1
|
Mano K, Noi K, Oe K, Mochizuki T, Morishima K, Inoue R, Sugiyama M, Noguchi K, Shinohara K, Yohda M, Yamada A. Molecular Characterization of the MoxR AAA+ ATPase of Synechococcus sp. Strain NKBG15041c. Int J Mol Sci 2024; 25:9955. [PMID: 39337443 PMCID: PMC11432383 DOI: 10.3390/ijms25189955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
We isolated a stress-tolerance-related gene from a genome library of Synechococcus sp. NKBG15041c. The expression of the gene in E. coli confers resistance against various stresses. The gene encodes a MoxR AAA+ ATPase, which was designated SyMRP since it belongs to the MRP subfamily. The recombinant SyMRP showed weak ATPase activity and protected citrate synthase from thermal aggregation. Interestingly, the chaperone activity of SyMRP is ATP-dependent. SyMRP exists as a stable hexamer, and ATP-dependent conformation changes were not detected via analytical ultracentrifugation (AUC) or small-angle X-ray scattering (SAXS). Although the hexameric structure predicted by AlphaFold 3 was the canonical flat-ring structure, the structures observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM) were not the canonical ring structure. In addition, the experimental SAXS profiles did not show a peak that should exist in the symmetric-ring structure. Therefore, SyMRP seems to form a hexameric structure different from the canonical hexameric structure of AAA+ ATPase.
Collapse
|
2
|
Inoue R, Nagata Y, Tominaga T, Sato S, Kawakita Y, Yamawaki T, Morishima K, Suginome M, Sugiyama M. Dynamics of side chains in poly(quinoxaline-2,3-diyl)s studied via quasielastic neutron scattering. J Chem Phys 2024; 161:054905. [PMID: 39092953 DOI: 10.1063/5.0215603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024] Open
Abstract
The side chain dynamics of poly(quinoxaline-2,3-diyl)s (PQXs) are expected to influence their conformation. To investigate these dynamics experimentally, quasielastic neutron scattering (QENS) was performed for PQXs in deuterated tetrahydrofuran (THF-d8) and deuterated 1,1,2-trichloroethane/THF (1,1,2-TCE-d3/THF-d8), in which they formed right-handed and left-handed helical structures, respectively. The mean-square displacement of the PQX side chains in 1,1,2-TCE-d3/THF-d8 was lower than that in THF-d8. Furthermore, QENS complementary studies and molecular dynamics simulations unraveled a coupling between the main-chain and side chain dynamics of PQXs, suggesting the possibility of controlling the main-chain helical chirality through the dynamics of chiral side chains. These insights present a novel strategy for the design of synthetic helical macromolecules with precise chirality control.
Collapse
|
3
|
Sun J, Morishima K, Inoue R, Sugiyama M, Takata T. Characterization of βB2-crystallin tryptophan mutants reveals two different folding states in solution. Protein Sci 2024; 33:e5092. [PMID: 38924206 PMCID: PMC11201810 DOI: 10.1002/pro.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Conserved tryptophan residues are critical for the structure and the stability of β/γ-crystallin in the lenses of vertebrates. During aging, in which the lenses are continuously exposed to ultraviolet irradiation and other environmental stresses, oxidation of tryptophan residues in β/γ-crystallin is triggered and impacts the lens proteins to varying degrees. Kynurenine derivatives, formed by oxidation of tryptophan, accumulate, resulting in destabilization and insolubilization of β/γ-crystallin, which correlates with age-related cataract formation. To understand the contribution of tryptophan modification on the structure and stability of human βB2-crystallin, five tryptophan residues were mutated to phenylalanine considering its similarity in structure and hydrophilicity to kynurenine. Among all mutants, W59F and W151F altered the stability and homo-oligomerization of βB2-crystallin-W59F promoted tetramerization whereas W151F blocked oligomerization. Most W59F dimers transformed into tetramer in a month, and the separated dimer and tetramer of W59F demonstrated different structures and hydrophobicity, implying that the biochemical properties of βB2-crystallin vary over time. By using SAXS, we found that the dimer of βB2-crystallin in solution resembled the lattice βB1-crystallin dimer (face-en-face), whereas the tetramer of βB2-crystallin in solution resembled its lattice tetramer (domain-swapped). Our results suggest that homo-oligomerization of βB2-crystallin includes potential inter-subunit reactions, such as dissociation, unfolding, and re-formation of the dimers into a tetramer in solution. The W>F mutants are useful in studying different folding states of βB2-crystallin in lens.
Collapse
|
4
|
Fukushima K, Taniguchi Y, Matsushita M, Sugiyama M, Kaneko K. Determination of the point resolution of high-resolution transmission electron microscope using the through-focus technique. Micron 2024; 182:103639. [PMID: 38688141 DOI: 10.1016/j.micron.2024.103639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
From the viewpoint of evaluating the instrumental performance of high-resolution electron microscopy (HREM), the Scherzer condition was investigated using information theory. As a result, the optimum defocus amount Δf can be expressed based on [Formula: see text] , and the formula [Formula: see text] is obtained. Furthermore, a procedure for measuring point resolution using the through-focus technique is developed, and a new method for determining the spherical aberration coefficient using the variance of Δf is introduced in the procedure.
Collapse
|
5
|
Kubo T, Sunami K, Koyama T, Kitami M, Fujiwara Y, Kondo S, Yonemori K, Noguchi E, Morizane C, Goto Y, Maejima A, Iwasa S, Hamaguchi T, Kawai A, Namikawa K, Arakawa A, Sugiyama M, Ohno M, Yoshida T, Hiraoka N, Yoshida A, Yoshida M, Nishino T, Furukawa E, Narushima D, Nagai M, Kato M, Ichikawa H, Fujiwara Y, Kohno T, Yamamoto N. The impact of rare cancer and early-line treatments on the benefit of comprehensive genome profiling-based precision oncology. ESMO Open 2024; 9:102981. [PMID: 38613908 PMCID: PMC11033064 DOI: 10.1016/j.esmoop.2024.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Comprehensive genome profiling (CGP) serves as a guide for suitable genomically matched therapies for patients with cancer. However, little is known about the impact of the timing and types of cancer on the therapeutic benefit of CGP. MATERIALS AND METHODS A single hospital-based pan-cancer prospective study (TOP-GEAR; UMIN000011141) was conducted to examine the benefit of CGP with respect to the timing and types of cancer. Patients with advanced solid tumors (>30 types) who either progressed with or without standard treatments were genotyped using a single CGP test. The subjects were followed up for a median duration of 590 days to examine therapeutic response, using progression-free survival (PFS), PFS ratio, and factors associated with therapeutic response. RESULTS Among the 507 patients, 62 (12.2%) received matched therapies with an overall response rate (ORR) of 32.3%. The PFS ratios (≥1.3) were observed in 46.3% (19/41) of the evaluated patients. The proportion of subjects receiving such therapies in the rare cancer cohort was lower than that in the non-rare cancer cohort (9.6% and 17.4%, respectively; P = 0.010). However, ORR of the rare cancer patients was higher than that in the non-rare cancer cohort (43.8% and 20.0%, respectively; P = 0.046). Moreover, ORR of matched therapies in the first or second line after receiving the CGP test was higher than that in the third or later lines (62.5% and 21.7%, respectively; P = 0.003). Rare cancer and early-line treatment were significantly and independently associated with ORR of matched therapies in multivariable analysis (P = 0.017 and 0.004, respectively). CONCLUSION Patients with rare cancer preferentially benefited from tumor mutation profiling by increasing the chances of therapeutic response to matched therapies. Early-line treatments after profiling increase the therapeutic benefit, irrespective of tumor types.
Collapse
|
6
|
Yuzu K, Imamura H, Nozaki T, Fujii Y, Badawy SMM, Morishima K, Okuda A, Inoue R, Sugiyama M, Chatani E. Mechanistic Modeling of Amyloid Oligomer and Protofibril Formation in Bovine Insulin. J Mol Biol 2024; 436:168461. [PMID: 38301805 DOI: 10.1016/j.jmb.2024.168461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Early phase of amyloid formation, where prefibrillar aggregates such as oligomers and protofibrils are often observed, is crucial for understanding pathogenesis. However, the detailed mechanisms of their formation have been difficult to elucidate because they tend to form transiently and heterogeneously. Here, we found that bovine insulin protofibril formation proceeds in a monodisperse manner, which allowed us to characterize the detailed early aggregation process by light scattering in combination with thioflavin T fluorescence and Fourier transform infrared spectroscopy. The protofibril formation was specific to bovine insulin, whereas no significant aggregation was observed in human insulin. The kinetic analysis combining static and dynamic light scattering data revealed that the protofibril formation process in bovine insulin can be divided into two steps based on fractal dimension. When modeling the experimental data based on Smoluchowski aggregation kinetics, an aggregation scheme consisting of initial fractal aggregation forming spherical oligomers and their subsequent end-to-end association forming protofibrils was clarified. Furthermore, the analysis of temperature and salt concentration dependencies showed that the end-to-end association is the rate-limiting step, involving dehydration. The established model for protofibril formation, wherein oligomers are incorporated as a precursor, provides insight into the molecular mechanism by which protein molecules assemble during the early stage of amyloid formation.
Collapse
|
7
|
Nishimura M, Fujii T, Tanaka H, Maehara K, Morishima K, Shimizu M, Kobayashi Y, Nozawa K, Takizawa Y, Sugiyama M, Ohkawa Y, Kurumizaka H. Genome-wide mapping and cryo-EM structural analyses of the overlapping tri-nucleosome composed of hexasome-hexasome-octasome moieties. Commun Biol 2024; 7:61. [PMID: 38191828 PMCID: PMC10774305 DOI: 10.1038/s42003-023-05694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The nucleosome is a fundamental unit of chromatin in which about 150 base pairs of DNA are wrapped around a histone octamer. The overlapping di-nucleosome has been proposed as a product of chromatin remodeling around the transcription start site, and previously found as a chromatin unit, in which about 250 base pairs of DNA continuously bind to the histone core composed of a hexamer and an octamer. In the present study, our genome-wide analysis of human cells suggests another higher nucleosome stacking structure, the overlapping tri-nucleosome, which wraps about 300-350 base-pairs of DNA in the region downstream of certain transcription start sites of actively transcribed genes. We determine the cryo-electron microscopy (cryo-EM) structure of the overlapping tri-nucleosome, in which three subnucleosome moieties, hexasome, hexasome, and octasome, are associated by short connecting DNA segments. Small angle X-ray scattering and coarse-grained molecular dynamics simulation analyses reveal that the cryo-EM structure of the overlapping tri-nucleosome may reflect its structure in solution. Our findings suggest that nucleosome stacking structures composed of hexasome and octasome moieties may be formed by nucleosome remodeling factors around transcription start sites for gene regulation.
Collapse
|
8
|
Ishida H, Matsumoto A, Tanaka H, Okuda A, Morishima K, Wade PA, Kurumizaka H, Sugiyama M, Kono H. Structural and Dynamic Changes of Nucleosome upon GATA3 Binding. J Mol Biol 2023; 435:168308. [PMID: 37805066 PMCID: PMC10843466 DOI: 10.1016/j.jmb.2023.168308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Pioneer factors, which can directly bind to nucleosomes, have been considered to change chromatin conformations. However, the binding impact on the nucleosome is little known. Here, we show how the pioneer factor GATA3 binds to nucleosomal DNA and affects the conformation and dynamics of nucleosomes by using a combination of SAXS, molecular modeling, and molecular dynamics simulations. Our structural models, consistent with the SAXS data, indicate that only one of the two DNA binding domains, N- and C-fingers, of GATA3 binds to an end of the DNA in solution. Our MD simulations further showed that the other unbound end of the DNA increases the fluctuation and enhances the DNA dissociation from the histone core when the N-finger binds to a DNA end, a site near the entry or exit of the nucleosome. However, this was not true for the binding of the C-finger that binds to a location about 15 base pairs distant from the DNA end. In this case, DNA dissociation occurred on the bound end. Taken together, we suggest that the N-finger and C-finger bindings of GATA3 commonly enhance DNA dissociation at one of the two DNA ends (the bound end for the C-finger binding and the unbound end for the N-finger binding), leading to triggering a conformational change in the chromatin.
Collapse
|
9
|
Chatake T, Yanagisawa Y, Murakami R, Ohsugi T, Sumi H, Takata T, Okuda A, Morishima K, Inoue R, Sugiyama M. Characterization of K-binding factor involved in water-soluble complex of menaquinone-7 produced by Bacillus subtilis natto. J Biochem 2023; 174:383-389. [PMID: 37419501 DOI: 10.1093/jb/mvad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/15/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023] Open
Abstract
Vitamin Ks are expected to contribute bone and cardiovascular health. Especially, menaquinone-7 has a higher bioavailability and a longer half-life than other vitamin Ks in the human body. However, their low water-solubility limits their application. On the other hand, Bacillus subtilis natto produces a water-soluble complex, which comprises menaquinone-7 and peptides. The peptide named K-binding factor (KBF) has been reported as the main component of the complex. In the present, the structural characteristics of KBF were studied. Mass spectrometry showed significant peaks at m/z = 1050, while the previous PAGE suggested that molecular weight of KBF was ~ 3k. Amino acid analysis revealed that the 1k peptides were the various combinations of nine amino acids, among which Asx, Glx, Val, Leu and Met were found to be the most abundant. The peptides could serve as detergent properties. The 1k peptides could be isolated by reverse-phase high performance liquid chromatography. The bundle of three 1k detergent-like peptides would participate to the micelle structure containing menqauinone-7 inside. In conclusion, a basic unit of KBF would be the ~ 1k peptides, and the three basic unit assemble to the ~ 3k bundle, then the bundle form a water-soluble micelle including menqauinone-7 inside.
Collapse
|
10
|
Sugiyama M, Chau HW, Abe T, Kato Y, Jamei E, Veeroja P, Mori K, Sugiyama T. Third Places for Older Adults' Social Engagement: A Scoping Review and Research Agenda. THE GERONTOLOGIST 2023; 63:1149-1161. [PMID: 36512515 DOI: 10.1093/geront/gnac180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Neighborhood places that facilitate older residents to meet and interact (third places) receive an increasing research interest as studies have consistently shown the benefits of social engagement for older adults' health. This scoping review synthesized the findings of studies examining the role of third places in older adults' social engagement. RESEARCH DESIGN AND METHODS Searching 5 databases (CINAHL, Medline, PsycInfo, Scopus, and Web of Science) in October 2021, this study identified quantitative and qualitative studies that examined the relationships between third places and social engagement (interaction and network) among older adults. RESULTS A total of 32 studies (12 quantitative and 20 qualitative studies) met the eligibility criteria. These studies examined 4 types of third place, namely, community facilities, local businesses, open/green spaces, and transition spaces. More than two thirds of the studies reviewed found that access to community facilities, local businesses, and open/green spaces were related to older adults' social interaction. For the relationships between third places and social networks, the importance of accessible local businesses and the quality of open/green spaces was supported by fewer studies. DISCUSSION AND IMPLICATIONS The findings of quantitative and qualitative studies suggest that local places that are convenient to visit and comfortable to stay in for older adults are likely to enhance their social interaction and network. However, more specific evidence is needed to inform the planning and design of third places. The review discusses future research topics that address the gaps identified in the current literature.
Collapse
|
11
|
Morishima K, Inoue R, Sugiyama M. Derivation of the small-angle scattering profile of a target biomacromolecule from a profile deteriorated by aggregates. AUC-SAS. J Appl Crystallogr 2023; 56:624-632. [PMID: 37284265 PMCID: PMC10241049 DOI: 10.1107/s1600576723002406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/12/2023] [Indexed: 06/08/2023] Open
Abstract
Aggregates cause a fatal problem in the structural analysis of a biomacro-mol-ecule in solution using small-angle X-ray or neutron scattering (SAS): they deteriorate the scattering profile of the target molecule and lead to an incorrect structure. Recently, an integrated method of analytical ultracentrifugation (AUC) and SAS, abbreviated AUC-SAS, was developed as a new approach to overcome this problem. However, the original version of AUC-SAS does not offer a correct scattering profile of the target molecule when the weight fraction of aggregates is higher than ca 10%. In this study, the obstacle point in the original AUC-SAS approach is identified. The improved AUC-SAS method is then applicable to a solution with a relatively larger weight fraction of aggregates (≤20%).
Collapse
|
12
|
Okuda A, Shimizu M, Inoue R, Urade R, Sugiyama M. Efficient Multiple Domain Ligation for Proteins Using Asparaginyl Endopeptidase by Selection of Appropriate Ligation Sites Based on Steric Hindrance. Angew Chem Int Ed Engl 2023; 62:e202214412. [PMID: 36347766 DOI: 10.1002/anie.202214412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Three domain fragments of a multi-domain protein, ER-60, were ligated in two short linker regions using asparaginyl endopeptidase not involving denaturation. To identify appropriate ligation sites, by selecting several potential ligation sites with fewer mutations around two short linker regions, their ligation efficiencies and the functions of the ligated ER-60s were examined experimentally. To evaluate the dependence of ligation efficiencies on the ligation sites computationally, steric hinderances around the sites for the ligation were calculated through molecular dynamics simulations. Utilizing the steric hindrance, a site-dependent ligation potential index was introduced as reproducing the experimental ligation efficiency. Referring to this index, the reconstruction of ER-60 was succeeded by the ligation of the three domains for the first time. In addition, the new ligation potential index well-worked for application to other domain ligations. Therefore, the index may serve as a more time-effective tool for multi-site ligations.
Collapse
|
13
|
Yamamoto N, Inoue R, Makino Y, Sekiguchi H, Shibayama N, Naito A, Sugiyama M, Chatani E. Tracking the Structural Development of Amyloid Precursors in the Insulin B Chain and the Inhibition Effect by Fibrinogen. J Phys Chem B 2022; 126:10797-10812. [PMID: 36534755 DOI: 10.1021/acs.jpcb.2c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid fibrils are abnormal protein aggregates associated with several amyloidoses and neurodegenerative diseases. Prefibrillar intermediates, which emerge before amyloid fibril formation, play an important role in structure formation. Therefore, to prevent fibril formation, the mechanisms underpinning the structural development of prefibrillar intermediates must be elucidated. An insulin-derived peptide, the insulin B chain, is known for its stable accumulation of prefibrillar intermediates. In this study, the structural development of B chain prefibrillar intermediates and their inhibition by fibrinogen (Fg) were monitored by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) combined with solid-state nuclear magnetic resonance spectroscopy (NMR) and size exclusion chromatography. TEM images obtained in a time-lapse manner demonstrated that prefibrillar intermediates were wavy rod-like structures emerging from initial non-rod-like aggregates, and their bundling was responsible for protofilament formation. Time-resolved SAXS revealed that the prefibrillar intermediates became thicker and longer as a function of time. Solid-state NMR measurement suggested a β-sheet formation around Ala14 residue was crucial for the structural conversion from prefibrillar intermediates to amyloid fibril. These observations suggested that prefibrillar intermediates serve as reaction fields for amyloid nucleation and its structural propagation. Time-resolved SAXS also demonstrated that Fg prevented elongation of the prefibrillar intermediates by forming specific complexes together, which implied that regulation of the length of prefibrillar intermediates upon Fg binding was the factor suppressing the prefibrillar intermediate elongation. The fibril formation mechanism and the inhibition strategy found in this study will be helpful in seeking appropriate methods against amyloid-related diseases.
Collapse
|
14
|
Okuda A, Shimizu M, Inoue R, Urade R, Sugiyama M. Efficient Multiple Domain Ligation for Proteins using Asparaginyl Endopeptidase by Selection of Appropriate Ligation Sites Based on Steric Hindrance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Yoshikawa Y, Yuzu K, Yamamoto N, Morishima K, Inoue R, Sugiyama M, Iwasaki T, So M, Goto Y, Tamura A, Chatani E. Pathway Dependence of the Formation and Development of Prefibrillar Aggregates in Insulin B Chain. Molecules 2022; 27:3964. [PMID: 35807211 PMCID: PMC9268647 DOI: 10.3390/molecules27133964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022] Open
Abstract
Amyloid fibrils have been an important subject as they are involved in the development of many amyloidoses and neurodegenerative diseases. The formation of amyloid fibrils is typically initiated by nucleation, whereas its exact mechanisms are largely unknown. With this situation, we have previously identified prefibrillar aggregates in the formation of insulin B chain amyloid fibrils, which have provided an insight into the mechanisms of protein assembly involved in nucleation. Here, we have investigated the formation of insulin B chain amyloid fibrils under different pH conditions to better understand amyloid nucleation mediated by prefibrillar aggregates. The B chain showed strong propensity to form amyloid fibrils over a wide pH range, and prefibrillar aggregates were formed under all examined conditions. In particular, different structures of amyloid fibrils were found at pH 5.2 and pH 8.7, making it possible to compare different pathways. Detailed investigations at pH 5.2 in comparison with those at pH 8.7 have suggested that the evolution of protofibril-like aggregates is a common mechanism. In addition, different processes of evolution of the prefibrillar aggregates have also been identified, suggesting that the nucleation processes diversify depending on the polymorphism of amyloid fibrils.
Collapse
|
16
|
Shimizu M, Okuda A, Morishima K, Inoue R, Sato N, Yunoki Y, Urade R, Sugiyama M. Extracting time series matching a small-angle X-ray scattering profile from trajectories of molecular dynamics simulations. Sci Rep 2022; 12:9970. [PMID: 35705644 PMCID: PMC9200744 DOI: 10.1038/s41598-022-13982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Solving structural ensembles of flexible biomolecules is a challenging research area. Here, we propose a method to obtain possible structural ensembles of a biomolecule based on small-angle X-ray scattering (SAXS) and molecular dynamics simulations. Our idea is to clip a time series that matches a SAXS profile from a simulation trajectory. To examine its practicability, we applied our idea to a multi-domain protein ER-60 and successfully extracted time series longer than 1 micro second from trajectories of coarse-grained molecular dynamics simulations. In the extracted time series, the domain conformation was distributed continuously and smoothly in a conformational space. Preferred domain conformations were also observed. Diversity among scattering curves calculated from each ER-60 structure was interpreted to reflect an open-close motion of the protein. Although our approach did not provide a unique solution for the structural ensemble of the biomolecule, each extracted time series can be an element of the real behavior of ER-60. Considering its low computational cost, our approach will play a key role to identify biomolecular dynamics by integrating SAXS, simulations, and other experiments.
Collapse
|
17
|
Tominaga T, Nakagawa H, Sahara M, Oda T, Inoue R, Sugiyama M. Data Collection for Dilute Protein Solutions via a Neutron Backscattering Spectrometer. Life (Basel) 2022; 12:life12050675. [PMID: 35629343 PMCID: PMC9145923 DOI: 10.3390/life12050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding protein functions requires not only static but also dynamic structural information. Incoherent quasi-elastic neutron scattering (QENS), which utilizes the highly incoherent scattering ability of hydrogen, is a powerful technique for revealing the dynamics of proteins in deuterium oxide (D2O) buffer solutions. The background scattering of sample cells suitable for aqueous protein solution samples, conducted with a neutron backscattering spectrometer, was evaluated. It was found that the scattering intensity of an aluminum sample cell coated with boehmite using D2O was lower than that of a sample cell coated with regular water (H2O). The D2O-Boehmite coated cell was used for the QENS measurement of a 0.8 wt.% aqueous solution of an intrinsically disordered protein in an intrinsically disordered region of a helicase-associated endonuclease for a fork-structured type of DNA. The cell was inert against aqueous samples at 283–363 K. In addition, meticulous attention to cells with small individual weight differences and the positional reproducibility of the sample cell relative to the spectrometer neutron beam position enabled the accurate subtraction of the scattering profiles of the D2O buffer and the sample container. Consequently, high-quality information on protein dynamics could be extracted from dilute protein solutions.
Collapse
|
18
|
Yunoki Y, Matsumoto A, Morishima K, Martel A, Porcar L, Sato N, Yogo R, Tominaga T, Inoue R, Yagi-Utsumi M, Okuda A, Shimizu M, Urade R, Terauchi K, Kono H, Yagi H, Kato K, Sugiyama M. Overall structure of fully assembled cyanobacterial KaiABC circadian clock complex by an integrated experimental-computational approach. Commun Biol 2022; 5:184. [PMID: 35273347 PMCID: PMC8913699 DOI: 10.1038/s42003-022-03143-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
In the cyanobacterial circadian clock system, KaiA, KaiB and KaiC periodically assemble into a large complex. Here we determined the overall structure of their fully assembled complex by integrating experimental and computational approaches. Small-angle X-ray and inverse contrast matching small-angle neutron scatterings coupled with size-exclusion chromatography provided constraints to highlight the spatial arrangements of the N-terminal domains of KaiA, which were not resolved in the previous structural analyses. Computationally built 20 million structural models of the complex were screened out utilizing the constrains and then subjected to molecular dynamics simulations to examine their stabilities. The final model suggests that, despite large fluctuation of the KaiA N-terminal domains, their preferential positionings mask the hydrophobic surface of the KaiA C-terminal domains, hindering additional KaiA-KaiC interactions. Thus, our integrative approach provides a useful tool to resolve large complex structures harboring dynamically fluctuating domains. The revealed full KaiA12B6C6 complex is assembled including the dynamic and asynchronous KaiA N-terminal domains that have been missing in cryo-EM structures.
Collapse
|
19
|
Sugiyama T, Carver A, Sugiyama M, Lorenzon A, Davison TE. Views of Greenery and Psychological Well-Being in Residential Aged Care Facilities: Longitudinal Associations. HERD-HEALTH ENVIRONMENTS RESEARCH & DESIGN JOURNAL 2021; 15:219-232. [PMID: 34809476 DOI: 10.1177/19375867211059757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study examined associations of objectively measured views of greenery in residential aged care facilities (RACFs) with changes in multiple psychological well-being measures among residents who were newly admitted to RACFs. METHODS Data were collected from 52 residents (mean age: 84, 73% women) of 13 RACFs, located in Melbourne, Australia. The outcomes were changes in depression, stress, anxiety, and quality of life (QoL) between baseline and 8-week follow-up. The exposure measures were the amount and presence of greenery visible from participant's bedroom and common areas (lounge, dining). Greenery was categorized as being either within or beyond the RACF perimeter. RESULTS Regression analyses found that greenery visible from participant's bedroom was not associated with any outcomes. The amount of greenery visible from common areas within the RACF perimeter was adversely related to stress, unexpectedly: Each additional 1 m2 of greenery was associated with a greater increase in stress (b = 0.05; 95% CI [0.07, 0.94]). However, greenery visible from common areas beyond the perimeter contributed favorably to stress and QoL. The presence of such greenery was associated with a lower increase in stress (b = -3.99; 95% CI [-7.75, -0.23]; reference: no greenery), and a 1 m2 increment was associated with a greater increase in QoL (b = 0.07; 95% CI [0.02, 0.11]). CONCLUSION Views of greenery outside of the RACF from lounge and dining areas may be protective against residents' stress increase and improve their QoL. Locating residents in areas with such outdoor views may prevent their psychological condition from worsening.
Collapse
|
20
|
Nakagawa H, Saio T, Nagao M, Inoue R, Sugiyama M, Ajito S, Tominaga T, Kawakita Y. Conformational dynamics of a multidomain protein by neutron scattering and computational analysis. Biophys J 2021; 120:3341-3354. [PMID: 34242590 PMCID: PMC8391080 DOI: 10.1016/j.bpj.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
The flexible conformations of a multidomain protein are responsible for its biological functions. Although MurD, a 47-kDa protein that consists of three domains, sequentially changes its domain conformation from an open form to a closed form through a semiclosed form in its enzymatic reaction, the domain dynamics in each conformation remains unclear. In this study, we verify the conformational dynamics of MurD in the corresponding three states (apo and ATP- and inhibitor-bound states) with a combination of small-angle x-ray and neutron scattering (SAXS and SANS), dynamic light scattering (DLS), neutron backscattering (NBS), neutron spin echo (NSE) spectroscopy, and molecular dynamics (MD) simulations. Applying principal component analysis of the MD trajectories, twisting and open-closed domain modes are identified as the major collective coordinates. The deviations of the experimental SAXS profiles from the theoretical calculations based on the known crystal structures become smaller in the ATP-bound state than in the apo state, and a further decrease is evident upon inhibitor binding. These results suggest that domain motions of the protein are suppressed step by step of each ligand binding. The DLS and NBS data yield collective and self-translational diffusion constants, respectively, and we used them to extract collective domain motions in nanometer and nanosecond scales from the NSE data. In the apo state, MurD shows both twisting and open-closed domain modes, whereas an ATP binding suppresses twisting domain motions, and a further reduction of open-closed mode is seen in the inhibitor-binding state. These observations are consistent with the structure modifications measured by the small-angle scattering as well as the MD simulations. Such changes in the domain dynamics associated with the sequential enzymatic reactions should be related to the affinity and reaction efficiency with a ligand that binds specifically to each reaction state.
Collapse
|
21
|
Shimizu M, Okuda A, Morishima K, Sato N, Inoue R, Urade R, Sugiyama M. Dynamics of multi-domain protein ER-60 revealed by small-angle X-ray scattering data and molecular dynamics simulations. Acta Crystallogr A Found Adv 2021. [DOI: 10.1107/s0108767321089169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Sato N, Yogo R, Yanaka S, Martel A, Porcar L, Morishima K, Inoue R, Tominaga T, Arimori T, Takagi J, Sugiyama M, Kato K. Structural analysis of antibody complexes by inverse contrast-matching small-angle neutron scattering combined with size-exclusion chromatography (SEC-iCM-SANS). Acta Crystallogr A Found Adv 2021. [DOI: 10.1107/s0108767321085305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Inoue R, Sakamaki Y, Takata T, Morishima K, Wood K, Sato N, Okuda A, Shimizu M, Urade R, Fujii N, Sugiyama M. Subunit dynamics in alpha-crystallin through deuteration-assisted small-angle neutron scattering. Acta Crystallogr A Found Adv 2021. [DOI: 10.1107/s0108767321089170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
24
|
Okuda A, Inoue R, Morishima K, Yunoki Y, Shimizu M, Sato N, Urade R, Sugiyama M. Establishment of basic techniques related to protein sample preparation for neutron scattering. Acta Crystallogr A Found Adv 2021. [DOI: 10.1107/s0108767321089182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Morishima K, Inoue R, Shimizu M, Okuda A, Sato N, Urade R, Sugiyama M. AUC–SAS: integrated analysis of biomacromolecular structure with analytical ultracentrifugation (AUC) and small-angle scattering (SAS). Acta Crystallogr A Found Adv 2021. [DOI: 10.1107/s0108767321089194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|