1
|
Ehrhardt H, Häcker S, Wittmann S, Maurer M, Borkhardt A, Toloczko A, Debatin KM, Fulda S, Jeremias I. Editorial Expression of Concern: Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells. Oncogene 2024; 43:2490. [PMID: 38965344 DOI: 10.1038/s41388-024-03093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
|
2
|
Halbgebauer D, Roos J, Funcke JB, Neubauer H, Hamilton BS, Simon E, Amri EZ, Debatin KM, Wabitsch M, Fischer-Posovszky P, Tews D. Latent TGFβ-binding proteins regulate UCP1 expression and function via TGFβ2. Mol Metab 2021; 53:101336. [PMID: 34481123 PMCID: PMC8456047 DOI: 10.1016/j.molmet.2021.101336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Activation of brown adipose tissue (BAT) in humans has been proposed as a new treatment approach for combating obesity and its associated diseases, as BAT participates in the regulation of energy homeostasis as well as glucose and lipid metabolism. Genetic contributors driving brown adipogenesis in humans have not been fully understood. Methods Profiling the gene expression of progenitor cells from subcutaneous and deep neck adipose tissue, we discovered new secreted factors with potential regulatory roles in white and brown adipogenesis. Among these, members of the latent transforming growth factor beta-binding protein (LTBP) family were highly expressed in brown compared to white adipocyte progenitor cells, suggesting that these proteins are capable of promoting brown adipogenesis. To investigate this potential, we used CRISPR/Cas9 to generate LTBP-deficient human preadipocytes. Results We demonstrate that LTBP2 and LTBP3 deficiency does not affect adipogenic differentiation, but diminishes UCP1 expression and function in the obtained mature adipocytes. We further show that these effects are dependent on TGFβ2 but not TGFβ1 signaling: TGFβ2 deficiency decreases adipocyte UCP1 expression, whereas TGFβ2 treatment increases it. The activity of the LTBP3–TGFβ2 axis that we delineate herein also significantly correlates with UCP1 expression in human white adipose tissue (WAT), suggesting an important role in regulating WAT browning as well. Conclusions These results provide evidence that LTBP3, via TGFβ2, plays an important role in promoting brown adipogenesis by modulating UCP1 expression and mitochondrial oxygen consumption. Inhibition of LTBP2 and LTBP3 reduces secretion of TGFβ2. Both knockout of LTBP2/3 or TGFβ2 inhibit UCP1 expression and mitochondrial respiration in human adipocytes. Expression of TGFβ2 correlates with UCP1 expression in human adipose tissue. Treatment with TGFβ2 rescues inhibition of UCP1 by LTBP knockout during adipogenesis.
Collapse
|
3
|
Scheurer J, Reisser T, Leithäuser F, Messmann JJ, Holzmann K, Debatin KM, Strauss G. Rapamycin-based graft-versus-host disease prophylaxis increases the immunosuppressivity of myeloid-derived suppressor cells without affecting T cells and anti-tumor cytotoxicity. Clin Exp Immunol 2020; 202:407-422. [PMID: 32681646 PMCID: PMC7670162 DOI: 10.1111/cei.13496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
The immunosuppressant rapamycin (RAPA) inhibits mammalian target of rapamycin (mTOR) functions and is applied after allogeneic bone marrow transplantation (BMT) to attenuate the development of graft‐versus‐host disease (GVHD), although the cellular targets of RAPA treatment are not well defined. Allogeneic T cells are the main drivers of GVHD, while immunoregulatory myeloid‐derived suppressor cells (MDSCs) were recently identified as potent disease inhibitors. In this study, we analyzed whether RAPA prevents the deleterious effects of allogeneic T cells or supports the immunosuppressive functions of MDSCs in a BMT model with major histocompatibility complex (MHC) classes I and II disparities. RAPA treatment efficiently attenuated clinical and histological GVHD and strongly decreased disease‐induced mortality. Although splenocyte numbers increased during RAPA treatment, the ratio of effector T cells to MDSCs was unaltered. However, RAPA treatment induced massive changes in the genomic landscape of MDSCs preferentially up‐regulating genes responsible for uptake or signal transduction of lipopeptides and lipoproteins. Most importantly, MDSCs from RAPA‐treated mice exhibited increased immunosuppressive potential, which was primarily inducible nitric oxide synthase (iNOS)‐dependent. Surprisingly, RAPA treatment had no impact on the genomic landscape of T cells, which was reflected by unchanged expression of activation and exhaustion markers and cytokine profiles in T cells from RAPA‐treated and untreated mice. Similarly, T cell cytotoxicity and the graft‐versus‐tumor effect were maintained as co‐transplanted tumor cells were efficiently eradicated, indicating that the immunosuppressant RAPA might be an attractive approach to strengthen the immunosuppressive function of MDSCs without affecting T cell immunity.
Collapse
|
4
|
Tews D, Pula T, Funcke JB, Jastroch M, Keuper M, Debatin KM, Wabitsch M, Fischer-Posovszky P. Elevated UCP1 levels are sufficient to improve glucose uptake in human white adipocytes. Redox Biol 2019; 26:101286. [PMID: 31382214 PMCID: PMC6692062 DOI: 10.1016/j.redox.2019.101286] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023] Open
Abstract
Brown adipose tissue (BAT) has been considered beneficial for metabolic health by participating in the regulation of glucose homoeostasis. The browning factors that improve glucose uptake beyond normal levels are still unknown but glucose uptake is not affected in UCP1 knockout mice. Here, we demonstrate in human white adipocytes that basal/resting glucose uptake is improved by solely elevating UCP1 protein levels. Generating human white Simpson-Golabi-Behmel syndrome (SGBS) adipocytes with a stable knockout and overexpression of UCP1, we discovered that UCP1 overexpressing adipocytes significantly improve glucose uptake by 40%. Mechanistically, this is caused by higher glycolytic flux, seen as increased oxygen consumption, extracellular acidification and lactate secretion rates. The improvements in glucose handling are comparable to white-to-brown transitions, as judged by, for the first time, directly comparing in vitro differentiated mouse brown vs white adipocytes. Although no adipogenic, metabolic and mitochondrial gene expressions were significantly altered in SGBS cells, pharmacological inhibition of GLUT1 completely abrogated differences between UCP1+ and control cells, thereby uncovering GLUT1-mediated uptake as permissive gatekeeper. Collectively, our data demonstrate that elevating UCP1 levels is sufficient to improve human white adipocytes as a glucose sink without adverse cellular effects, thus not requiring the adrenergic controlled, complex network of browning which usually hampers translational efforts. Basal glucose uptake in human adipocytes is improved by solely elevating UCP1 levels. Adipogenic, metabolic and mitochondrial gene expressions were not affected by UCP1 overexpression. UCP1-driven increase in glucose uptake is mediated by GLUT1.
Collapse
|
5
|
Tews D, Fromme T, Keuper M, Hofmann SM, Debatin KM, Klingenspor M, Wabitsch M, Fischer-Posovszky P. Teneurin-2 (TENM2) deficiency induces UCP1 expression in differentiating human fat cells. Mol Cell Endocrinol 2017; 443:106-113. [PMID: 28088466 DOI: 10.1016/j.mce.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/26/2022]
Abstract
Under certain conditions UCP1 expressing adipocytes arise in white adipose tissue depots of both mice and humans. It is still not fully understood whether these cells differentiate de novo from specific progenitor cells or if they transdifferentiate from mature white adipocytes. Performing expression pattern analysis comparing adipocyte progenitor cells from deep and subcutaneous neck adipose tissue, we recently identified teneurin-2 (TENM2) enriched in white adipocyte progenitor cells. Here we tested whether TENM2 deficiency in adipocyte progenitor cells would lead to a brown adipocyte phenotype. By targeting TENM2 in SGBS preadipocytes using siRNA, we demonstrate that TENM2 knockdown induces both UCP1 mRNA and protein expression upon adipogenic differentiation without affecting mitochondrial mass. Furthermore, TENM2 knockdown in human SGBS adipocytes resulted in increased basal and leak mitochondrial respiration. In line with our previous observation these data suggest that TENM2 deficiency in human adipocyte precursors leads to induction of brown adipocyte marker genes upon adipogenic differentiation.
Collapse
|
6
|
Langhans J, Schneele L, Trenkler N, Karpel-Massler G, Nonnenmacher L, Siegelin MD, Zhou S, Halatsch ME, Debatin KM, Westhoff MA. PI3K-mediated signalling in Glioblastoma. KLINISCHE PADIATRIE 2016. [DOI: 10.1055/s-0036-1593559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Sun Q, Debatin KM, Meyer LH. Effective targeting of Acute Lymphoblastic Leukemia (ALL) by CD70 directed immunotherapy. KLINISCHE PADIATRIE 2016. [DOI: 10.1055/s-0036-1582481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Goß AV, Dorneburg C, Debatin KM, Beltinger C. Targeting pediatric acute lymphoblastic leukemia with oncolytic measles. KLINISCHE PADIATRIE 2016. [DOI: 10.1055/s-0036-1582526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Moll N, Demir S, Selivanova G, Debatin KM, Meyer LH. Targeting p53-MDM 2 interaction in pediatric ALL. KLINISCHE PADIATRIE 2016. [DOI: 10.1055/s-0036-1582478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Köhrer S, Seyfried F, Debatin KM, Müschen M, Meyer LH, Davis RE, Burger JA. Pre-BCR expression predicts sensitivity to SYK inhibition in B-cell acute lymphoblastic leukemia. KLINISCHE PADIATRIE 2016. [DOI: 10.1055/s-0036-1582492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Hörl R, Seyfried F, Demir S, Zinngrebe J, Köhrer S, Debatin KM, Meyer LH. Efficacy of the BH3-mimetic ABT-199 in acute lymphoblastic leukemia. KLINISCHE PADIATRIE 2016. [DOI: 10.1055/s-0036-1582495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Demir S, Selivanova G, Tausch E, Wiesmüller L, Stilgenbauer S, te Kronnie G, Debatin KM, Meyer LH. Targeting mutant TP53 in ALL. KLINISCHE PADIATRIE 2016. [DOI: 10.1055/s-0036-1582498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Fuchs H, Schoss J, Mendler MR, Lindner W, Hopfner R, Schulz A, Hoenig M, Steinbach D, Debatin KM, Hummler HD, Schmid M. The Cause of Acute Respiratory Failure Predicts the Outcome of Noninvasive Ventilation in Immunocompromised Children. KLINISCHE PADIATRIE 2015; 227:322-8. [PMID: 25650869 DOI: 10.1055/s-0034-1395692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Noninvasive ventilation (NIV) may be superior to conventional therapy in immunocompromised children with respiratory failure. METHODS Mortality, success rate, prognostic factors and side effects of NIV for acute respiratory failure (ARF) were investigated retrospectively in 41 in children with primary immunodeficiency, after stem cell transplantation or chemotherapy for oncologic disease. RESULTS In 11/41 (27%) children invasive ventilation was avoided and patients were discharged from ICU. In children with NIV failure ICU-mortality was 19/30 (63%). 8/11 (72%) children with NIV success had recurrence of ARF after 27 days. Only 4/11 (36%) children with first episode NIV success and 8/30 (27%) with NIV failure survived to hospital discharge. Lower FiO2, SpO2/FiO2 and blood culture positive bacterial sepsis were predictive for NIV success, while fungal sepsis or culture negative ARF were predictive for NIV failure. We observed catecholamine treatment in 14/41 (34%), pneumothorax in 2/41 (5%), mediastinal emphysema in 3/41 (7%), a life threatening nasopharyngeal hemorrhage and need for resuscitation during intubation in 5/41 (12%) NIV-episodes. CONCLUSIONS The prognosis of ARF in immunocompromised children remains guarded independent of initial success or failure of NIV due to a high rate of recurrent ARF. Reversible causes like bacterial sepsis had a higher NIV response rate. Relevant side effects of NIV were observed.
Collapse
|
14
|
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2014; 22:58-73. [PMID: 25236395 PMCID: PMC4262782 DOI: 10.1038/cdd.2014.137] [Citation(s) in RCA: 689] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.
Collapse
|
15
|
Tews D, Schwar V, Scheithauer M, Weber T, Fromme T, Klingenspor M, Barth TF, Möller P, Holzmann K, Debatin KM, Fischer-Posovszky P, Wabitsch M. Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol Cell Endocrinol 2014; 395:41-50. [PMID: 25102227 DOI: 10.1016/j.mce.2014.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/09/2014] [Accepted: 07/13/2014] [Indexed: 11/20/2022]
Abstract
Brown and white adipocytes have been shown to derive from different progenitors. In this study we sought to clarify the molecular differences between human brown and white adipocyte progenitors cells. To this end, we performed comparative gene array analysis on progenitor cells isolated from paired biopsies of deep and subcutaneous neck adipose tissue from individuals (n = 6) undergoing neck surgery. Compared with subcutaneous neck progenitors, cells from the deep neck adipose tissue displayed marked differences in gene expression pattern, including 355 differentially regulated (>1.5 fold) genes. Analysis of highest regulated genes revealed that STMN2, MME, ODZ2, NRN1 and IL13RA2 genes were specifically expressed in white progenitor cells, whereas expression of LRRC17, CNTNAP3, CD34, RGS7BP and ADH1B marked brown progenitor cells. In conclusion, progenitors from deep neck and subcutaneous neck adipose tissue are characterized by a distinct molecular signature, giving rise to either brown or white adipocytes. The newly identified markers may provide potential pharmacological targets facilitating brown adipogenesis.
Collapse
|
16
|
Nagel PD, Stenzinger A, Feld FM, Herrmann MD, Brüderlein S, Barth TFE, Marienfeld R, Endris V, Weichert W, Debatin KM, Westhoff MA, Lessel D, Möller P, Lennerz JK. KIT mutations in primary mediastinal B-cell lymphoma. Blood Cancer J 2014; 4:e241. [PMID: 25148223 PMCID: PMC4219474 DOI: 10.1038/bcj.2014.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
17
|
Hoenig M, Niehues T, Siepermann K, Jacobsen EM, Schütz C, Furlan I, Dückers G, Lahr G, Wiesneth M, Debatin KM, Friedrich W, Schulz A. Successful HLA haploidentical hematopoietic SCT in chronic granulomatous disease. Bone Marrow Transplant 2014; 49:1337-8. [PMID: 24955782 DOI: 10.1038/bmt.2014.125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Schlitter AM, Dorneburg C, Barth TFE, Wahl J, Schulte JH, Brüderlein S, Debatin KM, Beltinger C. CD57high neuroblastoma cells have aggressive attributes ex situ and an undifferentiated phenotype in patients. KLINISCHE PADIATRIE 2014. [DOI: 10.1055/s-0034-1374851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Schirmer M, Queudeville M, Trentin L, Eckhoff SM, Meyer LH, Debatin KM. Overcoming apoptosis resistance in high risk acute lymphoblastic leukemia by SMAC mimetics in a preclinical all xenograft model. KLINISCHE PADIATRIE 2014. [DOI: 10.1055/s-0034-1374836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Münch V, Hasan N, Schirmer M, Mirjam Eckhoff S, Debatin KM, Meyer LH. In vivo response to remission induction poly-chemotherapy in NOD/SCID/huALL reflects patient risk and outcome. KLINISCHE PADIATRIE 2014. [DOI: 10.1055/s-0034-1374834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Trentin L, Queudeville M, Eckhoff SM, Hasan N, Debatin KM, Meyer LH. Identification of leukemia initiating cells in pediatric acute lymphoblastic leukemia. KLINISCHE PADIATRIE 2014. [DOI: 10.1055/s-0034-1374841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
von Schnurbein J, Heni M, Moss A, Nagel SA, Machann J, Muehleder H, Debatin KM, Farooqi S, Wabitsch M. Rapid improvement of hepatic steatosis after initiation of leptin substitution in a leptin-deficient girl. Horm Res Paediatr 2014; 79:310-7. [PMID: 23651953 DOI: 10.1159/000348541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leptin deficiency is associated with severe obesity and metabolic disturbances. Increased liver fat content has been reported in only one case beforehand, even though hepatic steatosis is a typical comorbidity of common obesity. It is also frequent in patients with lipodystrophy where it resolves under leptin therapy. SUBJECT AND METHODS In 2010, we reported a leptin-deficient patient with a novel homozygous mutation in the leptin gene and severe hepatic steatosis. We have now studied serum changes and changes in liver fat content during the substitution with recombinant methionyl human leptin. RESULTS After 23 weeks of leptin substitution, elevated transaminases, total cholesterol and low-density lipoprotein levels normalized. After 62 weeks, homeostasis model assessment of insulin resistance improved from 10.7 to 6.0 and body fat mass dropped from 50.2 to 37.8%. Liver fat content was drastically reduced from 49.7 to 9.4%. The first changes in liver fat content were detectable after 3 days of therapy. CONCLUSION Our patient showed a remarkable reduction of liver fat content during the treatment with recombinant methionyl human leptin. These changes occurred rapidly after initiation of the substitution, which implies that leptin has a direct effect on hepatic lipid metabolism in humans as it is seen in rodents.
Collapse
|
23
|
Tews D, Fischer-Posovszky P, Fromme T, Klingenspor M, Fischer J, Rüther U, Marienfeld R, Barth TF, Möller P, Debatin KM, Wabitsch M. FTO deficiency induces UCP-1 expression and mitochondrial uncoupling in adipocytes. Endocrinology 2013; 154:3141-51. [PMID: 23751871 DOI: 10.1210/en.2012-1873] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Variants in the fat mass- and obesity-associated (FTO) gene are associated with obesity and body fat mass in genome-wide association studies. However, the mechanism by which FTO predisposes individuals to obesity is not clear so far. First mechanistic evidence was shown in Fto-negative mice. These mice are resistant to obesity due to enhanced energy expenditure, whereas the mass of brown adipose tissue remains unchanged. We hypothesize that FTO is involved in the induction of white adipose tissue browning, which leads to mitochondrial uncoupling and increases energy expenditure. Uncoupling protein 1 (Ucp-1) was significantly higher expressed in both gonadal and inguinal adipose depots of Fto(-/-) compared with Fto(+/+) littermates accompanied by the appearance of multivacuolar, Ucp-1-positive adipocytes in these tissues. By using lentiviral short hairpin RNA constructs, we established FTO-deficient human preadipocytes and adipocytes and analyzed key metabolic processes. FTO-deficient adipocytes showed an adipogenic differentiation rate comparable with control cells but exhibited a reduced de novo lipogenesis despite unchanged glucose uptake. In agreement with the mouse data, FTO-deficient adipocytes exhibited 4-fold higher expression of UCP-1 in mitochondria compared with control cells. The up-regulation of UCP-1 in FTO-deficient adipocytes resulted in enhanced mitochondrial uncoupling. We conclude that FTO deficiency leads to the induction of a brown adipocyte phenotype, thereby enhancing energy expenditure. Further understanding of the signaling pathway connecting FTO with UCP-1 expression might lead to new options for obesity and overweight treatment.
Collapse
|
24
|
Schrappe M, Möricke A, Reiter A, Henze G, Welte K, Gadner H, Ludwig WD, Ritter J, Harbott J, Mann G, Klingebiel T, Gruhn B, Niemeyer C, Kremens B, Niggli F, Debatin KM, Ratei R, Stanulla M, Beier R, Cario G, Schrauder A, Zimmermann M. Key treatment questions in childhood acute lymphoblastic leukemia: results in 5 consecutive trials performed by the ALL-BFM study group from 1981 to 2000. KLINISCHE PADIATRIE 2013; 225 Suppl 1:S62-72. [PMID: 23700060 DOI: 10.1055/s-0033-1337966] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Between 1981 and 2000, 6 609 children (<18 years of age) were treated in 5 consecutive trials of the Berlin-Frankfurt-Münster (BFM) study group for childhood acute lymphoblastic leukemia (ALL). Patients were treated in up to 82 centers in Germany, Austria, and Switzerland. Probability of 10-year event-free survival (survival) improved from 65% (77%) in study ALL-BFM 81-78% (85%) in ALL-BFM 95. In parallel to relapse reduction, major efforts focused on reducing acute and late toxicity through advanced risk adaptation of treatment. The major findings derived from these ALL-BFM trials were as follows: 1) preventive cranial radiotherapy could be safely reduced to 12 Gy in T-ALL and high-risk ALL patients and eliminated in non-high-risk non-T-ALL patients, if it was replaced by high-dose and intrathecal methotrexate; 2) omission of delayed reintensification severely impaired outcome of low-risk patients; 3) 6 months less maintenance therapy caused an increase in systemic relapses; 4) slow response to an initial 7-day prednisone window was identified as adverse prognostic factor; 5) condensed induction therapy resulted in a significant improvement of outcome; 6) the daunorubicin dose in induction could be safely reduced in low-risk patients; 7) intensification of consolidation/reintensification treatment led to considerable improvement of outcome in high-risk patients.
Collapse
|
25
|
Wölfle LM, Hopfner RJ, Debatin KM, Hummler HD, Fuchs HW, Schmid MB. Near-drowning during baby swimming lesson. KLINISCHE PADIATRIE 2012. [PMID: 23203382 DOI: 10.1055/s-0032-1329973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|