their targets. Here we show that pacemaker neurons are required to mediate a rapid behavior. The Drosophila larval visual system, Bolwig's organ (BO), projects to larval pacemaker neurons to entrain their clock. BO also mediates larval photophobic behavior. We found that ablation or electrical silencing of larval pacemaker neurons abolished light avoidance. Thus, circadian pacemaker neurons receive input from BO not only to reset the clock but also to transmit rapid photophobic signals. Furthermore, as clock gene mutations also affect photophobicity, the pacemaker neurons modulate the sensitivity of larvae to light, generating a circadian rhythm in visual sensitivity.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
117 |
12
|
Collins B, Mazzoni EO, Stanewsky R, Blau J. Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr Biol 2006; 16:441-9. [PMID: 16527739 DOI: 10.1016/j.cub.2006.01.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/12/2006] [Accepted: 01/13/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although most circadian clock components are conserved between Drosophila and mammals, the roles assigned to the CRYPTOCHROME (CRY) proteins are very different: Drosophila CRY functions as a circadian photoreceptor, whereas mammalian CRY proteins (mCRY1 and 2) are transcriptional repressors essential for molecular clock oscillations. RESULTS Here we demonstrate that Drosophila CRY also functions as a transcriptional repressor. We found that RNA levels of genes directly activated by the transcription factors CLOCK (CLK) and CYCLE (CYC) are derepressed in cry(b) mutant eyes. Conversely, while overexpression of CRY and PERIOD (PER) in the eye repressed CLK/CYC activity, neither PER nor CRY repressed individually. Drosophila CRY also repressed CLK/CYC activity in cell culture. Repression by CRY appears confined to peripheral clocks, since neither cry(b) mutants nor overexpression of PER and CRY together in pacemaker neurons significantly affected molecular or behavioral rhythms. Increasing CLK/CYC activity by removing two repressors, PER and CRY, led to ectopic expression of the timeless clock gene, similar to overexpression of Clk itself. CONCLUSIONS Drosophila CRY functions as a transcriptional repressor required for the oscillation of peripheral circadian clocks and for the correct specification of clock cells.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
107 |
13
|
Cavey M, Collins B, Bertet C, Blau J. Circadian rhythms in neuronal activity propagate through output circuits. Nat Neurosci 2016; 19:587-95. [PMID: 26928065 PMCID: PMC5066395 DOI: 10.1038/nn.4263] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022]
Abstract
Twenty-four hour rhythms in behavior are organized by a network of circadian pacemaker neurons. Rhythmic activity in this network is generated by intrinsic rhythms in clock neuron physiology and communication between clock neurons. However, it is poorly understood how the activity of a small number of pacemaker neurons is translated into rhythmic behavior of the whole animal. To understand this, we screened for signals that could identify circadian output circuits in Drosophila melanogaster. We found that leucokinin neuropeptide (LK) and its receptor (LK-R) were required for normal behavioral rhythms. This LK/LK-R circuit connects pacemaker neurons to brain areas that regulate locomotor activity and sleep. Our experiments revealed that pacemaker neurons impose rhythmic activity and excitability on LK- and LK-R-expressing neurons. We also found pacemaker neuron-dependent activity rhythms in a second circadian output pathway controlled by DH44 neuropeptide-expressing neurons. We conclude that rhythmic clock neuron activity propagates to multiple downstream circuits to orchestrate behavioral rhythms.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
85 |
14
|
Petsakou A, Sapsis TP, Blau J. Circadian Rhythms in Rho1 Activity Regulate Neuronal Plasticity and Network Hierarchy. Cell 2015; 162:823-35. [PMID: 26234154 DOI: 10.1016/j.cell.2015.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 03/19/2015] [Accepted: 06/13/2015] [Indexed: 01/02/2023]
Abstract
Neuronal plasticity helps animals learn from their environment. However, it is challenging to link specific changes in defined neurons to altered behavior. Here, we focus on circadian rhythms in the structure of the principal s-LNv clock neurons in Drosophila. By quantifying neuronal architecture, we observed that s-LNv structural plasticity changes the amount of axonal material in addition to cycles of fasciculation and defasciculation. We found that this is controlled by rhythmic Rho1 activity that retracts s-LNv axonal termini by increasing myosin phosphorylation and simultaneously changes the balance of pre-synaptic and dendritic markers. This plasticity is required to change clock network hierarchy and allow seasonal adaptation. Rhythms in Rho1 activity are controlled by clock-regulated transcription of Puratrophin-1-like (Pura), a Rho1 GEF. Since spinocerebellar ataxia is associated with mutations in human Puratrophin-1, our data support the idea that defective actin-related plasticity underlies this ataxia.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
71 |
15
|
Nitabach MN, Sheeba V, Vera DA, Blau J, Holmes TC. Membrane electrical excitability is necessary for the free-running larval Drosophila circadian clock. ACTA ACUST UNITED AC 2005; 62:1-13. [PMID: 15389695 DOI: 10.1002/neu.20053] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Drosophila larvae and adult pacemaker neurons both express free-running oscillations of period (PER) and timeless (TIM) proteins that constitute the core of the cell-autonomous circadian molecular clock. Despite similarities between the adult and larval molecular oscillators, adults and larvae differ substantially in the complexity and organization of their pacemaker neural circuits, as well as in behavioral manifestations of circadian rhythmicity. We have shown previously that electrical silencing of adult Drosophila circadian pacemaker neurons through targeted expression of either an open rectifier or inward rectifier K(+) channel stops the free-running oscillations of the circadian molecular clock. This indicates that neuronal electrical activity in the pacemaker neurons is essential to the normal function of the adult intracellular clock. In the current study, we show that in constant darkness the free-running larval pacemaker clock-like that of the adult pacemaker neurons they give rise to-requires membrane electrical activity to oscillate. In contrast to the free-running clock, the molecular clock of electrically silenced larval pacemaker neurons continues to oscillate in diurnal (light-dark) conditions. This specific disruption of the free-running clock caused by targeted K(+) channel expression likely reflects a specific cell-autonomous clock-membrane feedback loop that is common to both larval and adult neurons, and is not due to blocking pacemaker synaptic outputs or disruption of pacemaker neuronal morphology.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
59 |
16
|
Tsai LTY, Bainton RJ, Blau J, Heberlein U. Lmo mutants reveal a novel role for circadian pacemaker neurons in cocaine-induced behaviors. PLoS Biol 2004; 2:e408. [PMID: 15550987 PMCID: PMC529317 DOI: 10.1371/journal.pbio.0020408] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 09/24/2004] [Indexed: 11/18/2022] Open
Abstract
Drosophila has been developed recently as a model system to investigate the molecular and neural mechanisms underlying responses to drugs of abuse. Genetic screens for mutants with altered drug-induced behaviors thus provide an unbiased approach to define novel molecules involved in the process. We identified mutations in the Drosophila LIM-only (LMO) gene, encoding a regulator of LIM-homeodomain proteins, in a genetic screen for mutants with altered cocaine sensitivity. Reduced Lmo function increases behavioral responses to cocaine, while Lmo overexpression causes the opposite effect, reduced cocaine responsiveness. Expression of Lmo in the principal Drosophila circadian pacemaker cells, the PDF-expressing ventral lateral neurons (LN(v)s), is sufficient to confer normal cocaine sensitivity. Consistent with a role for Lmo in LN(v)function,Lmomutants also show defects in circadian rhythms of behavior. However, the role for LN(v)s in modulating cocaine responses is separable from their role as pacemaker neurons: ablation or functional silencing of the LN(v)s reduces cocaine sensitivity, while loss of the principal circadian neurotransmitter PDF has no effect. Together, these results reveal a novel role for Lmo in modulating acute cocaine sensitivity and circadian locomotor rhythmicity, and add to growing evidence that these behaviors are regulated by shared molecular mechanisms. The finding that the degree of cocaine responsiveness is controlled by the Drosophila pacemaker neurons provides a neuroanatomical basis for this overlap. We propose that Lmo controls the responsiveness of LN(v)s to cocaine, which in turn regulate the flies' behavioral sensitivity to the drug.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
54 |
17
|
Hackley CR, Mazzoni EO, Blau J. cAMPr: A single-wavelength fluorescent sensor for cyclic AMP. Sci Signal 2018; 11:11/520/eaah3738. [PMID: 29511120 DOI: 10.1126/scisignal.aah3738] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genetically encoded fluorescent sensors enable cell-specific measurements of ions and small molecules in real time. Cyclic adenosine monophosphate (cAMP) is one of the most important signaling molecules in virtually all cell types and organisms. We describe cAMPr, a new single-wavelength cAMP sensor. We developed cAMPr in bacteria and embryonic stem cells and validated the sensor in mammalian neurons in vitro and in Drosophila circadian pacemaker neurons in intact brains. Comparison with other single-wavelength cAMP sensors showed that cAMPr improved the quantitative detection of cAMP abundance. In addition, cAMPr is compatible with both single-photon and two-photon imaging. This enabled us to use cAMPr together with the red fluorescent Ca2+ sensor RCaMP1h to simultaneously monitor Ca2+ and cAMP in Drosophila brains. Thus, cAMPr is a new and versatile genetically encoded cAMP sensor.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
48 |
18
|
Money N, Newman J, Demissie S, Roth P, Blau J. Anti-microbial stewardship: antibiotic use in well-appearing term neonates born to mothers with chorioamnionitis. J Perinatol 2017; 37:1304-1309. [PMID: 28981079 DOI: 10.1038/jp.2017.137] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine if implementation of a protocol based on a neonatal early-onset sepsis (EOS) calculator developed by Kaiser Permanente would safely reduce antibiotic use in well-appearing term infants born to mothers with chorioamnionitis in the unique setting of an Observation Nursery. STUDY DESIGN Data obtained from a retrospective chart review of well-appearing term infants born between 2009 and 2016 were entered into the EOS calculator to obtain management recommendations. RESULTS Three hundred and sixty-two infants met the study criteria. Management according to the EOS calculator would reduce antibiotic use from 99% to 2.5% (P<0.0001) of patients. Average length of therapy would also decrease from 2.08 to 0.05 days (P<0.0001). One infant, who remained asymptomatic, had Enterococcus bacteremia and received a 7-day course of broad-spectrum antibiotics. CONCLUSIONS Culture-positive sepsis in asymptomatic neonates born to mothers with chorioamnionitis is rare. Management according to the EOS calculator would markedly reduce the potential complications of antibiotic use. These data should initiate re-examination of existing protocols for management of this cohort of patients.
Collapse
|
|
8 |
45 |
19
|
Ruben M, Drapeau MD, Mizrak D, Blau J. A mechanism for circadian control of pacemaker neuron excitability. J Biol Rhythms 2013; 27:353-64. [PMID: 23010658 DOI: 10.1177/0748730412455918] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the intracellular molecular clocks that regulate circadian (~24 h) behavioral rhythms are well understood, it remains unclear how molecular clock information is transduced into rhythmic neuronal activity that in turn drives behavioral rhythms. To identify potential clock outputs, the authors generated expression profiles from a homogeneous population of purified pacemaker neurons (LN(v)s) from wild-type and clock mutant Drosophila. They identified a group of genes with enriched expression in LN(v)s and a second group of genes rhythmically expressed in LN(v)s in a clock-dependent manner. Only 10 genes fell into both groups: 4 core clock genes, including period (per) and timeless (tim), and 6 genes previously unstudied in circadian rhythms. The authors focused on one of these 6 genes, Ir, which encodes an inward rectifier K(+) channel likely to regulate resting membrane potential, whose expression peaks around dusk. Reducing Ir expression in LN(v)s increased larval light avoidance and lengthened the period of adult locomotor rhythms, consistent with increased LN(v) excitability. In contrast, increased Ir expression made many adult flies arrhythmic and dampened PER protein oscillations. The authors propose that rhythmic Ir expression contributes to daily rhythms in LN(v) neuronal activity, which in turn feed back to regulate molecular clock oscillations.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
43 |
20
|
Collins B, Kaplan HS, Cavey M, Lelito KR, Bahle AH, Zhu Z, Macara AM, Roman G, Shafer OT, Blau J. Differentially timed extracellular signals synchronize pacemaker neuron clocks. PLoS Biol 2014; 12:e1001959. [PMID: 25268747 PMCID: PMC4181961 DOI: 10.1371/journal.pbio.1001959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022] Open
Abstract
Circadian pacemaker neurons in Drosophila are regulated by two synchronizing signals that are released at opposite times of day, generating a rhythm in intracellular cyclic AMP. Synchronized neuronal activity is vital for complex processes like behavior. Circadian pacemaker neurons offer an unusual opportunity to study synchrony as their molecular clocks oscillate in phase over an extended timeframe (24 h). To identify where, when, and how synchronizing signals are perceived, we first studied the minimal clock neural circuit in Drosophila larvae, manipulating either the four master pacemaker neurons (LNvs) or two dorsal clock neurons (DN1s). Unexpectedly, we found that the PDF Receptor (PdfR) is required in both LNvs and DN1s to maintain synchronized LNv clocks. We also found that glutamate is a second synchronizing signal that is released from DN1s and perceived in LNvs via the metabotropic glutamate receptor (mGluRA). Because simultaneously reducing Pdfr and mGluRA expression in LNvs severely dampened Timeless clock protein oscillations, we conclude that the master pacemaker LNvs require extracellular signals to function normally. These two synchronizing signals are released at opposite times of day and drive cAMP oscillations in LNvs. Finally we found that PdfR and mGluRA also help synchronize Timeless oscillations in adult s-LNvs. We propose that differentially timed signals that drive cAMP oscillations and synchronize pacemaker neurons in circadian neural circuits will be conserved across species. Circadian molecular clocks are essential for daily cycles in animal behavior and we have a good understanding of how these clocks work in individual pacemaker neurons. However, the accuracy of these individual clocks is meaningless unless they are synchronized with one another. In this study we show that synchronizing the principal pacemaker LNv neurons in Drosophila larvae require two extracellular signals that are received at opposite times of day: namely, the neuropeptide PDF released from LNvs themselves at dawn and glutamate released from dorsal clock neurons at dusk. LNvs perceive both PDF and glutamate via G-protein coupled receptors that increase or decrease intracellular cAMP, respectively. The alternating phases of PDF and glutamate release generate oscillations in intracellular cyclic AMP. In addition to maintaining synchrony between LNvs, this rhythm is also required for molecular clock oscillations in individual larval LNvs. We show that disruption of PDF and glutamate signaling also reduces synchrony in adult LNvs. This impairs the oscillations of clock proteins and flies have delayed onset of sleep. Our data highlight the importance of intercellular signaling in ensuring synchrony between clock neurons within the circadian network. Our findings help extend the conservation of clock properties between Drosophila and mammals beyond clock genes to include clock circuitry.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
42 |
21
|
Mizrak D, Ruben M, Myers GN, Rhrissorrakrai K, Gunsalus KC, Blau J. Electrical activity can impose time of day on the circadian transcriptome of pacemaker neurons. Curr Biol 2012; 22:1871-80. [PMID: 22940468 DOI: 10.1016/j.cub.2012.07.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/29/2012] [Accepted: 07/31/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Circadian (∼24 hr) rhythms offer one of the best examples of how gene expression is tied to behavior. Circadian pacemaker neurons contain molecular clocks that control 24 hr rhythms in gene expression that in turn regulate electrical activity rhythms to control behavior. RESULTS Here we demonstrate the inverse relationship: there are broad transcriptional changes in Drosophila clock neurons (LN(v)s) in response to altered electrical activity, including a large set of circadian genes. Hyperexciting LN(v)s creates a morning-like expression profile for many circadian genes while hyperpolarization leads to an evening-like transcriptional state. The electrical effects robustly persist in per(0) mutant LN(v)s but not in cyc(0) mutant LN(v)s, suggesting that neuronal activity interacts with the transcriptional activators of the core circadian clock. Bioinformatic and immunocytochemical analyses suggest that CREB family transcription factors link LN(v) electrical state to circadian gene expression. CONCLUSIONS The electrical state of a clock neuron can impose time of day to its transcriptional program. We propose that this acts as an internal zeitgeber to add robustness and precision to circadian behavioral rhythms.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
39 |
22
|
Dahdal D, Reeves DC, Ruben M, Akabas MH, Blau J. Drosophila pacemaker neurons require g protein signaling and GABAergic inputs to generate twenty-four hour behavioral rhythms. Neuron 2011; 68:964-77. [PMID: 21145008 DOI: 10.1016/j.neuron.2010.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2010] [Indexed: 01/30/2023]
Abstract
Intercellular signaling is important for accurate circadian rhythms. In Drosophila, the small ventral lateral neurons (s-LN(v)s) are the dominant pacemaker neurons and set the pace of most other clock neurons in constant darkness. Here we show that two distinct G protein signaling pathways are required in LN(v)s for 24 hr rhythms. Reducing signaling in LN(v)s via the G alpha subunit Gs, which signals via cAMP, or via the G alpha subunit Go, which we show signals via Phospholipase 21c, lengthens the period of behavioral rhythms. In contrast, constitutive Gs or Go signaling makes most flies arrhythmic. Using dissociated LN(v)s in culture, we found that Go and the metabotropic GABA(B)-R3 receptor are required for the inhibitory effects of GABA on LN(v)s and that reduced GABA(B)-R3 expression in vivo lengthens period. Although no clock neurons produce GABA, hyperexciting GABAergic neurons disrupts behavioral rhythms and s-LN(v) molecular clocks. Therefore, s-LN(v)s require GABAergic inputs for 24 hr rhythms.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
37 |
23
|
|
News |
22 |
31 |
24
|
Nitabach MN, Holmes TC, Blau J. Membranes, Ions, and Clocks: Testing the Njus–Sulzman–Hastings Model of the Circadian Oscillator. Methods Enzymol 2005; 393:682-93. [PMID: 15817319 DOI: 10.1016/s0076-6879(05)93036-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Current circadian clock models based on interlocking autoregulatory transcriptional?translational negative feedback loops have arisen out of an explosion of molecular genetic data obtained over the last decade (for review, see Stanewsky, 2003; Young and Kay, 2001). An earlier model of circadian oscillation was based on feedback interactions between membrane ion transport systems and ion concentration gradients (Njus et al., 1974, 1976). This membrane model was posited as a more plausible alternative at the time to the even earlier "chronon" model, which was based on autoregulatory genetic feedback loops (Ehret and Trucco, 1967). The membrane model has been tested in a number of experimental systems by pharmacologically manipulating either ionic gradients across the plasma membrane or ion transport systems, but with inconsistent results. In the meantime, the scope and explanatory power of the genetic models overshadowed inquiries into the role of membrane ion fluxes in clock function. However, several recently developed techniques described in this article have provided a new glimpse into the essential role that membrane ion fluxes play in the mechanism of the core circadian oscillator and indicate that a complete understanding of the clock must include both genetic and membrane-based feedback loops.
Collapse
|
|
20 |
30 |
25
|
Abstract
Period (PER) proteins are essential parts of the molecular clocks that control circadian rhythms in flies and mammals. Phosphorylation regulates PER's stability and subcellular localization; however, the physiologically relevant sites have been difficult to identify in spite of knowing the relevant kinase. In this issue of Genes & Development, Chiu and colleagues (1758-1772) identify a key phosphorylation site on PER that recruits the F-box protein Slimb to trigger PER degradation and set clock speed.
Collapse
|
Comment |
17 |
18 |