1
|
Sambuceti G, Cossu V, Vitale F, Bianconi E, Carta S, Venturi C, Chiesa S, Lanfranchi F, Emionite L, Carlone S, Sofia L, D'Amico F, Di Raimondo T, Chiola S, Orengo AM, Morbelli S, Ameri P, Bauckneht M, Marini C. Mandatory role of endoplasmic reticulum and its pentose phosphate shunt in the myocardial defense mechanisms against the redox stress induced by anthracyclines. Mol Cell Biochem 2024; 479:2973-2987. [PMID: 38082185 PMCID: PMC11473616 DOI: 10.1007/s11010-023-04903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 10/15/2024]
Abstract
Anthracyclines' cardiotoxicity involves an accelerated generation of reactive oxygen species. This oxidative damage has been found to accelerate the expression of hexose-6P-dehydrogenase (H6PD), that channels glucose-6-phosphate (G6P) through the pentose phosphate pathway (PPP) confined within the endoplasmic/sarcoplasmic reticulum (SR). To verify the role of SR-PPP in the defense mechanisms activated by doxorubicin (DXR) in cardiomyocytes, we tested the effect of this drug in H6PD knockout mice (H6PD-/-). Twenty-eight wildtype (WT) and 32 H6PD-/- mice were divided into four groups to be treated with intraperitoneal administration of saline (untreated) or DXR (8 mg/Kg once a week for 3 weeks). One week thereafter, survivors underwent imaging of 18F-deoxyglucose (FDG) uptake and were sacrificed to evaluate the levels of H6PD, glucose-6P-dehydrogenase (G6PD), G6P transporter (G6PT), and malondialdehyde. The mRNA levels of SR Ca2+-ATPase 2 (Serca2) and ryanodine receptors 2 (RyR2) were evaluated and complemented with Hematoxylin/Eosin staining and transmission electron microscopy. During the treatment period, 1/14 DXR-WT and 12/18 DXR-H6PD-/- died. At microPET, DXR-H6PD-/- survivors displayed an increase in left ventricular size (p < 0.001) coupled with a decreased urinary output, suggesting a severe hemodynamic impairment. At ex vivo analysis, H6PD-/- condition was associated with an oxidative damage independent of treatment type. DXR increased H6PD expression only in WT mice, while G6PT abundance increased in both groups, mismatching a generalized decrease of G6PD levels. Switching-off SR-PPP impaired reticular accumulation of Ca2+ decelerating Serca2 expression and upregulating RyR2 mRNA level. It thus altered mitochondrial ultrastructure eventually resulting in a cardiomyocyte loss. The recognized vulnerability of SR to the anthracycline oxidative damage is counterbalanced by an acceleration of G6P flux through a PPP confined within the reticular lumen. The interplay of SR-PPP with the intracellular Ca2+ exchanges regulators in cardiomyocytes configure the reticular PPP as a potential new target for strategies aimed to decrease anthracycline toxicity.
Collapse
|
2
|
Merolla A, Michetti C, Moschetta M, Vacca F, Ciano L, Emionite L, Astigiano S, Romei A, Horenkamp S, Berglund K, Gross RE, Cesca F, Colombo E, Benfenati F. A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level. Nat Commun 2024; 15:5609. [PMID: 38965228 PMCID: PMC11224301 DOI: 10.1038/s41467-024-49941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.
Collapse
|
3
|
Di Nardo M, Astigiano S, Baldari S, Pallotta MM, Porta G, Pigozzi S, Antonini A, Emionite L, Frattini A, Valli R, Toietta G, Soddu S, Musio A. The synergism of SMC1A cohesin gene silencing and bevacizumab against colorectal cancer. J Exp Clin Cancer Res 2024; 43:49. [PMID: 38365745 PMCID: PMC10870497 DOI: 10.1186/s13046-024-02976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND SMC1A is a subunit of the cohesin complex that participates in many DNA- and chromosome-related biological processes. Previous studies have established that SMC1A is involved in cancer development and in particular, is overexpressed in chromosomally unstable human colorectal cancer (CRC). This study aimed to investigate whether SMC1A could serve as a therapeutic target for CRC. METHODS At first, we studied the effects of either SMC1A overexpression or knockdown in vitro. Next, the outcome of SMC1A knocking down (alone or in combination with bevacizumab, a monoclonal antibody against vascular endothelial growth factor) was analyzed in vivo. RESULTS We found that SMC1A knockdown affects cell proliferation and reduces the ability to grow in anchorage-independent manner. Next, we demonstrated that the silencing of SMC1A and the combo treatment were effective in increasing overall survival in a xenograft mouse model. Functional analyses indicated that both treatments lead to atypical mitotic figures and gene expression dysregulation. Differentially expressed genes were implicated in several pathways including gene transcription regulation, cellular proliferation, and other transformation-associated processes. CONCLUSIONS These results indicate that SMC1A silencing, in combination with bevacizumab, can represent a promising therapeutic strategy for human CRC.
Collapse
|
4
|
Amaro A, Reggiani F, Fenoglio D, Gangemi R, Tosi A, Parodi A, Banelli B, Rigo V, Mastracci L, Grillo F, Cereghetti A, Tastanova A, Ghosh A, Sallustio F, Emionite L, Daga A, Altosole T, Filaci G, Rosato A, Levesque M, Maio M, Pfeffer U, Croce M. Guadecitabine increases response to combined anti-CTLA-4 and anti-PD-1 treatment in mouse melanoma in vivo by controlling T-cells, myeloid derived suppressor and NK cells. J Exp Clin Cancer Res 2023; 42:67. [PMID: 36934257 PMCID: PMC10024396 DOI: 10.1186/s13046-023-02628-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/21/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND The combination of Programmed Cell Death 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) blockade has dramatically improved the overall survival rate for malignant melanoma. Immune checkpoint blockers (ICBs) limit the tumor's immune escape yet only for approximately a third of all tumors and, in most cases, for a limited amount of time. Several approaches to overcome resistance to ICBs are being investigated among which the addition of epigenetic drugs that are expected to act on both immune and tumor cells. Guadecitabine, a dinucleotide prodrug of a decitabine linked via phosphodiester bond to a guanosine, showed promising results in the phase-1 clinical trial, NIBIT-M4 (NCT02608437). METHODS We used the syngeneic B16F10 murine melanoma model to study the effects of immune checkpoint blocking antibodies against CTLA-4 and PD-1 in combination, with and without the addition of Guadecitabine. We comprehensively characterized the tumor's and the host's responses under different treatments by flow cytometry, multiplex immunofluorescence and methylation analysis. RESULTS In combination with ICBs, Guadecitabine significantly reduced subcutaneous tumor growth as well as metastases formation compared to ICBs and Guadecitabine treatment. In particular, Guadecitabine greatly enhanced the efficacy of combined ICBs by increasing effector memory CD8+ T cells, inducing effector NK cells in the spleen and reducing tumor infiltrating regulatory T cells and myeloid derived suppressor cells (MDSC), in the tumor microenvironment (TME). Guadecitabine in association with ICBs increased serum levels of IFN-γ and IFN-γ-induced chemokines with anti-angiogenic activity. Guadecitabine led to a general DNA-demethylation, in particular of sites of intermediate methylation levels. CONCLUSIONS These results indicate Guadecitabine as a promising epigenetic drug to be added to ICBs therapy.
Collapse
|
5
|
Lucarini V, Melaiu O, D’Amico S, Pastorino F, Tempora P, Scarsella M, Pezzullo M, De Ninno A, D’Oria V, Cilli M, Emionite L, Infante P, Di Marcotullio L, De Ioris MA, Barillari G, Alaggio R, Businaro L, Ponzoni M, Locatelli F, Fruci D. Combined mitoxantrone and anti-TGFβ treatment with PD-1 blockade enhances antitumor immunity by remodelling the tumor immune landscape in neuroblastoma. J Exp Clin Cancer Res 2022; 41:326. [PMID: 36397148 PMCID: PMC9670422 DOI: 10.1186/s13046-022-02525-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background Poor infiltration of functioning T cells renders tumors unresponsive to checkpoint-blocking immunotherapies. Here, we identified a combinatorial in situ immunomodulation strategy based on the administration of selected immunogenic drugs and immunotherapy to sensitize poorly T-cell-infiltrated neuroblastoma (NB) to the host antitumor immune response. Methods 975A2 and 9464D NB cell lines derived from spontaneous tumors of TH-MYCN transgenic mice were employed to study drug combinations able of enhancing the antitumor immune response using in vivo and ex vivo approaches. Migration of immune cells towards drug-treated murine-derived organotypic tumor spheroids (MDOTS) were assessed by microfluidic devices. Activation status of immune cells co-cultured with drug-treated MDOTS was evaluated by flow cytometry analysis. The effect of drug treatment on the immune content of subcutaneous or orthotopic tumors was comprehensively analyzed by flow-cytometry, immunohistochemistry and multiplex immunofluorescence. The chemokine array assay was used to detect soluble factors released into the tumor microenvironment. Patient-derived organotypic tumor spheroids (PDOTS) were generated from human NB specimens. Migration and activation status of autologous immune cells to drug-treated PDOTS were performed. Results We found that treatment with low-doses of mitoxantrone (MTX) recalled immune cells and promoted CD8+ T and NK cell activation in MDOTS when combined with TGFβ and PD-1 blockade. This combined immunotherapy strategy curbed NB growth resulting in the enrichment of a variety of both lymphoid and myeloid immune cells, especially intratumoral dendritic cells (DC) and IFNγ- and granzyme B-expressing CD8+ T cells and NK cells. A concomitant production of inflammatory chemokines involved in remodelling the tumor immune landscape was also detected. Interestingly, this treatment induced immune cell recruitment against PDOTS and activation of CD8+ T cells and NK cells. Conclusions Combined treatment with low-dose of MTX and anti-TGFβ treatment with PD-1 blockade improves antitumor immunity by remodelling the tumor immune landscape and overcoming the immunosuppressive microenvironment of aggressive NB. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02525-9.
Collapse
|
6
|
Matis S, Grazia Recchia A, Colombo M, Cardillo M, Fabbi M, Todoerti K, Bossio S, Fabris S, Cancila V, Massara R, Reverberi D, Emionite L, Cilli M, Cerruti G, Salvi S, Bet P, Pigozzi S, Fiocca R, Ibatici A, Angelucci E, Gentile M, Monti P, Menichini P, Fronza G, Torricelli F, Ciarrocchi A, Neri A, Fais F, Tripodo C, Morabito F, Ferrarini M, Cutrona G. MiR-146b-5p regulates IL-23 receptor complex expression in chronic lymphocytic leukemia cells. Blood Adv 2022; 6:5593-5612. [PMID: 35819446 PMCID: PMC9647700 DOI: 10.1182/bloodadvances.2021005726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells express the interleukin-23 receptor (IL-23R) chain, but the expression of the complementary IL-12Rβ1 chain requires cell stimulation via surface CD40 molecules (and not via the B-cell receptor [BCR]). This stimulation induces the expression of a heterodimeric functional IL-23R complex and the secretion of IL-23, initiating an autocrine loop that drives leukemic cell expansion. Based on the observation in 224 untreated Binet stage A patients that the cases with the lowest miR-146b-5p concentrations had the shortest time to first treatment (TTFT), we hypothesized that miR-146b-5p could negatively regulate IL-12Rβ1 side chain expression and clonal expansion. Indeed, miR-146b-5p significantly bound to the 3'-UTR region of the IL-12Rβ1 mRNA in an in vitro luciferase assay. Downregulation of miR-146b-5p with specific miRNA inhibitors in vitro led to the upregulation of the IL-12Rβ1 side chain and expression of a functional IL-23R complex similar to that observed after stimulation of the CLL cell through the surface CD40 molecules. Expression of miR-146b-5p with miRNA mimics in vitro inhibited the expression of the IL-23R complex after stimulation with CD40L. Administration of a miR-146b-5p mimic to NSG mice, successfully engrafted with CLL cells, caused tumor shrinkage, with a reduction of leukemic nodules and of IL-12Rβ1-positive CLL cells in the spleen. Our findings indicate that IL-12Rβ1 expression, a crucial checkpoint for the functioning of the IL-23 and IL-23R complex loop, is under the control of miR-146b-5p, which may represent a potential target for therapy since it contributes to the CLL pathogenesis. This trial is registered at www.clinicaltrials.gov as NCT00917540.
Collapse
|
7
|
Silva JC, Bavestrello M, Gazzola V, Spinella G, Pane B, Grasselli E, Demori I, Canesi L, Emionite L, Cilli M, Buschiazzo A, Sambuceti G, Pitta IR, Pitta MG, Perego P, Palombo D, Abdalla DSP. Ischemia-reperfusion damage is attenuated by GQ-11, a peroxisome proliferator-activated receptor (PPAR)-α/γ agonist, after aorta clamping in rats. Life Sci 2022; 297:120468. [DOI: 10.1016/j.lfs.2022.120468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
8
|
Brignole C, Bensa V, Fonseca NA, Del Zotto G, Bruno S, Cruz AF, Malaguti F, Carlini B, Morandi F, Calarco E, Perri P, Moura V, Emionite L, Cilli M, De Leonardis F, Tondo A, Amoroso L, Conte M, Garaventa A, Sementa AR, Corrias MV, Ponzoni M, Moreira JN, Pastorino F. Cell surface Nucleolin represents a novel cellular target for neuroblastoma therapy. J Exp Clin Cancer Res 2021; 40:180. [PMID: 34078433 PMCID: PMC8170797 DOI: 10.1186/s13046-021-01993-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Nucleolin (NCL) is a protein overexpressed and partially localized on the cell surface of tumor cells of adult cancers. Little is known about NCL and pediatric tumors and nothing is reported about cell surface NCL and NB. METHODS NB cell lines, Schwannian stroma-poor NB tumors and bone marrow (BM)-infiltrating NB cells were evaluated for the expression of cell surface NCL by Flow Cytometry, Imaging Flow Cytometry and Immunohistochemistry analyses. The cytotoxic activity of doxorubicin (DXR)-loaded nanocarriers decorated with the NCL-recognizing F3 peptide (T-DXR) was evaluated in terms of inhibition of NB cell proliferation and induction of cell death in vitro, whereas metastatic and orthotopic animal models of NB were used to examine their in vivo anti-tumor potential. RESULTS NB cell lines, NB tumor cells (including patient-derived and Patient-Derived Xenografts-PDX) and 70% of BM-infiltrating NB cells show cell surface NCL expression. NCL staining was evident on both tumor and endothelial tumor cells in NB xenografts. F3 peptide-targeted nanoparticles, co-localizing with cell surface NCL, strongly associates with NB cells showing selective tumor cell internalization. T-DXR result significantly more effective, in terms of inhibition of cell proliferation and reduction of cell viability in vitro, and in terms of delay of tumor growth in all NB animal model tested, when compared to both control mice and those treated with the untargeted formulation. CONCLUSIONS Our findings demonstrate that NCL could represent an innovative therapeutic cellular target for NB.
Collapse
|
9
|
Izzotti A, Fracchia E, Au W, Colombo M, Pfeffer U, Emionite L, Pavan S, Miotto D, Lova P, Grasselli E, Faelli E, Piero R, Tiso M, Pulliero A. Prevention of Covid-19 Infection and Related Complications by Ozonized Oils. J Pers Med 2021; 11:226. [PMID: 33809879 PMCID: PMC8004285 DOI: 10.3390/jpm11030226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic continues to ravage the human population; therefore, multiple prevention and intervention protocols are being rapidly developed. The aim of our study was to develop a new chemo-prophylactic/-therapeutic strategy that effectively prevents COVID-19 and related complications. METHODS In in vitro studies, COVID-19 infection-sensitive cells were incubated with human oropharyngeal fluids containing high SARS-CoV-2 loads. Levels of infection were determined via intra-cellular virus loads using quantitative PCR (qPCR). Efficacies for infection prevention were determined using several antiviral treatments: lipid-encapsulated ozonized oil (HOO), water-soluble HOO (HOOws), UV, and hydrogen peroxide. In in vivo studies, safety and efficacy of HOO in fighting COVID-19 infection was evaluated in human subjects. RESULTS HOO in combination with HOOws was the only treatment able to fully neutralize SARS-CoV-2 as well as its capacity to penetrate and reproduce inside sensitive cells. Accordingly, the feasibility of using HOO/HOOws was tested in vivo. Analysis of expired gas in healthy subjects indicates that HOO administration increases oxygen availability in the lung. For our human studies, HOO/HOOws was administered to 52 cancer patients and 21 healthy subjects at high risk for COVID-19 infection, and all of them showed clinical safety. None of them developed COVID-19 infection, although an incidence of at least 11 cases was expected. Efficacy of HOO/HOOws was tested in four COVID-19 patients obtaining recovery and qPCR negativization in less than 10 days. CONCLUSIONS Based on our experience, the HOO/HOOws treatment can be administered at standard doses (three pills per day) for chemo-prophylactic purposes to healthy subjects for COVID-19 prevention and at high doses (up to eight pills per day) for therapeutic purposes to infected patients. This combined prevention strategy can provide a novel protocol to fight the COVID-19 pandemic.
Collapse
|
10
|
Viale M, Bertone V, Maric I, Cilli M, Emionite L, Bocchini V, Ponzoni M, Fontana V, De Luca F, Rocco M. Enhanced therapeutic index of liposomal doxorubicin Myocet locally delivered by fibrin gels in immunodeficient mice bearing human neuroblastoma. Pharmacol Res 2021; 163:105294. [PMID: 33217536 DOI: 10.1016/j.phrs.2020.105294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Caelyx and Myocet are clinically used liposomal forms of doxorubicin (Dox). To explore ways to improve their therapeutic index, we have studied their activity in vitro and in vivo when locally delivered by fibrin gels (FBGs). In vivo local toxic and anti-tumour activities of loaded FBGs were assessed in two immunodeficient mouse orthotopic human neuroblastoma (NB) models after application in the visceral space above the adrenal gland, either still tumour-bearing or after tumour removal. In parallel, in vitro assays were used to mimic the in vivo overlaying of FBGs on the tumour surface. FBGs were prepared with different concentrations of fibrinogen (FG) and clotted in the presence of Ca2+ and thrombin. The in vitro assays showed that FBGs loaded with Myocet possess a cytotoxic activity against NB cell lines generally greater than those loaded with free Dox or Caelyx. In vivo FBGs loaded with Myocet showed lower general and local toxicities as compared to gels loaded with Caelyx or free Dox, and also to free Dox administered i.v. (all treatments with Dox at 2.5 mg/Kg). The anti-tumour activity, evaluated in the two mouse orthotopic NB models of adjuvant and neo-adjuvant therapy, resulted in a better performance of FBGs loaded with Myocet compared to the other local (FBGs loaded with Caelyx or free Dox) or systemic (free Dox) treatments (administered at 2.5 and 5 mg/Kg Dox). Specifically, the application of FBGs at 40 mg/mL in the adjuvant model caused 92 % tumour volume reduction, while by the neo-adjuvant application of FBGs at 22 mg/mL a re-growing tumour volume reduction of 89 % was obtained. Taken together, our in vitro and in vivo results indicate a significantly higher activity for the FBGs loaded with Myocet. In particular, the lower toicity coupled with the higher anti-tumour activity on both the local treatment modalities strongly suggest a better therapeutic index when Myocet is administered through FBGs. Therefore, FBGs loaded with Myocet may be considered as a possible new tool for the loco-regional treatment of NB or even other tumour histotypes treatable by loco-regional chemotherapy.
Collapse
|
11
|
Bauckneht M, Pastorino F, Castellani P, Cossu V, Orengo AM, Piccioli P, Emionite L, Capitanio S, Yosifov N, Bruno S, Lazzarini E, Ponzoni M, Ameri P, Rubartelli A, Ravera S, Morbelli S, Sambuceti G, Marini C. Increased myocardial 18F-FDG uptake as a marker of Doxorubicin-induced oxidative stress. J Nucl Cardiol 2020; 27:2183-2194. [PMID: 30737636 DOI: 10.1007/s12350-019-01618-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Oxidative stress and its interference on myocardial metabolism play a major role in Doxorubicin (DXR) cardiotoxic cascade. METHODS Mice models of neuroblastoma (NB) were treated with 5 mg DXR/kg, either free (Free-DXR) or encapsulated in untargeted (SL[DXR]) or in NB-targeting Stealth Liposomes (pep-SL[DXR] and TP-pep-SL[DXR]). Control mice received saline. FDG-PET was performed at baseline (PET1) and 7 days after therapy (PET2). At PET2 Troponin-I and NT-proBNP were assessed. Explanted hearts underwent biochemical, histological, and immunohistochemical analyses. Finally, FDG uptake and glucose consumption were simultaneously measured in cultured H9c2 in the presence/absence of Free-DXR (1 μM). RESULTS Free-DXR significantly enhanced the myocardial oxidative stress. Myocardial-SUV remained relatively stable in controls and mice treated with liposomal formulations, while it significantly increased at PET2 with respect to baseline in Free-DXR. At this timepoint, myocardial-SUV was directly correlated with both myocardial redox stress and hexose-6-phosphate-dehydrogenase (H6PD) enzymatic activity, which selectively sustain cellular anti-oxidant mechanisms. Intriguingly, in vitro, Free-DXR selectively increased FDG extraction fraction without altering the corresponding value for glucose. CONCLUSION The direct correlation between cardiac FDG uptake and oxidative stress indexes supports the potential role of FDG-PET as an early biomarker of DXR oxidative damage.
Collapse
|
12
|
Miceli A, Cossu V, Marini C, Castellani P, Raffa S, Donegani MI, Bruno S, Ravera S, Emionite L, Orengo AM, Grillo F, Nobili F, Morbelli S, Uccelli A, Sambuceti G, Bauckneht M. 18F-Fluorodeoxyglucose Positron Emission Tomography Tracks the Heterogeneous Brain Susceptibility to the Hyperglycemia-Related Redox Stress. Int J Mol Sci 2020; 21:ijms21218154. [PMID: 33142766 PMCID: PMC7672601 DOI: 10.3390/ijms21218154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
In cognitively normal patients, mild hyperglycemia selectively decreases 18F-Fluorodeoxyglucose (FDG) uptake in the posterior brain, reproducing Alzheimer disease pattern, hampering the diagnostic accuracy of this widely used tool. This phenomenon might involve either a heterogeneous response of glucose metabolism or a different sensitivity to hyperglycemia-related redox stress. Indeed, previous studies reported a close link between FDG uptake and activation of a specific pentose phosphate pathway (PPP), triggered by hexose-6P-dehydrogenase (H6PD) and contributing to fuel NADPH-dependent antioxidant responses in the endoplasmic reticulum (ER). To clarify this issue, dynamic positron emission tomography was performed in 40 BALB/c mice four weeks after administration of saline (n = 17) or 150 mg/kg streptozotocin (n = 23, STZ). Imaging data were compared with biochemical and histological indexes of glucose metabolism and redox balance. Cortical FDG uptake was homogeneous in controls, while it was selectively decreased in the posterior brain of STZ mice. This difference was independent of the activity of enzymes regulating glycolysis and cytosolic PPP, while it was paralleled by a decreased H6PD catalytic function and enhanced indexes of oxidative damage. Thus, the relative decrease in FDG uptake of the posterior brain reflects a lower activation of ER-PPP in response to hyperglycemia-related redox stress in these areas.
Collapse
|
13
|
Benzi A, Sturla L, Heine M, Fischer AW, Spinelli S, Magnone M, Sociali G, Parodi A, Fenoglio D, Emionite L, Koch-Nolte F, Mittrücker HW, Guse AH, De Flora A, Zocchi E, Heeren J, Bruzzone S. CD38 downregulation modulates NAD + and NADP(H) levels in thermogenic adipose tissues. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158819. [PMID: 33010451 DOI: 10.1016/j.bbalip.2020.158819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/05/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Different strategies to boost NAD+ levels are considered promising means to promote healthy aging and ameliorate dysfunctional metabolism. CD38 is a NAD+-dependent enzyme involved in the regulation of different cell functions. In the context of systemic energy metabolism, it has been demonstrated that brown adipocytes, the parenchymal cells of brown adipose tissue (BAT) as well as beige adipocytes that emerge in white adipose tissue (WAT) depots in response to catabolic conditions, are important to maintain metabolic homeostasis. In this study we aim to understand the functional relevance of CD38 for NAD+ and energy metabolism in BAT and WAT, also using a CD38-/- mouse model. During cold exposure, an increase in NAD+ levels occurred in BAT of wild type mice, together with a marked downregulation of CD38, as detected at the mRNA and protein level. CD38 downregulation was observed also in WAT of cold-exposed mice, where it was accompanied by a strong increase in NADP(H) levels. Accordingly, NAD kinase and glucose-6-phosphate dehydrogenase activities were enhanced in WAT (but not in BAT). Increased NAD+ levels were observed in BAT/WAT from CD38-/- compared with wild type mice, in line with CD38 being a major NAD+-consumer in AT. CD38-/- mice kept at 6 °C had higher levels of Ucp1 and Pgc-1α in BAT and WAT, and increased levels of phosphorylated hormone-sensitive lipase in BAT, compared with wild type mice. These results demonstrate that CD38, by modulating cellular NAD(P)+ levels, is involved in the regulation of thermogenic responses in cold-activated BAT and WAT.
Collapse
|
14
|
Maya-Vetencourt JF, Manfredi G, Mete M, Colombo E, Bramini M, Di Marco S, Shmal D, Mantero G, Dipalo M, Rocchi A, DiFrancesco ML, Papaleo ED, Russo A, Barsotti J, Eleftheriou C, Di Maria F, Cossu V, Piazza F, Emionite L, Ticconi F, Marini C, Sambuceti G, Pertile G, Lanzani G, Benfenati F. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. NATURE NANOTECHNOLOGY 2020; 15:698-708. [PMID: 32601447 DOI: 10.1038/s41565-020-0696-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/20/2020] [Indexed: 05/21/2023]
Abstract
Inherited retinal dystrophies and late-stage age-related macular degeneration, for which treatments remain limited, are among the most prevalent causes of legal blindness. Retinal prostheses have been developed to stimulate the inner retinal network; however, lack of sensitivity and resolution, and the need for wiring or external cameras, have limited their application. Here we show that conjugated polymer nanoparticles (P3HT NPs) mediate light-evoked stimulation of retinal neurons and persistently rescue visual functions when subretinally injected in a rat model of retinitis pigmentosa. P3HT NPs spread out over the entire subretinal space and promote light-dependent activation of spared inner retinal neurons, recovering subcortical, cortical and behavioural visual responses in the absence of trophic effects or retinal inflammation. By conferring sustained light sensitivity to degenerate retinas after a single injection, and with the potential for high spatial resolution, P3HT NPs provide a new avenue in retinal prosthetics with potential applications not only in retinitis pigmentosa, but also in age-related macular degeneration.
Collapse
|
15
|
Maya-Vetencourt JF, Manfredi G, Mete M, Colombo E, Bramini M, Di Marco S, Shmal D, Mantero G, Dipalo M, Rocchi A, DiFrancesco ML, Papaleo ED, Russo A, Barsotti J, Eleftheriou C, Di Maria F, Cossu V, Piazza F, Emionite L, Ticconi F, Marini C, Sambuceti G, Pertile G, Lanzani G, Benfenati F. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. NATURE NANOTECHNOLOGY 2020; 15:698-708. [PMID: 32601447 DOI: 10.1038/s41565-41020-40696-41563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/20/2020] [Indexed: 05/21/2023]
Abstract
Inherited retinal dystrophies and late-stage age-related macular degeneration, for which treatments remain limited, are among the most prevalent causes of legal blindness. Retinal prostheses have been developed to stimulate the inner retinal network; however, lack of sensitivity and resolution, and the need for wiring or external cameras, have limited their application. Here we show that conjugated polymer nanoparticles (P3HT NPs) mediate light-evoked stimulation of retinal neurons and persistently rescue visual functions when subretinally injected in a rat model of retinitis pigmentosa. P3HT NPs spread out over the entire subretinal space and promote light-dependent activation of spared inner retinal neurons, recovering subcortical, cortical and behavioural visual responses in the absence of trophic effects or retinal inflammation. By conferring sustained light sensitivity to degenerate retinas after a single injection, and with the potential for high spatial resolution, P3HT NPs provide a new avenue in retinal prosthetics with potential applications not only in retinitis pigmentosa, but also in age-related macular degeneration.
Collapse
|
16
|
Marini C, Cossu V, Bonifacino T, Bauckneht M, Torazza C, Bruno S, Castellani P, Ravera S, Milanese M, Venturi C, Carlone S, Piccioli P, Emionite L, Morbelli S, Orengo AM, Donegani MI, Miceli A, Raffa S, Marra S, Signori A, Cortese K, Grillo F, Fiocca R, Bonanno G, Sambuceti G. Mechanisms underlying the predictive power of high skeletal muscle uptake of FDG in amyotrophic lateral sclerosis. EJNMMI Res 2020; 10:76. [PMID: 32638178 PMCID: PMC7340686 DOI: 10.1186/s13550-020-00666-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background We recently reported that enhanced [18F]-fluorodeoxyglucose (FDG) uptake in skeletal muscles predicts disease aggressiveness in patients with amyotrophic lateral sclerosis (ALS). The present experimental study aimed to assess whether this predictive potential reflects the link between FDG uptake and redox stress that has been previously reported in different tissues and disease models. Methods The study included 15 SOD1G93A mice (as experimental ALS model) and 15 wildtype mice (around 120 days old). Mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested quadriceps and hearts by biochemical, immunohistochemical, and immunofluorescence analysis. Colocalization between the endoplasmic reticulum (ER) and the fluorescent FDG analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was performed in fresh skeletal muscle sections. Finally, mitochondrial ultrastructure and bioenergetics were evaluated in harvested quadriceps and hearts. Results FDG retention was significantly higher in hindlimb skeletal muscles of symptomatic SOD1G93A mice with respect to control ones. This difference was not explained by any acceleration in glucose degradation through glycolysis or cytosolic pentose phosphate pathway (PPP). Similarly, it was independent of inflammatory infiltration. Rather, the high FDG retention in SOD1G93A skeletal muscle was associated with an accelerated generation of reactive oxygen species. This redox stress selectively involved the ER and the local PPP triggered by hexose-6P-dehydrogenase. ER involvement was confirmed by the colocalization of the 2-NBDG with a vital ER tracker. The oxidative damage in transgenic skeletal muscle was associated with a severe impairment in the crosstalk between ER and mitochondria combined with alterations in mitochondrial ultrastructure and fusion/fission balance. The expected respiratory damage was confirmed by a deceleration in ATP synthesis and oxygen consumption rate. These same abnormalities were represented to a markedly lower degree in the myocardium, as a sample of non-voluntary striated muscle. Conclusion Skeletal muscle of SOD1G93A mice reproduces the increased FDG uptake observed in ALS patients. This finding reflects the selective activation of the ER-PPP in response to significant redox stress associated with alterations of mitochondrial ultrastructure, networking, and connection with the ER itself. This scenario is less severe in cardiomyocytes suggesting a relevant role for either communication with synaptic plaque or contraction dynamics.
Collapse
|
17
|
Di Paolo D, Pastorino F, Brignole C, Corrias MV, Emionite L, Cilli M, Tamma R, Priddy L, Amaro A, Ferrari D, Marotta R, Ferretti E, Pfeffer U, Ribatti D, Sementa AR, Brown D, Ikegaki N, Shimada H, Ponzoni M, Perri P. Combined Replenishment of miR-34a and let-7b by Targeted Nanoparticles Inhibits Tumor Growth in Neuroblastoma Preclinical Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906426. [PMID: 32323486 DOI: 10.1002/smll.201906426] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high-risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR-34a and let-7b are oncogenic in NB. Due to the ability of miRNA-mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated-cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR-34a and let-7b by NB-targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down-modulation of MYCN and its down-stream targets, ALK and LIN28B, exerted by miR-34a and let-7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR-34a and let-7b combined replacement and support its clinical application as adjuvant therapy for high-risk NB patients.
Collapse
|
18
|
Cossu V, Bauckneht M, Bruno S, Orengo AM, Emionite L, Balza E, Castellani P, Piccioli P, Miceli A, Raffa S, Borra A, Donegani MI, Carlone S, Morbelli S, Ravera S, Sambuceti G, Marini C. The Elusive Link Between Cancer FDG Uptake and Glycolytic Flux Explains the Preserved Diagnostic Accuracy of PET/CT in Diabetes. Transl Oncol 2020; 13:100752. [PMID: 32302773 PMCID: PMC7163080 DOI: 10.1016/j.tranon.2020.100752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 01/21/2023] Open
Abstract
This study aims to verify in experimental models of hyperglycemia induced by streptozotocin (STZ-DM) to what degree the high competition between unlabeled glucose and metformin (MET) treatment might affect the accuracy of cancer FDG imaging. The study included 36 “control” and 36 “STZ-DM” Balb/c mice, undergoing intraperitoneal injection of saline or streptozotocin, respectively. Two-weeks later, mice were subcutaneously implanted with breast (4 T1) or colon (CT26) cancer cells and subdivided in three subgroups for treatment with water or with MET at 10 or 750 mg/Kg/day. Two weeks after, mice were submitted to micro-PET imaging. Enzymatic pathways and response to oxidative stress were evaluated in harvested tumors. Finally, competition by glucose, 2-deoxyglucose (2DG) and the fluorescent analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) on FDG uptake was studied in 4 T1 and CT26 cultured cells. STZ-DM slightly decreased cancer volume and FDG uptake rate (MRF). More importantly, it also abolished MET capability to decelerate lesion growth and MRF. This metabolic reprogramming closely agreed with the activity of hexose-6-phosphate dehydrogenase within the endoplasmic reticulum. Finally, co-incubation with 2DG virtually abolished FDG and 2-NBDG uptake within the endoplasmic reticulum in cultured cells. These data challenge the current dogma linking FDG uptake to glycolytic flux and introduce a new model to explain the relation between glucose analogue uptake and hexoses reticular metabolism. This selective fate of FDG contributes to the preserved sensitivity of PET imaging in oncology even in chronic moderate hyperglycemic conditions.
Collapse
|
19
|
Magnone M, Emionite L, Guida L, Vigliarolo T, Sturla L, Spinelli S, Buschiazzo A, Marini C, Sambuceti G, De Flora A, Orengo AM, Cossu V, Ferrando S, Barbieri O, Zocchi E. Insulin-independent stimulation of skeletal muscle glucose uptake by low-dose abscisic acid via AMPK activation. Sci Rep 2020; 10:1454. [PMID: 31996711 PMCID: PMC6989460 DOI: 10.1038/s41598-020-58206-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone active also in mammals where it regulates, at nanomolar concentrations, blood glucose homeostasis. Here we investigated the mechanism through which low-dose ABA controls glycemia and glucose fate. ABA stimulated uptake of the fluorescent glucose analog 2-NBDG by L6, and of [18F]-deoxy-glucose (FDG) by mouse skeletal muscle, in the absence of insulin, and both effects were abrogated by the specific AMPK inhibitor dorsomorphin. In L6, incubation with ABA increased phosphorylation of AMPK and upregulated PGC-1α expression. LANCL2 silencing reduced all these ABA-induced effects. In vivo, low-dose oral ABA stimulated glucose uptake and storage in the skeletal muscle of rats undergoing an oral glucose load, as detected by micro-PET. Chronic treatment with ABA significantly improved the AUC of glycemia and muscle glycogen content in CD1 mice exposed to a high-glucose diet. Finally, both acute and chronic ABA treatment of hypoinsulinemic TRPM2-/- mice ameliorated the glycemia profile and increased muscle glycogen storage. Altogether, these results suggest that low-dose oral ABA might be beneficial for pre-diabetic and diabetic subjects by increasing insulin-independent skeletal muscle glucose disposal through an AMPK-mediated mechanism.
Collapse
|
20
|
Bauckneht M, Cossu V, Castellani P, Piccioli P, Orengo AM, Emionite L, Di Giulio F, Donegani MI, Miceli A, Raffa S, Borra A, Capitanio S, Morbelli S, Caviglia G, Bruno S, Ravera S, Maggi D, Sambuceti G, Marini C. FDG uptake tracks the oxidative damage in diabetic skeletal muscle: An experimental study. Mol Metab 2019; 31:98-108. [PMID: 31918925 PMCID: PMC6920267 DOI: 10.1016/j.molmet.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES The present study aims to verify the relationship between glucose consumption and uptake of 18F-2-deoxy-glucose (FDG) in the skeletal muscle (SM) of experimental models of streptozotocin-induced diabetes mellitus (STZ-DM). METHODS The study included 36 Balb/c mice. Two weeks after intraperitoneal administration of saline (control group, n = 18) or 150 mg streptozotocin (STZ-DM group, n = 18), the two cohorts were submitted to an oral glucose tolerance test and were further subdivided into three groups (n = 6 each): untreated and treated with metformin (MTF) at low or high doses (10 or 750 mg/kg daily, respectively). Two weeks thereafter, all mice were submitted to dynamic micro-positron emission tomography (PET) imaging after prolonged fasting. After sacrifice, enzymatic pathways and response to oxidative stress were evaluated in harvested SM. RESULTS On PET imaging, the FDG uptake rate in hindlimb SM was significantly lower in nondiabetic mice as compared with STZ-DM-untreated mice. MTF had no significant effect on SM FDG uptake in untreated mice; however, its high dose induced a significant decrease in STZ-DM animals. Upon conventional analysis, the SM standard uptake value was higher in STZ-DM mice, while MTF was virtually ineffective in either control or STZ-DM models. This metabolic reprogramming was not explained by any change in cytosolic glucose metabolism. By contrast, it closely agreed with the catalytic function of hexose-6P-dehydrogenase (H6PD; i.e., the trigger of a specific pentose phosphate pathway selectively located within the endoplasmic reticulum). In agreement with this role, the H6PD enzymatic response to both STZ-DM and MTF matched the activation of the NADPH-dependent antioxidant responses to the increased generation of reactive oxygen species caused by chronic hyperglycemia. Ex vivo analysis of tracer kinetics confirmed that the enhanced SM avidity for FDG occurred despite a significant reduction in glucose consumption, while it was associated with increased radioactivity transfer to the endoplasmic reticulum. CONCLUSIONS These data challenge the current dogma linking FDG uptake to the glycolytic rate. They instead introduce a new model considering a strict link between the uptake of this glucose analog, H6PD reticular activity, and oxidative damage in diabetes, at least under fasting condition.
Collapse
|
21
|
Viale M, Vecchio G, Monticone M, Bertone V, Giglio V, Maric I, Cilli M, Bocchini V, Profumo A, Ponzoni M, Emionite L, Rocco M. Fibrin Gels Entrapment of a Poly-Cyclodextrin Nanocarrier as a Doxorubicin Delivery System in an Orthotopic Model of Neuroblastoma: Evaluation of In Vitro Activity and In Vivo Toxicity. Pharm Res 2019; 36:115. [PMID: 31161432 DOI: 10.1007/s11095-019-2636-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/28/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Fibrin gels (FBGs) are potential delivery vehicles for many drugs, and can be easily prepared from purified components. We previously demonstrated their applicability for the release of different doxorubicin (Dox) nanoparticles used clinically or in an experimental stage, such as its inclusion complex with the amino β-cyclodextrin polymer (oCD-NH2/Dox). Here we extend these studies by in vitro and in vivo evaluations. METHODS An in vitro cytotoxicity model consisting of an overlay of a neuroblastoma (NB) cell-containing agar layer above a drug-loaded FBG layer was used. Local toxicity in vivo (histology and blood analysis) was studied in a mouse orthotopic NB model (SHSY5YLuc+ cells implanted into the left adrenal gland). RESULTS In vitro data show that FBGs loaded with oCD-NH2/Dox have a slightly lower cytotoxicity against NB cell lines than those loaded with Dox. Fibrinogen (FG), and Ca2+ concentrations may modify this activity. In vivo data support a lower general and local toxicity for FBGs loaded with oCD-NH2/Dox than those loaded with Dox. CONCLUSION Our results suggest a possible increase of the therapeutic index of Dox when locally administered through FBGs loaded with oCD-NH2/Dox, opening the possibility of using these releasing systems for the treatment of neuroblastoma.
Collapse
|
22
|
Rossi M, Bucci G, Rizzotto D, Bordo D, Marzi MJ, Puppo M, Flinois A, Spadaro D, Citi S, Emionite L, Cilli M, Nicassio F, Inga A, Briata P, Gherzi R. LncRNA EPR controls epithelial proliferation by coordinating Cdkn1a transcription and mRNA decay response to TGF-β. Nat Commun 2019; 10:1969. [PMID: 31036808 PMCID: PMC6488594 DOI: 10.1038/s41467-019-09754-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as regulators of fundamental biological processes. Here we report on the characterization of an intergenic lncRNA expressed in epithelial tissues which we termed EPR (Epithelial cell Program Regulator). EPR is rapidly downregulated by TGF-β and its sustained expression largely reshapes the transcriptome, favors the acquisition of epithelial traits, and reduces cell proliferation in cultured mammary gland cells as well as in an animal model of orthotopic transplantation. EPR generates a small peptide that localizes at epithelial cell junctions but the RNA molecule per se accounts for the vast majority of EPR-induced gene expression changes. Mechanistically, EPR interacts with chromatin and regulates Cdkn1a gene expression by affecting both its transcription and mRNA decay through its association with SMAD3 and the mRNA decay-promoting factor KHSRP, respectively. We propose that EPR enables epithelial cells to control proliferation by modulating waves of gene expression in response to TGF-β. Several lncRNAs are regulated by TGF-β. Here the authors report that an intergenic lncRNA —EPR— is a component of the TGF-β signaling pathway and controls epithelial cell proliferation by altering transcription and mRNA decay of Cdkn1a. EPR overexpression restrains tumor growth of orthotopically transplanted mice.
Collapse
|
23
|
Bianchi G, Ravera S, Traverso C, Amaro A, Piaggio F, Emionite L, Bachetti T, Pfeffer U, Raffaghello L. Curcumin induces a fatal energetic impairment in tumor cells in vitro and in vivo by inhibiting ATP-synthase activity. Carcinogenesis 2019; 39:1141-1150. [PMID: 29860383 DOI: 10.1093/carcin/bgy076] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022] Open
Abstract
Curcumin has been reported to inhibit inflammation, tumor growth, angiogenesis and metastasis by decreasing cell growth and by inducing apoptosis mainly through the inhibition of nuclear factor kappa-B (NFκB), a master regulator of inflammation. Recent reports also indicate potential metabolic effects of the polyphenol, therefore we analyzed whether and how it affects the energy metabolism of tumor cells. We show that curcumin (10 µM) inhibits the activity of ATP synthase in isolated mitochondrial membranes leading to a dramatic drop of ATP and a reduction of oxygen consumption in in vitro and in vivo tumor models. The effects of curcumin on ATP synthase are independent of the inhibition of NFκB since the IκB Kinase inhibitor, SC-514, does not affect ATP synthase. The activities of the glycolytic enzymes hexokinase, phosphofructokinase, pyruvate kinase and lactate dehydrogenase are only slightly affected in a cell type-specific manner. The energy impairment translates into decreased tumor cell viability. Moreover, curcumin induces apoptosis by promoting the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), a marker of lipid oxidation, and autophagy, at least in part due to the activation of the AMP-activated protein kinase (AMPK). According to the in vitro anti-tumor effect, curcumin (30 mg/kg body weight) significantly delayed in vivo cancer growth likely due to an energy impairment but also through the reduction of tumor angiogenesis. These results establish the ATP synthase, a central enzyme of the cellular energy metabolism, as a target of the antitumoral polyphenol leading to inhibition of cancer cell growth and a general reprogramming of tumor metabolism.
Collapse
|
24
|
Cossu V, Marini C, Piccioli P, Rocchi A, Bruno S, Orengo AM, Emionite L, Bauckneht M, Grillo F, Capitanio S, Balza E, Yosifov N, Castellani P, Caviglia G, Panfoli I, Morbelli S, Ravera S, Benfenati F, Sambuceti G. Obligatory role of endoplasmic reticulum in brain FDG uptake. Eur J Nucl Med Mol Imaging 2019; 46:1184-1196. [PMID: 30617965 DOI: 10.1007/s00259-018-4254-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE The endoplasmic reticulum (ER) contains hexose-6P-dehydrogenase (H6PD). This enzyme competes with glucose-6P-phosphatase for processing a variety of phosphorylated hexoses including 2DG-6P. The present study aimed to verify whether this ER glucose-processing machinery contributes to brain FDG uptake. METHODS Effect of the H6PD inhibitor metformin on brain 18F-FDG accumulation was studied, in vivo, by microPET imaging. These data were complemented with the in vitro estimation of the lumped constant (LC). Finally, reticular accumulation of the fluorescent 2DG analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2NBDG) and its response to metformin was studied by confocal microscopy in cultured neurons and astrocytes. RESULTS Metformin halved brain 18F-FDG accumulation without altering whole body tracer clearance. Ex vivo, this same response faced the doubling of both glucose consumption and lactate release. The consequent fall in LC was not explained by any change in expression or activity of its theoretical determinants (GLUTs, hexokinases, glucose-6P-phosphatase), while it agreed with the drug-induced inhibition of H6PD function. In vitro, 2NBDG accumulation selectively involved the ER lumen and correlated with H6PD activity being higher in neurons than in astrocytes, despite a lower glucose consumption. CONCLUSIONS The activity of the reticular enzyme H6PD profoundly contributes to brain 18F-FDG uptake. These data challenge the current dogma linking 2DG/FDG uptake to the glycolytic rate and introduce a new model to explain the link between 18-FDG uptake and neuronal activity.
Collapse
|
25
|
Ponzoni M, Curnis F, Brignole C, Bruno S, Guarnieri D, Sitia L, Marotta R, Sacchi A, Bauckneht M, Buschiazzo A, Rossi A, Di Paolo D, Perri P, Gori A, Sementa AR, Emionite L, Cilli M, Tamma R, Ribatti D, Pompa PP, Marini C, Sambuceti G, Corti A, Pastorino F. Enhancement of Tumor Homing by Chemotherapy-Loaded Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802886. [PMID: 30294852 DOI: 10.1002/smll.201802886] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Targeted delivery of anticancer drugs with nanocarriers can reduce side effects and ameliorate therapeutic efficacy. However, poorly perfused and dysfunctional tumor vessels limit the transport of the payload into solid tumors. The use of tumor-penetrating nanocarriers might enhance tumor uptake and antitumor effects. A peptide containing a tissue-penetrating (TP) consensus motif, capable of recognizing neuropilin-1, is here fused to a neuroblastoma-targeting peptide (pep) previously developed. Neuroblastoma cell lines and cells derived from both xenografts and high-risk neuroblastoma patients show overexpression of neuropilin-1. In vitro studies reveal that TP-pep binds cell lines and cells derived from neuroblastoma patients more efficiently than pep. TP-pep, after coupling to doxorubicin-containing stealth liposomes (TP-pep-SL[doxorubicin]), enhances their uptake by cells and cytotoxic effects in vitro, while increasing tumor-binding capability and homing in vivo. TP-pep-SL[doxorubicin] treatment enhances the Evans Blue dye accumulation in tumors but not in nontumor tissues, pointing to selective increase of vascular permeability in tumor tissues. Compared to pep-SL[doxorubicin], TP-pep-SL[doxorubicin] shows an increased antineuroblastoma activity in three neuroblastoma animal models mimicking the growth of neuroblastoma in humans. The enhancement of drug penetration in tumors by TP-pep-targeted nanoparticles may represent an innovative strategy for neuroblastoma.
Collapse
|