1
|
Guo X, Zhou Y, Huang H, Zong Z, Xin M, Yang K. Diagnostic and prognostic value of microRNA423-5p in patients with heart failure. J Cardiothorac Surg 2024; 19:550. [PMID: 39354595 PMCID: PMC11443636 DOI: 10.1186/s13019-024-03091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES MicroRNAs are considered as a class of potential biomarkers for HF. This study aimed to retrospectively evaluate the diagnostic and prognostic value of microRNA423-5p in patients with HF. METHODS The observational group comprised 98 patients diagnosed with HF due to coronary atherosclerotic heart disease (n = 45), hypertension (n = 26), or cardiac valve insufficiency (n = 27). Conversely, the control group consisted of 30 healthy volunteers without any history of HF. These patients were further classified into heart function class II (n = 33), class III (n = 32), and class IV (n = 33) according to the NYHA classification. Of these patients, 33 were diagnosed with HF with mid-range ejection fraction (HFmrEF) and the remaining 65 with HF with reduced ejection fraction (HFrEF). The diagnostic and prognostic significance of microRNA423-5p in patients with HF was assessed through laboratory parameter assessments (microRNA423-5p and B-type natriuretic peptide test, BNP), cardiac ultrasound evaluations (left ventricular ejection fraction, LVEF), and subsequent follow-up assessments. RESULTS In this study, we found that patients with HF exhibited notably elevated levels of microRNA423-5p and BNP, as well as significantly lower LVEF values. A significant positive correlation between microRNA423-5p and BNP indicators was validated. In addition, our study also revealed an elevation in the level of microRNA423-5p correlating with the progression of the HF. The combined evaluation of LEVF, BNP, and microRNA423-5p demonstrated superior diagnostic efficacy in comparison to the solitary use of BNP. CONCLUSIONS Elevated levels of microRNA423-5p in the serum of patients with HF suggest its potential utility as a novel biomarker for both the diagnosis and prognosis of this condition.
Collapse
|
2
|
Xin M, Peng H, Zhang L. Exploring the prognosis value, immune correlation, and drug responsiveness prediction of homeobox C6 (HOXC6) in lung adenocarcinoma. Discov Oncol 2024; 15:393. [PMID: 39215852 PMCID: PMC11365874 DOI: 10.1007/s12672-024-01273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUNDS Homeobox C6 (HOXC6) is a gene that encodes for a transcription factor involved in various cellular processes, including development and differentiation, and regulates cancer progression. However, the carcinogenesis and effect of HOXC6 in lung adenocarcinoma (LUAD) still need further investigation. METHODS The differential HOXC6 expression levels at the mRNA and protein level were explored in multiple public datasets, including The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) dataset. Gene Expression Omnibus (GSE31210), International Cancer Genome Consortium (ICGC) datasets and the LUAD sample from Affiliated Hospital of Guangxi Medical University. We also investigated the relation between HOXC6 expression and clinicopathologic indexes. Furthermore, the correlation of immune infiltration, drug responsiveness and HOXC6 were explored. RESULTS The upregulated HOXC6 expressions at mRNA and protein levels were found in LUAD tissues compared to the normal lung tissues. Besides, the relatively shorter overall survival time, worse T and N stages, and lower immune scores were found in the high-expression HOXC6 subgroup. Notably, T cells regulatory (Tregs), Macrophages M0, and Plasma cells had the higher infiltration levels in the high-HOXC6 expression subgroup, while NK cells activated, Monocytes, Dendritic cells resting, and Mast cells resting had the lower infiltration levels. In drug sensitivity analysis, we revealed that LUAD patients with high-HOXC6 expression may be more susceptible to Camptothecin, Cytarabine, Docetaxel, Elesclomol, Rapamycin, Sorafinib, Temsirolimus, and Vorinostat. CONCLUSIONS Taken together, there is a great potential for HOXC6 to become a prognosis biomarker and contribute to develop treatment strategies for LUAD patients. Further mechanism exploration and drug development for HOXC6 are needed.
Collapse
|
3
|
Wang F, Xin M, Li X, Li L, Wang C, Dai L, Zheng C, Cao K, Yang X, Ge Q, Li B, Wang T, Zhan S, Li D, Zhang X, Paerhati H, Zhou Y, Liu J, Sun B. Effects of deep brain stimulation on dopamine D2 receptor binding in patients with treatment-refractory depression. J Affect Disord 2024; 356:672-680. [PMID: 38657771 DOI: 10.1016/j.jad.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.
Collapse
|
4
|
Wang J, Yang L, Du Y, Wang J, Weng Q, Liu X, Nicholson E, Xin M, Lu QR. BRG1 programs PRC2-complex repression and controls oligodendrocyte differentiation and remyelination. J Cell Biol 2024; 223:e202310143. [PMID: 38652118 PMCID: PMC11040499 DOI: 10.1083/jcb.202310143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Chromatin-remodeling protein BRG1/SMARCA4 is pivotal for establishing oligodendrocyte (OL) lineage identity. However, its functions for oligodendrocyte-precursor cell (OPC) differentiation within the postnatal brain and during remyelination remain elusive. Here, we demonstrate that Brg1 loss profoundly impairs OPC differentiation in the brain with a comparatively lesser effect in the spinal cord. Moreover, BRG1 is critical for OPC remyelination after injury. Integrative transcriptomic/genomic profiling reveals that BRG1 exhibits a dual role by promoting OPC differentiation networks while repressing OL-inhibitory cues and proneuronal programs. Furthermore, we find that BRG1 interacts with EED/PRC2 polycomb-repressive-complexes to enhance H3K27me3-mediated repression at gene loci associated with OL-differentiation inhibition and neurogenesis. Notably, BRG1 depletion decreases H3K27me3 deposition, leading to the upregulation of BMP/WNT signaling and proneurogenic genes, which suppresses OL programs. Thus, our findings reveal a hitherto unexplored spatiotemporal-specific role of BRG1 for OPC differentiation in the developing CNS and underscore a new insight into BRG1/PRC2-mediated epigenetic regulation that promotes and safeguards OL lineage commitment and differentiation.
Collapse
|
5
|
Xin M, Wang Y, Yang X, Li L, Wang C, Gu Y, Zhang C, Huang G, Zhou Y, Liu J. Exploring the nigrostriatal and digestive interplays in Parkinson's disease using dynamic total-body [ 11C]CFT PET/CT. Eur J Nucl Med Mol Imaging 2024; 51:2271-2282. [PMID: 38393375 DOI: 10.1007/s00259-024-06638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Dynamic total-body imaging enables new perspectives to investigate the potential relationship between the central and peripheral regions. Employing uEXPLORER dynamic [11C]CFT PET/CT imaging with voxel-wise simplified reference tissue model (SRTM) kinetic modeling and semi-quantitative measures, we explored how the correlation pattern between nigrostriatal and digestive regions differed between the healthy participants as controls (HC) and patients with Parkinson's disease (PD). METHODS Eleven participants (six HCs and five PDs) underwent 75-min dynamic [11C]CFT scans on a total-body PET/CT scanner (uEXPLORER, United Imaging Healthcare) were retrospectively enrolled. Time activity curves for four nigrostriatal nuclei (caudate, putamen, pallidum, and substantia nigra) and three digestive organs (pancreas, stomach, and duodenum) were obtained. Total-body parametric images of relative transporter rate constant (R1) and distribution volume ratio (DVR) were generated using the SRTM with occipital lobe as the reference tissue and a linear regression with spatial-constraint algorithm. Standardized uptake value ratio (SUVR) at early (1-3 min, SUVREP) and late (60-75 min, SUVRLP) phases were calculated as the semi-quantitative substitutes for R1 and DVR, respectively. RESULTS Significant differences in estimates between the HC and PD groups were identified in DVR and SUVRLP of putamen (DVR: 4.82 ± 1.58 vs. 2.58 ± 0.53; SUVRLP: 4.65 ± 1.36 vs. 2.84 ± 0.67; for HC and PD, respectively, both p < 0.05) and SUVREP of stomach (1.12 ± 0.27 vs. 2.27 ± 0.65 for HC and PD, respectively; p < 0.01). In the HC group, negative correlations were observed between stomach and substantia nigra in both the R1 and SUVREP values (r=-0.83, p < 0.05 for R1; r=-0.94, p < 0.01 for SUVREP). Positive correlations were identified between pancreas and putamen in both DVR and SUVRLP values (r = 0.94, p < 0.01 for DVR; r = 1.00, p < 0.001 for SUVRLP). By contrast, in the PD group, no correlations were found between the aforementioned target nigrostriatal and digestive areas. CONCLUSIONS The parametric images of R1 and DVR generated from the SRTM model, along with SUVREP and SUVRLP, were proposed to quantify dynamic total-body [11C]CFT PET/CT in HC and PD groups. The distinction in correlation patterns of nigrostriatal and digestive regions between HC and PD groups identified by R1 and DVR, or SUVRs, may provide new insights into the disease mechanism.
Collapse
|
6
|
Liu X, Xin DE, Zhong X, Zhao C, Li Z, Zhang L, Dourson AJ, Lee L, Mishra S, Bayat AE, Nicholson E, Seibel WL, Yan B, Mason J, Turner BJ, Gonsalvez DG, Ong W, Chew SY, Ghosh B, Yoon SO, Xin M, He Z, Tchieu J, Wegner M, Nave KA, Franklin RJM, Dutta R, Trapp BD, Hu M, Smith MA, Jankowski MP, Barton SK, He X, Lu QR. Small-molecule-induced epigenetic rejuvenation promotes SREBP condensation and overcomes barriers to CNS myelin regeneration. Cell 2024; 187:2465-2484.e22. [PMID: 38701782 DOI: 10.1016/j.cell.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/01/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.
Collapse
|
7
|
Zhang Y, Xin M, Wang C, Hu Z, Wang Y, Shao H, Liu J, Zhang C. Neuronal intranuclear inclusion disease with cerebellar white matter tau uptake and incidental meningioma. Eur J Nucl Med Mol Imaging 2024; 51:1794-1795. [PMID: 38273004 DOI: 10.1007/s00259-024-06615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
|
8
|
Hu BY, Xin M, Chen M, Yu P, Zeng LZ. Mesenchymal stem cells for repairing glaucomatous optic nerve. Int J Ophthalmol 2024; 17:748-760. [PMID: 38638254 PMCID: PMC10988077 DOI: 10.18240/ijo.2024.04.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/09/2024] [Indexed: 04/20/2024] Open
Abstract
Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells (RGCs) and axons. Currently, there is no effective method to address the cause of RGCs degeneration. However, studies on neuroprotective strategies for optic neuropathy have increased in recent years. Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy. Regenerative medicine research into the repair of optic nerve damage using stem cells has received considerable attention. Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGC-friendly microenvironments through paracrine effects. This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury, raising the controversies and unresolved issues surrounding the future of stem cells.
Collapse
|
9
|
Xin DE, Liao Y, Rao R, Ogurek S, Sengupta S, Xin M, Bayat AE, Seibel WL, Graham RT, Koschmann C, Lu QR. Chaetocin-mediated SUV39H1 inhibition targets stemness and oncogenic networks of diffuse midline gliomas and synergizes with ONC201. Neuro Oncol 2024; 26:735-748. [PMID: 38011799 PMCID: PMC10995509 DOI: 10.1093/neuonc/noad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Diffuse intrinsic pontine gliomas (DIPG/DMG) are devastating pediatric brain tumors with extraordinarily limited treatment options and uniformly fatal prognosis. Histone H3K27M mutation is a common recurrent alteration in DIPG and disrupts epigenetic regulation. We hypothesize that genome-wide H3K27M-induced epigenetic dysregulation makes tumors vulnerable to epigenetic targeting. METHODS We performed a screen of compounds targeting epigenetic enzymes to identify potential inhibitors for the growth of patient-derived DIPG cells. We further carried out transcriptomic and genomic landscape profiling including RNA-seq and CUT&RUN-seq as well as shRNA-mediated knockdown to assess the effects of chaetocin and SUV39H1, a target of chaetocin, on DIPG growth. RESULTS High-throughput small-molecule screening identified an epigenetic compound chaetocin as a potent blocker of DIPG cell growth. Chaetocin treatment selectively decreased proliferation and increased apoptosis of DIPG cells and significantly extended survival in DIPG xenograft models, while restoring H3K27me3 levels. Moreover, the loss of H3K9 methyltransferase SUV39H1 inhibited DIPG cell growth. Transcriptomic and epigenomic profiling indicated that SUV39H1 loss or inhibition led to the downregulation of stemness and oncogenic networks including growth factor receptor signaling and stemness-related programs; however, D2 dopamine receptor (DRD2) signaling adaptively underwent compensatory upregulation conferring resistance. Consistently, a combination of chaetocin treatment with a DRD2 antagonist ONC201 synergistically increased the antitumor efficacy. CONCLUSIONS Our studies reveal a therapeutic vulnerability of DIPG cells through targeting the SUV39H1-H3K9me3 pathway and compensatory signaling loops for treating this devastating disease. Combining SUV39H1-targeting chaetocin with other agents such as ONC201 may offer a new strategy for effective DIPG treatment.
Collapse
|
10
|
Zhao Z, Han L, Xin M, Zhou L, Jiang K, Huang Q, Dai R. Still water run deep: Therapeutic TP effect of ucMSC-Ex via regulating mTOR to enhance autophagy. J Cell Mol Med 2024; 28:e18120. [PMID: 38358010 PMCID: PMC10868142 DOI: 10.1111/jcmm.18120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Our previous study confirmed that umbilical cord mesenchymal stem cells-exosomes (ucMSC-Ex) inhibit apoptosis of pancreatic acinar cells to exert protective effects. However, the relationship between apoptosis and autophagy in traumatic pancreatitis (TP) has rarely been reported. We dissected the transcriptomics after pancreatic trauma and ucMSC-Ex therapy by high-throughput sequencing. Additionally, we used rapamycin and MHY1485 to regulate mTOR. HE, inflammatory factors and pancreatic enzymatic assays were used to comprehensively determine the local versus systemic injury level, fluorescence staining and electron microscopy were used to detect the effect of autophagy, and observe the expression levels of autophagy-related markers at the gene and protein levels. High-throughput sequencing identified that autophagy played a crucial role in the pathophysiological process of TP and ucMSC-Ex therapy. The results of electron microscopy, immunofluorescence staining, polymerase chain reaction and western blot suggested that therapeutic effect of ucMSC-Ex was mediated by activation of autophagy in pancreatic acinar cells through inhibition of mTOR. ucMSC-Ex can attenuate pancreas injury by inhibiting mTOR to regulate acinar cell autophagy after TP. Future studies will build on the comprehensive sequencing of RNA carried by ucMSC-Ex to predict and verify specific non-coding RNA.
Collapse
|
11
|
Govindarajah V, Sakabe M, Good S, Solomon M, Arasu A, Chen N, Zhang X, Grimes HL, Kendler A, Xin M, Reynaud D. Gestational diabetes in mice induces hematopoietic memory that affects the long-term health of the offspring. J Clin Invest 2024; 134:e169730. [PMID: 37988162 PMCID: PMC10786695 DOI: 10.1172/jci169730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Gestational diabetes is a common medical complication of pregnancy that is associated with adverse perinatal outcomes and an increased risk of metabolic diseases and atherosclerosis in adult offspring. The mechanisms responsible for this delayed pathological transmission remain unknown. In mouse models, we found that the development of atherosclerosis in adult offspring born to diabetic pregnancy can be in part linked to hematopoietic alterations. Although they do not show any gross metabolic disruptions, the adult offspring maintain hematopoietic features associated with diabetes, indicating the acquisition of a lasting diabetic hematopoietic memory. We show that the induction of this hematopoietic memory during gestation relies on the activity of the advanced glycation end product receptor (AGER) and the nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which lead to increased placental inflammation. In adult offspring, we find that this memory is associated with DNA methyltransferase 1 (DNMT1) upregulation and epigenetic changes in hematopoietic progenitors. Together, our results demonstrate that the hematopoietic system can acquire a lasting memory of gestational diabetes and that this memory constitutes a pathway connecting gestational health to adult pathologies.
Collapse
|
12
|
Thompson M, Sakabe M, Verba M, Hao J, Meadows SM, Lu QR, Xin M. PRDM16 regulates arterial development and vascular integrity. Front Physiol 2023; 14:1165379. [PMID: 37324380 PMCID: PMC10267475 DOI: 10.3389/fphys.2023.1165379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Proper vascular formation is regulated by multiple signaling pathways. The vascular endothelial growth factor (VEGF) signaling promotes endothelial proliferation. Notch and its downstream targets act to lead endothelial cells toward an arterial fate through regulation of arterial gene expression. However, the mechanisms of how endothelial cells (ECs) in the artery maintain their arterial characteristics remain unclear. Here, we show that PRDM16 (positive regulatory domain-containing protein 16), a zinc finger transcription factor, is expressed in arterial ECs, but not venous ECs in developing embryos and neonatal retinas. Endothelial-specific deletion of Prdm16 induced ectopic venous marker expression in the arterial ECs and reduced vascular smooth muscle cell (vSMC) recruitment around arteries. Whole-genome transcriptome analysis using isolated brain ECs show that the expression of Angpt2 (encoding ANGIOPOIETIN2, which inhibits vSMC recruitment) is upregulated in the Prdm16 knockout ECs. Conversely, forced expression of PRDM16 in venous ECs is sufficient to induce arterial gene expression and repress the ANGPT2 level. Together, these results reveal an arterial cell-autonomous function for PRDM16 in suppressing venous characteristics in arterial ECs.
Collapse
|
13
|
Xin M, Li L, Wang C, Shao H, Liu J, Zhang C. Pilot study on 11C-CFT dynamic imaging using total-body PET/CT: biodistribution and radiation dosimetry in Parkinson's disease. Front Neurol 2023; 14:1153779. [PMID: 37260609 PMCID: PMC10227570 DOI: 10.3389/fneur.2023.1153779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/18/2023] [Indexed: 06/02/2023] Open
Abstract
Objective Total-body PET/CT equipment, uEXPLORER, is a newly developed imaging technology with a superior resolution, high sensitivity, and high signal-to-noise ratio, providing unique application advantages in the pharmacokinetic evaluation of positron tracers. While 11C-CFT PET/CT has been widely utilized in the early diagnosis of Parkinson's disease (PD), it is limited by the short half-life of the radionuclide and an incomplete understanding of its biological distribution in humans. This study aimed to use a total-body PET/CT dynamic scan with 11C-CFT imaging to describe the real-time internal biodistribution in PD patients and to obtain accurate radiation dosimetry. Methods Six male subjects with suspected PD underwent dynamic 11C-CFT total-body PET/CT. Following a bedside intravenous bolus injection of 373.3 ± 71.56 MBq of 11C-CFT, PET acquisition was performed synchronously for 75 min with a maximum axial field of view (AFOV) of 194 cm. Time-activity curves (TACs) were generated by delineating volumes of interest (VOIs) of the sourced organs using PMOD software. Tracer kinetics and cumulative organ activities were calculated, and absorbed doses were calculated and estimated using the OLINDA/EXM software. Results In the systemic TAC analysis of 11C-CFT, several unique types of distribution patterns were obtained among several major organs, including a "Fast-in Fast-out" pattern in the kidneys, lungs, spleen, and thyroid, a "Fast-in Slow-out" curve in the heart wall, a "Slow-in Slow-out" mode in the liver, a "Low-level extending" pattern in the whole brain and muscle, and a "Slow-in to plateau" trend in the striatum and bone. The effective dose of 11C-CFT was calculated to be 2.83E-03 mSv/MBq, which is only one-third of the literature value measured by the conventional method. Moreover, this dose is much lower compared to all other doses of DAT radioligands used in PET imaging. Conclusion This study is a pioneering application of total-body PET/CT to 11C-CFT dynamic imaging. Our results confirmed that 11C-CFT has a favorable total body biodistribution, an extremely low internal radiation dose, and high imaging quality, making it suitable for reasonable PD diagnosis in patients requiring multiple follow-up examinations.
Collapse
|
14
|
Cao Y, Shao L, Wang L, Su K, Zhang D, Xie Y, Zheng Q, Xu Y, Lu H, Xin M, Qiao Z, Guo Y. Heat shock cognate 70 protein like-2 protein in camphor pollen is one of the major culprits of asthma. Mol Immunol 2023; 156:170-176. [PMID: 36933345 DOI: 10.1016/j.molimm.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 03/18/2023]
Abstract
AIMS In recent decades, Cinnamomum camphora have gradually become the main street trees in Shanghai. This study aims to investigate the allergenicity of camphor pollen. MAIN METHODS A total of 194 serum samples from patients with respiratory allergy were collected and analyzed. Through protein profile identification and bioinformatics analysis, we hypothesized that heat shock cognate protein 2-like protein (HSC70L2) is the major potential allergenic protein in camphor pollen. Recombinant HSC70L2 (rHSC70L2) was expressed and purified, and a mouse model of camphor pollen allergy was established by subcutaneous injection of total camphor pollen protein extract (CPPE) and rHSC70L2. KEY FINDINGS Specific IgE was found in the serum of 5 patients in response to camphor pollen and three positive bands were identified by Western blotting. Enzyme-linked immunosorbent assay (ELISA), Immune dot blot and Western blot experiments confirmed that CPPE and rHSC70L2 can cause allergies in mice. Moreover, rHSC70L2 induces polarization of peripheral blood CD4+ T cells to Th2 cells in patients with respiratory allergies and mice with camphor pollen allergy. Finally, we predicted the T cell epitope of the HSC70L2 protein, and through the mouse spleen T cell stimulation experiment, we found that the 295EGIDFYSTITRARFE309 peptide induced T cells differentiation to Th2 and macrophages differentiation to the alternatively activated (M2) state. Moreover, 295EGIDFYSTITRARFE309 peptide increased the serum IgE levels in mice. SIGNIFICANCE The identification of HSC70L2 protein can provide novel diagnostic and therapeutic targets for allergies caused by camphor pollen.
Collapse
|
15
|
Verma R, Chen X, Xin D, Luo Z, Ogurek S, Xin M, Rao R, Berry K, Lu QR. Olig1/2-Expressing Intermediate Lineage Progenitors Are Predisposed to PTEN/p53-Loss-Induced Gliomagenesis and Harbor Specific Therapeutic Vulnerabilities. Cancer Res 2023; 83:890-905. [PMID: 36634201 DOI: 10.1158/0008-5472.can-22-1577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Malignant gliomas such as glioblastoma are highly heterogeneous with distinct cells of origin and varied genetic alterations. It remains elusive whether the specific states of neural cell lineages are differentially susceptible to distinct genetic alterations during malignant transformation. Here, an analysis of The Cancer Genome Atlas databases revealed that comutations of PTEN and TP53 are most significantly enriched in human high-grade gliomas. Therefore, we selectively ablated Pten and Trp53 in different progenitors to determine which cell lineage states are susceptible to malignant transformation. Mice with PTEN/p53 ablation mediated by multilineage-expressing human GFAP (hGFAP) promoter-driven Cre developed glioma but with incomplete penetrance and long latency. Unexpectedly, ablation of Pten and Trp53 in Nestin+ neural stem cells (NSC) or Pdgfra+/NG2+ committed oligodendrocyte precursor cells (OPC), two major cells of origin in glioma, did not induce glioma formation in mice. Strikingly, mice lacking Pten and Trp53 in Olig1+/Olig2+ intermediate precursors (pri-OPC) prior to the committed OPCs developed high-grade gliomas with 100% penetrance and short latency. The resulting tumors exhibited distinct tumor phenotypes and drug sensitivities from NSC- or OPC-derived glioma subtypes. Integrated transcriptomic and epigenomic analyses revealed that PTEN/p53-loss induced activation of oncogenic pathways, including HIPPO-YAP and PI3K signaling, to promote malignant transformation. Targeting the core regulatory circuitries YAP and PI3K signaling effectively inhibited tumor cell growth. Thus, our multicell state in vivo mutagenesis analyses suggests that transit-amplifying states of Olig1/2 intermediate lineage precursors are predisposed to PTEN/p53-loss-induced transformation and gliomagenesis, pointing to subtype-specific treatment strategies for gliomas with distinct genetic alterations. SIGNIFICANCE Multiple progenitor-state mutagenesis reveal that Olig1/2-expressing intermediate precursors are highly susceptible to PTEN/p53-loss-mediated transformation and impart differential drug sensitivity, indicating tumor-initiating cell states and genetic drivers dictate glioma phenotypes and drug responses. See related commentary by Zamler and Hu, p. 807.
Collapse
|
16
|
Zhao M, Liu J, Xin M, Yang K, Huang H, Zhang W, Zhang J, He S. Pulmonary arterial hypertension associated with congenital heart disease: An omics study. Front Cardiovasc Med 2023; 10:1037357. [PMID: 36970344 PMCID: PMC10036813 DOI: 10.3389/fcvm.2023.1037357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD) is a severely progressive condition with uncertain physiological course. Hence, it has become increasingly relevant to clarify the specific mechanisms of molecular modification, which is crucial to identify more treatment strategies. With the rapid development of high-throughput sequencing, omics technology gives access to massive experimental data and advanced techniques for systems biology, permitting comprehensive assessment of disease occurrence and progression. In recent years, significant progress has been made in the study of PAH-CHD and omics. To provide a comprehensive description and promote further in-depth investigation of PAH-CHD, this review attempts to summarize the latest developments in genomics, transcriptomics, epigenomics, proteomics, metabolomics, and multi-omics integration.
Collapse
|
17
|
Zhang C, Hao Y, Huang G, Xin M, Bai S, Guan Y, Liu J. Hypometabolism of the left middle/medial frontal lobe on FDG-PET in anti-NMDA receptor encephalitis: Comparison with MRI and EEG findings. CNS Neurosci Ther 2023; 29:1624-1635. [PMID: 36815303 PMCID: PMC10173717 DOI: 10.1111/cns.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES To investigate changes in brain-glucose metabolism in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, and compare results with MRI and electroencephalography (EEG) findings at different disease stages. METHODS The clinical data of 18 patients (median age, 35 years; 11 men) were retrospectively collected. Patients were divided into groups based on the time of symptom onset to examination, (≤1 month, >1 but ≤3 months, >3 months). Two-sample t-test results were compared with age and sex-paired healthy controls using statistical parametric mapping and verified using a NeuroQ software normal database with a discriminating z-score of 2. RESULTS Abnormal patterns on FDG-PET differed over time (T = 3.21-8.74, Z = 2.68-4.23, p < 0.005). Regional analysis showed hypometabolic left middle or medial frontal cortex in 4/5, 5/7, and 5/6 patients, respectively. Time-subgroup analysis revealed hypermetabolic supertemporal cortex in 4/5, 5/7, and 2/6, patients, respectively. MRI and EEG abnormalities in any region and stage occurred in 10/18 and 10/16 patients, respectively. MRI and EEG time-subgroup analysis showed abnormalities in 5/9, 4/5, and 1/4, and 1/3, 6/7, and 3/6 patients, respectively. Abnormal temporal lobes were detected most frequently in MRI analyses and occurred in 3/10 patients. CONCLUSIONS Decreased left middle/medial frontal metabolism could be common to all stages. Metabolism in other regions, MRI, and EEG results were associated with the progression of anti-NMDAR encephalitis. The sensitivity rate of FDG-PET was superior to that of MRI and EEG.
Collapse
|
18
|
Luo Z, Xin D, Liao Y, Berry K, Ogurek S, Zhang F, Zhang L, Zhao C, Rao R, Dong X, Li H, Yu J, Lin Y, Huang G, Xu L, Xin M, Nishinakamura R, Yu J, Kool M, Pfister SM, Roussel MF, Zhou W, Weiss WA, Andreassen P, Lu QR. Loss of phosphatase CTDNEP1 potentiates aggressive medulloblastoma by triggering MYC amplification and genomic instability. Nat Commun 2023; 14:762. [PMID: 36765089 PMCID: PMC9918503 DOI: 10.1038/s41467-023-36400-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
MYC-driven medulloblastomas are highly aggressive childhood brain tumors, however, the molecular and genetic events triggering MYC amplification and malignant transformation remain elusive. Here we report that mutations in CTDNEP1, a CTD nuclear-envelope-phosphatase, are the most significantly enriched recurrent alterations in MYC-driven medulloblastomas, and define high-risk subsets with poorer prognosis. Ctdnep1 ablation promotes the transformation of murine cerebellar progenitors into Myc-amplified medulloblastomas, resembling their human counterparts. CTDNEP1 deficiency stabilizes and activates MYC activity by elevating MYC serine-62 phosphorylation, and triggers chromosomal instability to induce p53 loss and Myc amplifications. Further, phosphoproteomics reveals that CTDNEP1 post-translationally modulates the activities of key regulators for chromosome segregation and mitotic checkpoint regulators including topoisomerase TOP2A and checkpoint kinase CHEK1. Co-targeting MYC and CHEK1 activities synergistically inhibits CTDNEP1-deficient MYC-amplified tumor growth and prolongs animal survival. Together, our studies demonstrate that CTDNEP1 is a tumor suppressor in highly aggressive MYC-driven medulloblastomas by controlling MYC activity and mitotic fidelity, pointing to a CTDNEP1-dependent targetable therapeutic vulnerability.
Collapse
|
19
|
Yang K, Huang H, Dai R, Zhang J, Wei X, Gao F, Wu X, Wu F, He S, Xin M. Modified cardiopulmonary bypass with low priming volume for blood conservation in cardiac valve replacement surgery. J Cardiothorac Surg 2023; 18:56. [PMID: 36732795 PMCID: PMC9896670 DOI: 10.1186/s13019-023-02175-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The adverse effects of cardiopulmonary bypass during open cardiac surgery, including hemodilution, seem to be inevitable, especially for patients who generally have a relatively lower BMI with relatively small blood volumes. This study reports the modification and use of a cardiopulmonary bypass (CPB) system to reduce priming volume and hemodilution. METHODS This is a retrospective study of 462 adult patients who underwent cardiac valve replacement surgery from January 2019 to September 2021 at the General Hospital of Western Theater Command. The modified group consisted of 212 patients undergoing modified CPB. The control group included 250 patients receiving conventional CPB. Evaluated indices included fluid intake and output volumes during CPB, intraoperative indices related to CPB operation, usage of blood products during the peri-CPB period, and postoperative outcomes. RESULTS The modified group displayed a significant reduction in the crystalloid (200 mL vs. 600 mL, P < 0.05) and colloid priming volumes (450 mL vs. 1100 mL, P < 0.05), and ultrafiltration solution volume (750 mL vs. 1200 mL, P < 0.05). Furthermore, the modified group had a significantly lower rate of defibrillation (30.2% vs. 41.2%, P < 0.05). The intraoperative urine volume (650 mL vs. 500 mL, P < 0.05) and intraoperative hematocrit (Hct) (26% vs. 24%, P < 0.05) of the modified CPB group were also higher than in the control group. The modified group required a lower infusion volume of packed red blood cells (250 mL vs. 400 mL, P < 0.05) and lower infusion rates of packed red blood cells (17.9% vs. 25.2%, P < 0.05) and fresh frozen plasma (1.41% vs. 5.2%, P < 0.05). In addition, the modified group showed significantly improved indices related to postoperative recovery. CONCLUSIONS The modified CPB system effectively conserves blood and shows noteworthy potential for application in cardiac valve replacement surgery.
Collapse
|
20
|
Yang K, Huang H, Dai R, He S, Zhang J, Wu F, Wei X, Gao F, Wu X, Xin M. Efficacy of Hemoperfusion Cartridge Procedure on Patients Undergoing Cardiac Valve Replacement Surgery with Cardiopulmonary Bypass. Heart Surg Forum 2023; 26:E020-E026. [PMID: 36856501 DOI: 10.1532/hsf.5213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Cardiopulmonary bypass (CPB) induces inflammatory homeostasis dysregulation, closely related to many postoperative adverse effects. Minimizing the systemic inflammatory response to CPB is imperative to improving cardiac surgery safety. This study aimed to retrospectively evaluate the efficacy of the hemoperfusion cartridge, a device recently designed for extracorporeal blood purification to remove cytokines from the blood for patients undergoing cardiac valve replacement surgery using CPB. METHODS The hemoperfusion (HP) group consisted of 138 patients, who underwent a hemoperfusion cartridge procedure during CPB. The control group included 149 patients, who received standard CPB management. The evaluated indices included inflammatory cytokines, blood biochemical indices, and postoperative outcome indices. RESULTS Patients in the HP group had relatively lower interleukin (IL)-6 levels (days one and two post-CPB) and IL-8 (day one post-CPB) compared with the control group. Some relatively decreased biochemical blood indices also were observed in the HP group, including a significantly lower lactic acid level (days one, two, and three post-CPB), platelet counts (days one, two, and three post-CPB), and aspartate aminotransferase (days one and three post-CPB). Regarding the postoperative outcomes, no severe complications occurred in the patients; however, the HP group required less ventilation time than the control group. CONCLUSIONS The hemoperfusion cartridge seems promising in limiting the inflammatory reactions during CPB, with noteworthy potential for application in cardiac surgery.
Collapse
|
21
|
Huang H, Xin M, Wu X, Liu J, Zhang W, Yang K, Zhang J. The efficacy of tranexamic acid treatment with different time and doses for traumatic brain injury: a systematic review and meta-analysis. Thromb J 2022; 20:79. [PMID: 36529753 PMCID: PMC9762012 DOI: 10.1186/s12959-022-00440-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Tranexamic acid (TXA) plays a significant role in the treatment of traumatic diseases. However, its effectiveness in patients with traumatic brain injury (TBI) seems to be contradictory, according to the recent publication of several meta-analyses. We aimed to determine the efficacy of TXA treatment at different times and doses for TBI treatment. METHODS PubMed, MEDLINE, EMBASE, Cochrane Library, and Google Scholar were searched for randomized controlled trials that compared TXA and a placebo in adults and adolescents (≥ 15 years of age) with TBI up to January 31, 2022. Two authors independently abstracted the data and assessed the quality of evidence. RESULTS Of the identified 673 studies, 13 involving 18,675 patients met our inclusion criteria. TXA had no effect on mortality (risk ratio (RR) 0.99; 95% confidence interval (CI) 0.92-1.06), adverse events (RR 0.93, 95% Cl 0.76-1.14), severe TBI (Glasgow Coma Scale score from 3 to 8) (RR 0.99, 95% Cl 0.94-1.05), unfavorable Glasgow Outcome Scale (GOS < 4) (RR 0.96, 95% Cl 0.82-1.11), neurosurgical intervention (RR 1.11, 95% Cl 0.89-1.38), or rebleeding (RR 0.97, 95% Cl 0.82-1.16). TXA might reduce the mean hemorrhage volume on subsequent imaging (standardized mean difference, -0.35; 95% CI [-0.62, -0.08]). CONCLUSION TXA at different times and doses was associated with reduced mean bleeding but not with mortality, adverse events, neurosurgical intervention, and rebleeding. More research data is needed on different detection indexes and levels of TXA in patients with TBI, as compared to those not receiving TXA; although the prognostic outcome for all harm outcomes was not affected, the potential for harm was not ruled out. TRIAL REGISTRATION The review protocol was registered in the PROSPERO International Prospective Register of Systematic Reviews (CRD42022300484).
Collapse
|
22
|
Luo Z, Xia M, Shi W, Zhao C, Wang J, Xin D, Dong X, Xiong Y, Zhang F, Berry K, Ogurek S, Liu X, Rao R, Xing R, Wu LMN, Cui S, Xu L, Lin Y, Ma W, Tian S, Xie Q, Zhang L, Xin M, Wang X, Yue F, Zheng H, Liu Y, Stevenson CB, de Blank P, Perentesis JP, Gilbertson RJ, Li H, Ma J, Zhou W, Taylor MD, Lu QR. Human fetal cerebellar cell atlas informs medulloblastoma origin and oncogenesis. Nature 2022; 612:787-794. [PMID: 36450980 DOI: 10.1038/s41586-022-05487-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
Medulloblastoma (MB) is the most common malignant childhood brain tumour1,2, yet the origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective targeted treatments. Previous analyses of mouse cerebella3-5 have not fully defined the compositional heterogeneity of MBs. Here we undertook single-cell profiling of freshly isolated human fetal cerebella to establish a reference map delineating hierarchical cellular states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells to neuronal lineages in developing fetal cerebella. Intersectional analysis revealed that the transitional progenitors were enriched in aggressive MB subgroups, including group 3 and metastatic tumours. Single-cell multi-omics revealed underlying regulatory networks in the transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, which are correlated with clinical prognosis in group 3 MBs. Genomic and Hi-C profiling identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group 3 MBs. Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group 3 MB growth. Our integrated single-cell atlases of human fetal cerebella and MBs show potential cell populations predisposed to transformation and regulatory circuitries underlying tumour cell states and oncogenesis, highlighting hitherto unrecognized transitional progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities.
Collapse
|
23
|
Wu LMN, Zhang F, Rao R, Adam M, Pollard K, Szabo S, Liu X, Belcher KA, Luo Z, Ogurek S, Reilly C, Zhou X, Zhang L, Rubin J, Chang LS, Xin M, Yu J, Suva M, Pratilas CA, Potter S, Lu QR. Single-cell multiomics identifies clinically relevant mesenchymal stem-like cells and key regulators for MPNST malignancy. SCIENCE ADVANCES 2022; 8:eabo5442. [PMID: 36322658 PMCID: PMC9629745 DOI: 10.1126/sciadv.abo5442] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST), a highly aggressive Schwann cell (SC)-derived soft tissue sarcoma, arises from benign neurofibroma (NF); however, the identity, heterogeneity and origins of tumor populations remain elusive. Nestin+ cells have been implicated as tumor stem cells in MPNST; unexpectedly, single-cell profiling of human NF and MPNST and their animal models reveal a broad range of nestin-expressing SC lineage cells and dynamic acquisition of discrete cancer states during malignant transformation. We uncover a nestin-negative mesenchymal neural crest-like subpopulation as a previously unknown malignant stem-like state common to murine and human MPNSTs, which correlates with clinical severity. Integrative multiomics profiling further identifies unique regulatory networks and druggable targets against the malignant subpopulations in MPNST. Targeting key epithelial-mesenchymal transition and stemness regulators including ZEB1 and ALDH1A1 impedes MPNST growth. Together, our studies reveal the underlying principles of tumor cell-state evolution and their regulatory circuitries during NF-to-MPNST transformation, highlighting a hitherto unrecognized mesenchymal stem-like subpopulation in MPNST disease progression.
Collapse
|
24
|
Dong C, Zhao C, Chen X, Berry K, Wang J, Zhang F, Liao Y, Han R, Ogurek S, Xu L, Zhang L, Lin Y, Zhou W, Xin M, Lim DA, Campbell K, Nakafuku M, Waclaw RR, Lu QR. Conserved and Distinct Functions of the Autism-Related Chromatin Remodeler CHD8 in Embryonic and Adult Forebrain Neurogenesis. J Neurosci 2022; 42:8373-8392. [PMID: 36127134 PMCID: PMC9653284 DOI: 10.1523/jneurosci.2400-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
The chromatin remodeler CHD8 represents a high-confidence risk factor in autism, a multistage progressive neurologic disorder, however the underlying stage-specific functions remain elusive. In this study, by analyzing Chd8 conditional knock-out mice (male and female), we find that CHD8 controls cortical neural stem/progenitor cell (NSC) proliferation and survival in a stage-dependent manner. Strikingly, inducible genetic deletion reveals that CHD8 is required for the production and fitness of transit-amplifying intermediate progenitors (IPCs) essential for upper-layer neuron expansion in the embryonic cortex. p53 loss of function partially rescues apoptosis and neurogenesis defects in the Chd8-deficient brain. Further, transcriptomic and epigenomic profiling indicates that CHD8 regulates the chromatin accessibility landscape to activate neurogenesis-promoting factors including TBR2, a key regulator of IPC neurogenesis, while repressing DNA damage- and p53-induced apoptotic programs. In the adult brain, CHD8 depletion impairs forebrain neurogenesis by impeding IPC differentiation from NSCs in both subventricular and subgranular zones; however, unlike in embryos, it does not affect NSC proliferation and survival. Treatment with an antidepressant approved by the Federal Drug Administration (FDA), fluoxetine, partially restores adult hippocampal neurogenesis in Chd8-ablated mice. Together, our multistage functional studies identify temporally specific roles for CHD8 in developmental and adult neurogenesis, pointing to a potential strategy to enhance neurogenesis in the CHD8-deficient brain.SIGNIFICANCE STATEMENT The role of the high-confidence autism gene CHD8 in neurogenesis remains incompletely understood. Here, we identify a stage-specific function of CHD8 in development of NSCs in developing and adult brains by conserved, yet spatiotemporally distinct, mechanisms. In embryonic cortex, CHD8 is critical for the proliferation, survival, and differentiation of both NSC and IPCs during cortical neurogenesis. In adult brain, CHD8 is required for IPC generation but not the proliferation and survival of adult NSCs. Treatment with FDA-approved antidepressant fluoxetine partially rescues the adult neurogenesis defects in CHD8 mutants. Thus, our findings help resolve CHD8 functions throughout life during embryonic and adult neurogenesis and point to a potential avenue to promote neurogenesis in CHD8 deficiency.
Collapse
|
25
|
Cao Y, Shao L, Xin M, Zhang Y, Xu Y, Song Y, Lu H, Wang Y, Xia Y, Zhang M, Guo Y, Wang L, Qiao Z. Urine protein in patients with type I hypersensitivity is indicative of reversible renal tube injury. Life Sci 2022; 305:120735. [DOI: 10.1016/j.lfs.2022.120735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/07/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022]
|