1
|
Castonguay-Paradis S, Parent L, St-Arnaud G, Perron J, Dumais É, Flamand N, Raymond F, Di Marzo V, Veilleux A. The human fecal endocannabinoidome mediator profile is mainly defined by the fecal microbiota and diet. J Clin Endocrinol Metab 2024:dgae586. [PMID: 39171571 DOI: 10.1210/clinem/dgae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The endocannabinoid system and its extension, the endocannabinoidome (eCBome), are involved in numerous biological processes, notably energy homeostasis, across virtually all tissues. While the circulating eCBome mediator profile is associated with dietary intakes and metabolic status, an important knowledge gap resides in the identification of the precise determinants of these mediators in the gut lumen. We aimed at establishing the profile of eCBome mediators in human feces and investigating their association with circulating eCBome mediators, dietary intakes, metabolic status and gut microbiota composition. METHODS N-acyl-ethanolamines (NAEs) and 2-monoacyl-glycerols (2-MAGs) were profiled by LC-MS/MS in plasma and feces of a cross-sectional cohort (n = 195) and a short term dietary intervention trials (n = 21) with comprehensive dietary intakes and gut microbiota measures. RESULTS Six NAEs and seven 2-MAGs were identified in fecal samples, but some, especially omega-3 derived mediators, were undetectable in the majority of samples. Fecal NAEs, and to a lower extent 2-MAGs, were positively albeit weakly correlated with the circulating levels of eCBome mediators. Fecal 2-AG, PEA and DHEA levels were positively associated with visceral adiposity and with some parameters of the metabolic profile. Dietary intakes of foods rich in fibers were associated with lower fecal levels of several eCBome mediators, while intakes of unsaturated fatty acids were associated with fecal 2-OG and 2-LG. Interestingly, gut microbiota diversity and composition were a strong correlate of the fecal eCBome profile. CONCLUSION The fecal eCBome profile is associated with gut microbiota composition and dietary intakes, more than with the circulating profile. These results strengthen the hypothesis of an interrelation between the gut microbiome and eCBome signaling involved in the regulation of numerous host biological processes.
Collapse
|
2
|
Mboumba Bouassa RS, Giorgini G, Silvestri C, Muller C, Nallabelli N, Alexandrova Y, Durand M, Tremblay C, El-Far M, Chartrand-Lefebvre C, Messier-Peet M, Margolese S, Flamand N, Costiniuk CT, Di Marzo V, Jenabian MA. Plasma endocannabinoidome and fecal microbiota interplay in people with HIV and subclinical coronary artery disease: Results from the Canadian HIV and Aging Cohort Study. iScience 2024; 27:110456. [PMID: 39156649 PMCID: PMC11326910 DOI: 10.1016/j.isci.2024.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Chronic HIV infection is associated with accelerated coronary artery disease (CAD) due to chronic inflammation. The expanded endocannabinoid system (eCBome) and gut microbiota modulate each other and are key regulators of cardiovascular functions and inflammation. We herein investigated the interplay between plasma eCBome mediators and gut microbiota in people with HIV (PWH) and/or subclinical CAD versus HIV-uninfected individuals. CAD was determined by coronary computed tomography (CT) angiography performed on all participants. Plasma eCBome mediator and fecal microbiota composition were assessed by tandem mass spectrometry and 16S rDNA sequencing, respectively. HIV infection was associated with perturbed plasma eCBome mediators characterized by an inverse relationship between anandamide and N-acyl-ethanolamines (NAEs) versus 2-AG and 2-monoacylglycerols (MAGs). Plasma triglyceride levels were positively associated with MAGs. Several fecal bacterial taxa were altered in HIV-CAD+ versus controls and correlated with plasma eCBome mediators. CAD-associated taxonomic alterations in fecal bacterial taxa were not found in PWH.
Collapse
|
3
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
|
4
|
Fradet A, Castonguay-Paradis S, Dugas C, Perron J, St-Arnaud G, Marc I, Doyen A, Flamand N, Dahhani F, Di Marzo V, Veilleux A, Robitaille J. The human milk endocannabinoidome and neonatal growth in gestational diabetes. Front Endocrinol (Lausanne) 2024; 15:1415630. [PMID: 38938519 PMCID: PMC11208692 DOI: 10.3389/fendo.2024.1415630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Objective Endocannabinoids and their N-acyl-ethanolamines (NAEs) and 2monoacyl-glycerols (2-MAGs) congeners are involved in the central and peripheral regulation of energy homeostasis, they are present in human milk and are associated with obesity. Infants exposed in utero to gestational diabetes mellitus (GDM) are more likely to develop obesity. The objective of this cross-sectional study is to compare the profile of eCBome mediators in milk of women with gestational diabetes (GDM+) and without (GDM-) and to assess the association with offspring growth. The hypothesis is that the eCBome of GDM+ human milk is altered and associated with a difference in infant growth. Methods Circulating eCBome mediators were measured by LC-MS/MS in human milk obtained at 2 months postpartum from GDM+ (n=24) and GDM- (n=29) women. Infant weight and height at 2 months were obtained from the child health record. Z-scores were calculated. Results Circulating Npalmitoylethanolamine (PEA) was higher in human milk of GDM+ women than in GDM- women (4.9 ± 3.2 vs. 3.3 ± 1.7, p=0.04). Higher levels were also found for several 2monoacyl-glycerols (2-MAGs) (p<0.05). The levels of NAEs (β=-4.6, p=0.04) and especially non-omega-3 NAEs (B=-5.6, p=0.004) in human milk were negatively correlated with weight-for-age z-score of GDM+ offspring. Conclusion The profile of eCBome mediators in human milk at 2 months postpartum was different in GDM+ compared to GDM- women and was associated with GDM+ offspring growth at 2 months. Clinical trial registration ClinicalTrials.gov, identifier (NCT04263675 and NCT02872402).
Collapse
|
5
|
Lavoie JPC, Simard M, Kalkan H, Rakotoarivelo V, Huot S, Di Marzo V, Côté A, Pouliot M, Flamand N. Pharmacological evidence that the inhibitory effects of prostaglandin E2 are mediated by the EP2 and EP4 receptors in human neutrophils. J Leukoc Biol 2024; 115:1183-1189. [PMID: 38345417 PMCID: PMC11135612 DOI: 10.1093/jleuko/qiae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 05/30/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a recognized inhibitor of granulocyte functions. However, most of the data supporting this was obtained when available pharmacological tools mainly targeted the EP2 receptor. Herein, we revisited the inhibitory effect of PGE2 on reactive oxygen species production, leukotriene biosynthesis, and migration in human neutrophils. Our data confirm the inhibitory effect of PGE2 on these functions and unravel that the effect of PGE2 on human neutrophils is obtained by the combined action of EP2 and EP4 agonism. Accordingly, we also demonstrate that the inhibitory effect of PGE2 is fully prevented only by the combination of EP2 and EP4 receptor antagonists, underscoring the importance of targeting both receptors in the effect of PGE2. Conversely, we also show that the inhibition of ROS production by human eosinophils only involves the EP4 receptor, despite the fact that they also express the EP2 receptor.
Collapse
|
6
|
Rakotoarivelo V, Allam-Ndoul B, Martin C, Biertho L, Di Marzo V, Flamand N, Veilleux A. Investigating the alterations of endocannabinoidome signaling in the human small intestine in the context of obesity and type 2 diabetes. Heliyon 2024; 10:e26968. [PMID: 38515705 PMCID: PMC10955212 DOI: 10.1016/j.heliyon.2024.e26968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Background Human studies have linked obesity-related diseases, such as type-2 diabetes (T2D), to the modulation of endocannabinoid signaling. Cannabinoid CB1 and CB2 receptor activation by the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA), both derived from arachidonic acid, play a role in homeostatic regulation. Other long chain fatty acid-derived endocannabinoid-like molecules have extended the metabolic role of this signaling system through other receptors. In this study, we aimed to assess in depth the interactions between the circulating and intestinal tone of this extended eCB system, or endocannabinoidome (eCBome), and their involvement in the pathogenesis of diabetes. Methods Plasma and ileum samples were collected from subjects with obesity and harboring diverse degrees of insulin resistance or T2D, who underwent bariatric surgery. The levels of eCBome mediators and their congeners were then assessed by liquid chromatography coupled to tandem mass spectrometry, while gene expression was screened with qPCR arrays. Findings Intestinal and circulating levels of eCBome mediators were higher in subjects with T2D. We found an inverse correlation between the intestinal and circulating levels of monoacylglycerols (MAGs). Additionally, we identified genes known to be implicated in both lipid metabolism and intestinal function that are altered by the context of obesity and glucose homeostasis. Interpretation Although the impact of glucose metabolism on the eCBome remains poorly understood in subjects with advanced obesity state, our results suggest a strong causative link between altered glucose homeostasis and eCBome signaling in the intestine and the circulation.
Collapse
|
7
|
Gauvin J, Huynh DN, Dubuc I, Lê C, Tugores R, Flamand N, Flamand L, Lubell WD, Ong H, Marleau S. Pharmacological targeting of the hyper-inflammatory response to SARS-CoV-2-infected K18-hACE2 mice using a cluster of differentiation 36 receptor modulator. Front Pharmacol 2024; 15:1303342. [PMID: 38384295 PMCID: PMC10879382 DOI: 10.3389/fphar.2024.1303342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
The scientific and medical community faced an unprecedented global health hazard that led to nearly 7 million deaths attributable to the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In spite of the development of efficient vaccines against SARS-CoV-2, many people remain at risk of developing severe symptoms as the virus continues to spread without beneficial patient therapy. The hyper-inflammatory response to SARS-CoV-2 infection progressing to acute respiratory distress syndrome remains an unmet medical need for improving patient care. The viral infection stimulates alveolar macrophages to adopt an inflammatory phenotype regulated, at least in part, by the cluster of differentiation 36 receptor (CD36) to produce unrestrained inflammatory cytokine secretions. We suggest herein that the modulation of the macrophage response using the synthetic CD36 ligand hexarelin offers potential as therapy for halting respiratory failure in SARS-CoV-2-infected patients.
Collapse
|
8
|
Roussel C, Sola M, Lessard-Lord J, Nallabelli N, Généreux P, Cavestri C, Azeggouar Wallen O, Villano R, Raymond F, Flamand N, Silvestri C, Di Marzo V. Human gut microbiota and their production of endocannabinoid-like mediators are directly affected by a dietary oil. Gut Microbes 2024; 16:2335879. [PMID: 38695302 PMCID: PMC11067990 DOI: 10.1080/19490976.2024.2335879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.
Collapse
|
9
|
Morissette A, André DM, Agrinier AL, Varin TV, Pilon G, Flamand N, Houde VP, Marette A. The metabolic benefits of substituting sucrose for maple syrup are associated with a shift in carbohydrate digestion and gut microbiota composition in high-fat high-sucrose diet-fed mice. Am J Physiol Endocrinol Metab 2023; 325:E661-E671. [PMID: 37877794 DOI: 10.1152/ajpendo.00065.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
Overconsumption of added sugars is now largely recognized as a major culprit in the global situation of obesity and metabolic disorders. Previous animal studies reported that maple syrup (MS) is less deleterious than refined sugars on glucose metabolism and hepatic health, but the mechanisms remain poorly studied. Beyond its content in sucrose, MS is a natural sweetener containing several bioactive compounds, such as polyphenols and inulin, which are potential gut microbiota modifiers. We aimed to investigate the impact of MS on metabolic health and gut microbiota in male C57Bl/6J mice fed a high-fat high-sucrose (HFHS + S) diet or an isocaloric HFHS diet in which a fraction (10% of the total caloric intake) of the sucrose was substituted by MS (HFHS + MS). Insulin and glucose tolerance tests were performed at 5 and 7 wk into the diet, respectively. The fecal microbiota was analyzed by whole-genome shotgun sequencing. Liver lipids and inflammation were determined, and hepatic gene expression was assessed by transcriptomic analysis. Maple syrup was less deleterious on insulin resistance and decreased liver steatosis compared with mice consuming sucrose. This could be explained by the decreased intestinal α-glucosidase activity, which is involved in carbohydrate digestion and absorption. Metagenomic shotgun sequencing analysis revealed that MS intake increased the abundance of Faecalibaculum rodentium, Romboutsia ilealis, and Lactobacillus johnsonii, which all possess gene clusters involved in carbohydrate metabolism, such as sucrose utilization and butyric acid production. Liver transcriptomic analyses revealed that the cytochrome P450 (Cyp450) epoxygenase pathway was differently modulated between HFHS + S- and HFHS + MS-fed mice. These results show that substituting sucrose for MS alleviated dysmetabolism in diet-induced obese mice, which were associated with decreased carbohydrate digestion and shifting gut microbiota.NEW & NOTEWORTHY The natural sweetener maple syrup has sparked much interest as an alternative to refined sugars. This study aimed to investigate whether the metabolic benefits of substituting sucrose with an equivalent dose of maple syrup could be linked to changes in gut microbiota composition and digestion of carbohydrates in obese mice. We demonstrated that maple syrup is less detrimental than sucrose on metabolic health and possesses a prebiotic-like activity through novel gut microbiota and liver mechanisms.
Collapse
|
10
|
Murru A, Vadeboncoeur N, Therrien AA, Coderre L, Vaillancourt M, Labrecque MM, Berthiaume Y, Bouvet G, Adam D, Brochiero E, Lesage S, Flamand N, Bilodeau L, Fernandes MJ. Association of low-density neutrophils with lung function and disease progression in adult cystic fibrosis. J Cyst Fibros 2023; 22:1080-1084. [PMID: 36973151 DOI: 10.1016/j.jcf.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) neutrophils fail to eradicate infection despite their massive recruitment into the lung. While studies mostly focus on pathogen clearance by normal density neutrophils in CF, the contribution of low-density neutrophil (LDNs) subpopulations to disease pathogenesis remains unclear. METHODS LDNs were isolated from whole blood donations of clinically stable adult CF patients and from healthy donors. LDN proportion and immunophenotype was assessed by flow cytometry. Associations of LDNs with clinical parameters were determined. RESULTS LDN proportion was increased in CF patients' circulation compared with healthy donors. LDNs are a heterogeneous population of both mature and immature cells in CF and in healthy individuals. Moreover, a higher proportion of mature LDN correlates with a gradual decline in lung function and repeated pulmonary exacerbations in CF patients. CONCLUSIONS Collectively, our observations suggest that low-density neutrophils are linked to CF pathogenesis and underscore the potential clinical relevance of neutrophil subpopulations in CF.
Collapse
|
11
|
Castonguay-Paradis S, Perron J, Flamand N, Lamarche B, Raymond F, Di Marzo V, Veilleux A. Dietary food patterns as determinants of the gut microbiome-endocannabinoidome axis in humans. Sci Rep 2023; 13:15702. [PMID: 37735572 PMCID: PMC10514042 DOI: 10.1038/s41598-023-41650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota and the endocannabinoidome (eCBome) play important roles in regulating energy homeostasis, and both are closely linked to dietary habits. However, the complex and compositional nature of these variables has limited our understanding of their interrelationship. This study aims to decipher the interrelation between dietary intake and the gut microbiome-eCBome axis using two different approaches for measuring dietary intake: one based on whole food and the other on macronutrient intakes. We reveal that food patterns, rather than macronutrient intakes, were associated with the gut microbiome-eCBome axis in a sample of healthy men and women (n = 195). N-acyl-ethanolamines (NAEs) and gut microbial families were correlated with intakes of vegetables, refined grains, olive oil and meats independently of adiposity and energy intakes. Specifically, higher intakes in vegetables and olive oil were associated with increased relative abundance of Clostridiaceae, Veillonellaceae and Peptostreptococaceae, decreased relative abundance of Acidominococaceae, higher circulating levels of NAEs, and higher HDL and LDL cholesterol levels. Our findings highlight the relative importance of food patterns in determining the gut microbiome-eCBome axis. They emphasize the importance of recognizing the contribution of dietary habits in these systems to develop personalized dietary interventions for preventing and treating metabolic disorders through this axis.
Collapse
|
12
|
Morin S, Tremblay A, Dumais E, Julien P, Flamand N, Pouliot R. Eicosapentaenoic Acid Influences the Lipid Profile of an In Vitro Psoriatic Skin Model Produced with T Cells. Biomolecules 2023; 13:1413. [PMID: 37759812 PMCID: PMC10526348 DOI: 10.3390/biom13091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Psoriasis is a skin disease characterized by epidermal hyperplasia and an inappropriate activation of the adaptive immunity. A dysregulation of the skin's lipid mediators is reported in the disease with a predominance of the inflammatory cascade derived from n-6 polyunsaturated fatty acids (n-6 PUFAs). Bioactive lipid mediators derived from arachidonic acid (AA) are involved in the inflammatory functions of T cells in psoriasis, whereas n-3 PUFAs' derivatives are anti-inflammatory metabolites. Here, we sought to evaluate the influence of a supplementation of the culture media with eicosapentaenoic acid (EPA) on the lipid profile of a psoriatic skin model produced with polarized T cells. Healthy and psoriatic skin substitutes were produced following the auto-assembly technique. Psoriatic skin substitutes produced with or without T cells presented increased epidermal and dermal linolenic acid (LA) and AA levels. N-6 PUFA lipid mediators were strongly measured in psoriatic substitutes, namely, 13-hydroxyoctadecadienoic acid (13-HODE), prostaglandin E2 (PGE2) and 12-hydroxyeicosatetraenoic acid (12-HETE). The added EPA elevated the amounts of EPA, n-3 docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in the epidermal and dermal phospholipids. The EPA supplementation balanced the production of epidermal lipid mediators, with an increase in prostaglandin E3 (PGE3), 12-hydroxyeicosapentaenoic acid (12-HEPE) and N-eicosapentaenoyl-ethanolamine (EPEA) levels. These findings show that EPA modulates the lipid composition of psoriatic skin substitutes by encouraging the return to a cutaneous homeostatic state.
Collapse
|
13
|
Simard M, Tremblay A, Morin S, Rioux G, Flamand N, Pouliot R. N-eicosapentaenoyl-ethanolamine decreases the proliferation of psoriatic keratinocytes in a reconstructed psoriatic skin model. Sci Rep 2023; 13:12113. [PMID: 37495686 PMCID: PMC10371979 DOI: 10.1038/s41598-023-39185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Psoriasis is an inflammatory skin disease that is characterized by keratinocyte hyperproliferation, abnormal epidermal differentiation and dysregulated lipid metabolism. Some lipid mediators of the N-acylethanolamines (NAEs) and monoacylglycerols (MAGs) can bind to cannabinoid (CB) receptors and are referred to as part of the endocannabinoidome. Their implication in psoriasis remains unknown. The aim of the present study was to characterize the endocannabinoid system and evaluate the effects of n-3-derived NAEs, namely N-eicosapentaenoyl-ethanolamine (EPEA), in psoriatic keratinocytes using a psoriatic skin model produced by tissue engineering, following the self-assembly method. Psoriatic skin substitutes had lower FAAH2 expression and higher MAGL, ABHD6 and ABHD12 expression compared with healthy skin substitutes. Treatments with alpha-linolenic acid (ALA) increased the levels of EPEA and 1/2-docosapentaenoyl-glycerol, showing that levels of n-3 polyunsaturated fatty acids modulate related NAE and MAG levels. Treatments of the psoriatic substitutes with 10 μM of EPEA for 7 days resulted in decreased epidermal thickness and number of Ki67 positive keratinocytes, both indicating decreased proliferation of psoriatic keratinocytes. EPEA effects on keratinocyte proliferation were inhibited by the CB1 receptor antagonist rimonabant. Exogenous EPEA also diminished some inflammatory features of psoriasis. In summary, n-3-derived NAEs can reduce the psoriatic phenotype of a reconstructed psoriatic skin model.
Collapse
|
14
|
Venneri T, Giorgini G, Leblanc N, Flamand N, Borrelli F, Silvestri C, Di Marzo V. Altered endocannabinoidome bioactive lipid levels accompany reduced DNBS-induced colonic inflammation in germ-free mice. Lipids Health Dis 2023; 22:63. [PMID: 37189092 DOI: 10.1186/s12944-023-01823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Gut microbiota are involved in the onset and development of chronic intestinal inflammation. The recently described endocannabinoidome (eCBome), a diverse and complex system of bioactive lipid mediators, has been reported to play a role in various physio-pathological processes such as inflammation, immune responses and energy metabolism. The eCBome and the gut microbiome (miBIome) are closely linked and form the eCBome - miBIome axis, which may be of special relevance to colitis. METHODS Colitis was induced in conventionally raised (CR), antibiotic-treated (ABX) and germ-free (GF) mice with dinitrobenzene sulfonic acid (DNBS). Inflammation was assessed by Disease Activity Index (DAI) score, body weight change, colon weight-length ratio, myeloperoxidase (MPO) activity and cytokine gene expression. Colonic eCBome lipid mediator concentrations were measured by HPLC-MS /MS. RESULTS GF mice showed increased levels of anti-inflammatory eCBome lipids (LEA, OEA, DHEA and 13- HODE-EA) in the healthy state and higher MPO activity. DNBS elicited reduced inflammation in GF mice, having lower colon weight/length ratios and lower expression levels of Il1b, Il6, Tnfa and neutrophil markers compared to one or both of the other DNBS-treated groups. Il10 expression was also lower and the levels of several N-acyl ethanolamines and 13-HODE-EA levels were higher in DNBS-treated GF mice than in CR and ABX mice. The levels of these eCBome lipids negatively correlated with measures of colitis and inflammation. CONCLUSIONS These results suggest that the depletion of the gut microbiota and subsequent differential development of the gut immune system in GF mice is followed by a compensatory effect on eCBome lipid mediators, which may explain, in part, the observed lower susceptibility of GF mice to develop DNBS-induced colitis.
Collapse
|
15
|
Mukorako P, St-Pierre DH, Flamand N, Biertho L, Lebel S, Lemoine N, Plamondon J, Roy MC, Tchernof A, Varin TV, Marette A, Silvestri C, Di Marzo V, Richard D. Hypoabsorptive surgeries cause limb-dependent changes in the gut endocannabinoidome and microbiome in association with beneficial metabolic effects. Int J Obes (Lond) 2023:10.1038/s41366-023-01307-3. [PMID: 37142736 DOI: 10.1038/s41366-023-01307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVE To determine whether the metabolic benefits of hypoabsorptive surgeries are associated with changes in the gut endocannabinoidome (eCBome) and microbiome. METHODS Biliopancreatic diversion with duodenal switch (BPD-DS) and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) were performed in diet-induced obese (DIO) male Wistar rats. Control groups fed a high-fat diet (HF) included sham-operated (SHAM HF) and SHAM HF-pair-weighed to BPD-DS (SHAM HF-PW). Body weight, fat mass gain, fecal energy loss, HOMA-IR, and gut-secreted hormone levels were measured. The levels of eCBome lipid mediators and prostaglandins were quantified in different intestinal segments by LC-MS/MS, while expression levels of genes encoding eCBome metabolic enzymes and receptors were determined by RT-qPCR. Metataxonomic (16S rRNA) analysis was performed on residual distal jejunum, proximal jejunum, and ileum contents. RESULTS BPD-DS and SADI-S reduced fat gain and HOMA-IR, while increasing glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) levels in HF-fed rats. Both surgeries induced potent limb-dependent alterations in eCBome mediators and in gut microbial ecology. In response to BPD-DS and SADI-S, changes in gut microbiota were significantly correlated with those of eCBome mediators. Principal component analyses revealed connections between PYY, N-oleoylethanolamine (OEA), N-linoleoylethanolamine (LEA), Clostridium, and Enterobacteriaceae_g_2 in the proximal and distal jejunum and in the ileum. CONCLUSIONS BPD-DS and SADI-S caused limb-dependent changes in the gut eCBome and microbiome. The present results indicate that these variables could significantly influence the beneficial metabolic outcome of hypoabsorptive bariatric surgeries.
Collapse
|
16
|
Inserra A, Giorgini G, Lacroix S, Bertazzo A, Choo J, Markopolous A, Grant E, Abolghasemi A, De Gregorio D, Flamand N, Rogers G, Comai S, Silvestri C, Gobbi G, Di Marzo V. Effects of repeated lysergic acid diethylamide (LSD) on the mouse brain endocannabinoidome and gut microbiome. Br J Pharmacol 2023; 180:721-739. [PMID: 36316276 DOI: 10.1111/bph.15977] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND PURPOSE Psychedelics elicit prosocial, antidepressant and anxiolytic effects via neuroplasticity, neurotransmission and neuro-immunomodulatory mechanisms. Whether psychedelics affect the brain endocannabinoid system and its extended version, the endocannabinoidome (eCBome) or the gut microbiome, remains unknown. EXPERIMENTAL APPROACH Adult C57BL/6N male mice were administered lysergic acid diethylamide (LSD) or saline for 7 days. Sociability was assessed in the direct social interaction and three chambers tests. Prefrontal cortex and hippocampal endocannabinoids, endocannabinoid-like mediators and metabolites were quantified via high-pressure liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Neurotransmitter levels were assessed via HPLC-UV/fluorescence. Gut microbiome changes were investigated by 16S ribosomal DNA sequencing. KEY RESULTS LSD increased social preference and novelty and decreased hippocampal levels of the N-acylethanolamines N-linoleoylethanolamine (LEA), anandamide (N-arachidonoylethanolamine) and N-docosahexaenoylethanolamine (DHEA); the monoacylglycerol 1/2-docosahexaenoylglycerol (1/2-DHG); the prostaglandins D2 (PGD2 ) and F2α (PGF2α ); thromboxane 2 and kynurenine. Prefrontal eCBome mediator and metabolite levels were less affected by the treatment. LSD decreased Shannon alpha diversity of the gut microbiota, prevented the decrease in the Firmicutes:Bacteroidetes ratio observed in saline-treated mice and altered the relative abundance of the bacterial taxa Bifidobacterium, Ileibacterium, Dubosiella and Rikenellaceae RC9. CONCLUSIONS AND IMPLICATIONS The prosocial effects elicited by repeated LSD administration are accompanied by alterations of hippocampal eCBome and kynurenine levels, and the composition of the gut microbiota. Modulation of the hippocampal eCBome and kynurenine pathway might represent a mechanism by which psychedelic compounds elicit prosocial effects and affect the gut microbiome.
Collapse
|
17
|
Bourdeau-Julien I, Castonguay-Paradis S, Rochefort G, Perron J, Lamarche B, Flamand N, Di Marzo V, Veilleux A, Raymond F. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. MICROBIOME 2023; 11:26. [PMID: 36774515 PMCID: PMC9921707 DOI: 10.1186/s40168-023-01469-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/16/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Bioactive lipids produced by human cells or by the gut microbiota might play an important role in health and disease. Dietary intakes are key determinants of the gut microbiota, its production of short-chain (SCFAs) and branched-chain fatty acids (BCFAs), and of the host endocannabinoidome signalling, which are all involved in metabolic diseases. This hypothesis-driven longitudinal fixed sequence nutritional study, realized in healthy participants, was designed to determine if a lead-in diet affects the host response to a short-term dietary intervention. Participants received a Mediterranean diet (MedDiet) for 3 days, a 13-day lead-in controlled diet reflecting the average Canadian dietary intake (CanDiet), and once again a MedDiet for 3 consecutive days. Fecal and blood samples were collected at the end of each dietary phase to evaluate alterations in gut microbiota composition and plasma levels of endocannabinoidome mediators, SCFAs, and BCFAs. RESULTS We observed an immediate and reversible modulation of plasma endocannabinoidome mediators, BCFAs, and some SCFAs in response to both diets. BCFAs were more strongly reduced by the MedDiet when the latter was preceded by the lead-in CanDiet. The gut microbiota response was also immediate, but not all changes due to the CanDiet were reversible following a short dietary MedDiet intervention. Higher initial microbiome diversity was associated with reduced microbiota modulation after short-term dietary interventions. We also observed that BCFAs and 2-monoacylglycerols had many, but distinct, correlations with gut microbiota composition. Several taxa modulated by dietary intervention were previously associated to metabolic disorders, warranting the need to control for recent diet in observational association studies. CONCLUSIONS Our results indicate that lipid mediators involved in the communication between the gut microbiota and host metabolism exhibit a rapid response to dietary changes, which is also the case for some, but not all, microbiome taxa. The lead-in diet influenced the gut microbiome and BCFA, but not the endocannabinoidome, response to the MedDiet. A higher initial microbiome diversity favored the stability of the gut microbiota in response to dietary changes. This study highlights the importance of considering the previous diet in studies relating the gut microbiome with lipid signals involved in host metabolism. Video Abstract.
Collapse
|
18
|
Lacroix S, Leblanc N, Abolghasemi A, Paris-Robidas S, Martin C, Frappier M, Flamand N, Silvestri C, Raymond F, Millette M, Di Marzo V, Veilleux A. Probiotic interventions promote metabolic health in high fat-fed hamsters in association with gut microbiota and endocannabinoidome alterations. Benef Microbes 2023; 14:223-237. [PMID: 37282555 DOI: 10.3920/bm2022.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/17/2023] [Indexed: 06/08/2023]
Abstract
Probiotics represent a promising tool to improve metabolic health, including lipid profiles and cholesterol levels. Modulation of the gut microbiome and the endocannabinoidome - two interrelated systems involved in several metabolic processes influenced by probiotics - has been proposed as a potential mechanism of action. This study establishes the impact of probiotics on metabolic health, gut microbiota composition and endocannabinoidome mediators in an animal model of hypercholesterolaemia. Syrian hamsters were fed either a low-fat low-cholesterol or high-fat high-cholesterol (HFHC) diet to induce hypercholesterolaemia and gavaged for 6 weeks with either Lactobacillus acidophilus CL1285, Lactiplantibacillus plantarum CHOL-200 or a combination of the two. Globally, probiotic interventions ameliorated, at least partially, lipid metabolism in HFHC-fed hamsters. The interventions, especially those including L. acidophilus, modified the gut microbiota composition of the small intestine and caecum in ways suggesting reversal of HFHC-induced dysbiosis. Several associations were observed between changes in gut microbiota composition and endocannabinoidome mediators following probiotic interventions and both systems were also associated with improved metabolic health parameters. For instance, potential connexions between the Eubacteriaceae and Deferribacteraceae families, levels of 2‑palmitoylglycerol, 2‑oleoylglycerol, 2‑linoleoylglycerol or 2‑eicosapentaenoylglycerol and improved lipid profiles were found. Altogether, our results suggest a potential crosstalk between gut microbiota and the endocannabinoidome in driving metabolic benefits associated with probiotics, especially those including L. acidophilus, in an animal model of hypercholesterolaemia.
Collapse
|
19
|
Daniel N, Le Barz M, Mitchell PL, Varin TV, Julien IB, Farabos D, Pilon G, Gauthier J, Garofalo C, Kang JX, Trottier J, Barbier O, Roy D, Chassaing B, Levy E, Raymond F, Lamaziere A, Flamand N, Silvestri C, Jobin C, Di Marzo V, Marette A. Comparing Transgenic Production to Supplementation of ω-3 PUFA Reveals Distinct But Overlapping Mechanisms Underlying Protection Against Metabolic and Hepatic Disorders. FUNCTION 2022; 4:zqac069. [PMID: 36778746 PMCID: PMC9909367 DOI: 10.1093/function/zqac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
We compared endogenous ω-3 PUFA production to supplementation for improving obesity-related metabolic dysfunction. Fat-1 transgenic mice, who endogenously convert exogenous ω-6 to ω-3 PUFA, and wild-type littermates were fed a high-fat diet and a daily dose of either ω-3 or ω-6 PUFA-rich oil for 12 wk. The endogenous ω-3 PUFA production improved glucose intolerance and insulin resistance but not hepatic steatosis. Conversely, ω-3 PUFA supplementation fully prevented hepatic steatosis but failed to improve insulin resistance. Both models increased hepatic levels of ω-3 PUFA-containing 2-monoacylglycerol and N-acylethanolamine congeners, and reduced levels of ω-6 PUFA-derived endocannabinoids with ω-3 PUFA supplementation being more efficacious. Reduced hepatic lipid accumulation associated with the endocannabinoidome metabolites EPEA and DHEA, which was causally demonstrated by lower lipid accumulation in oleic acid-treated hepatic cells treated with these metabolites. While both models induced a significant fecal enrichment of the beneficial Allobaculum genus, mice supplemented with ω-3 PUFA displayed additional changes in the gut microbiota functions with a significant reduction of fecal levels of the proinflammatory molecules lipopolysaccharide and flagellin. Multiple-factor analysis identify that the metabolic improvements induced by ω-3 PUFAs were accompanied by a reduced production of the proinflammatory cytokine TNFα, and that ω-3 PUFA supplementation had a stronger effect on improving the hepatic fatty acid profile than endogenous ω-3 PUFA. While endogenous ω-3 PUFA production preferably improves glucose tolerance and insulin resistance, ω-3 PUFA intake appears to be required to elicit selective changes in hepatic endocannabinoidome signaling that are essential to alleviate high-fat diet-induced hepatic steatosis.
Collapse
|
20
|
Guevara Agudelo FA, Leblanc N, Bourdeau-Julien I, St-Arnaud G, Lacroix S, Martin C, Flamand N, Veilleux A, Di Marzo V, Raymond F. Impact of selenium on the intestinal microbiome-eCBome axis in the context of diet-related metabolic health in mice. Front Immunol 2022; 13:1028412. [PMID: 36439185 PMCID: PMC9692131 DOI: 10.3389/fimmu.2022.1028412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2024] Open
Abstract
Dietary micronutrients act at the intestinal level, thereby influencing microbial communities, the host endocannabinoidome, and immune and anti-oxidative response. Selenium (Se) is a trace element with several health benefits. Indeed, Se plays an important role in the regulation of enzymes with antioxidative and anti-inflammatory activity as well as indicators of the level of oxidative stress, which, together with chronic low-grade inflammation, is associated to obesity. To understand how Se variations affect diet-related metabolic health, we fed female and male mice for 28 days with Se-depleted or Se-enriched diets combined with low- and high-fat/sucrose diets. We quantified the plasma and intestinal endocannabinoidome, profiled the gut microbiota, and measured intestinal gene expression related to the immune and the antioxidant responses in the intestinal microenvironment. Overall, we show that intestinal segment-specific microbiota alterations occur following high-fat or low-fat diets enriched or depleted in Se, concomitantly with modifications of circulating endocannabinoidome mediators and changes in cytokine and antioxidant enzyme expression. Specifically, Se enrichment was associated with increased circulating plasma levels of 2-docosahexaenoyl-glycerol (2-DHG), a mediator with putative beneficial actions on metabolism and inflammation. Others eCBome mediators also responded to the diets. Concomitantly, changes in gut microbiota were observed in Se-enriched diets following a high-fat diet, including an increase in the relative abundance of Peptostreptococcaceae and Lactobacillaceae. With respect to the intestinal immune response and anti-oxidative gene expression, we observed a decrease in the expression of proinflammatory genes Il1β and Tnfα in high-fat Se-enriched diets in caecum, while in ileum an increase in the expression levels of the antioxidant gene Gpx4 was observed following Se depletion. The sex of the animal influenced the response to the diet of both the gut microbiota and endocannabinoid mediators. These results identify Se as a regulator of the gut microbiome and endocannabinoidome in conjunction with high-fat diet, and might be relevant to the development of new nutritional strategies to improve metabolic health and chronic low-grade inflammation associated to metabolic disorders.
Collapse
|
21
|
Ben Necib R, Manca C, Lacroix S, Martin C, Flamand N, Di Marzo V, Silvestri C. Hemp seed significantly modulates the endocannabinoidome and produces beneficial metabolic effects with improved intestinal barrier function and decreased inflammation in mice under a high-fat, high-sucrose diet as compared with linseed. Front Immunol 2022; 13:882455. [PMID: 36238310 PMCID: PMC9552265 DOI: 10.3389/fimmu.2022.882455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 fatty acids support cardiometabolic health and reduce chronic low-grade inflammation. These fatty acids may impart their health benefits partly by modulating the endocannabinoidome and the gut microbiome, both of which are key regulators of metabolism and the inflammatory response. Whole hemp seeds (Cannabis sativa) are of exceptional nutritional value, being rich in omega-3 fatty acids. We assessed the effects of dietary substitution (equivalent to about 2 tablespoons of seeds a day for humans) of whole hemp seeds in comparison with whole linseeds in a diet-induced obesity mouse model and determined their effects on obesity and the gut microbiome-endocannabinoidome axis. We show that whole hemp seed substitution did not affect weigh gain, adiposity, or food intake, whereas linseed substitution did, in association with higher fasting glucose levels, greater insulin release during an oral glucose tolerance test, and higher levels of liver triglycerides than controls. Furthermore, hemp seed substitution mitigated diet-induced obesity-associated increases in intestinal permeability and circulating PAI-1 levels, while having no effects on markers of inflammation in epididymal adipose tissue, which were, however, increased in mice fed linseeds. Both hemp seeds and linseeds were able to modify the expression of several endocannabinoidome genes and markedly increased the levels of several omega-3 fatty acid–derived endocannabinoidome bioactive lipids with previously suggested anti-inflammatory actions in a tissue specific manner, despite the relatively low level of seed substitution. While neither diet markedly modified the gut microbiome, mice on the hemp seed diet had higher abundance of Clostridiaceae 1 and Rikenellaceae than mice fed linseed or control diet, respectively. Thus, hemp seed-containing foods might represent a source of healthy fats that are not likely to exacerbate the metabolic consequences of obesogenic diets while producing intestinal permeability protective effects and some anti-inflammatory actions.
Collapse
|
22
|
Simard M, Archambault AS, Lavoie JPC, Dumais É, Di Marzo V, Flamand N. Biosynthesis and metabolism of endocannabinoids and their congeners from the monoacylglycerol andN-acyl-ethanolamine families. Biochem Pharmacol 2022; 205:115261. [PMID: 36152677 DOI: 10.1016/j.bcp.2022.115261] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
The endocannabinoids 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA) are eicosanoids implicated in numerous physiological processes like appetite, adipogenesis, inflammatory pain and inflammation. They mediate most of their physiological effect by activating the cannabinoid (CB) receptors 1 and 2. Other than directly binding to the CB receptors, 2-AG and AEA are also metabolized by most eicosanoid biosynthetic enzymes, yielding many metabolites that are part of the oxyendocannabinoidome. Some of these metabolites have been found in vivo, have the ability to modulate specific receptors and thus potentially influence physiological processes. In this review, we discuss the biosynthesis and metabolism of 2-AG and AEA, as well as their congeners from the monoacyl-glycerol and N-acyl-ethanolamine families, with a special focus on the metabolism by oxygenases involved in arachidonic acid metabolism. We highlight the knowledge gaps in our understanding of the regulation and roles the oxyendocannabinoidome mediators.
Collapse
|
23
|
Dubuc I, Prunier J, Lacasse É, Gravel A, Puhm F, Allaeys I, Archambault AS, Gudimard L, Villano R, Droit A, Flamand N, Boilard É, Flamand L. Cytokines and Lipid Mediators of Inflammation in Lungs of SARS-CoV-2 Infected Mice. Front Immunol 2022; 13:893792. [PMID: 35812400 PMCID: PMC9264370 DOI: 10.3389/fimmu.2022.893792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/26/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus disease 19 (COVID-19) is the clinical manifestation of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection. A hallmark of COVID-19 is a lung inflammation characterized by an abundant leukocyte infiltrate, elevated levels of cytokines/chemokines, lipid mediators of inflammation (LMI) and microthrombotic events. Animal models are useful for understanding the pathophysiological events leading to COVID-19. One such animal model is the K18-ACE2 transgenic mice. Despite their importance in inflammation, the study of LMI in lung of SARS-CoV-2 infected K18-ACE2 mice has yet to be studied to our knowledge. Using tandem mass spectrometry, the lung lipidome at different time points of infection was analyzed. Significantly increased LMI included N-oleoyl-serine, N-linoleoyl-glycine, N-oleoyl-alanine, 1/2-linoleoyl-glycerol, 1/2-docosahexaenoyl-glycerol and 12-hydroxy-eicosapenatenoic acid. The levels of prostaglandin (PG) E1, PGF2α, stearoyl-ethanolamide and linoleoyl-ethanolamide were found to be significantly reduced relative to mock-infected mice. Other LMI were present at similar levels (or undetected) in both uninfected and infected mouse lungs. In parallel to LMI measures, transcriptomic and cytokine/chemokine profiling were performed. Viral replication was robust with maximal lung viral loads detected on days 2-3 post-infection. Lung histology revealed leukocyte infiltration starting on day 3 post-infection, which correlated with the presence of high concentrations of several chemokines/cytokines. At early times post-infection, the plasma of infected mice contained highly elevated concentration of D-dimers suggestive of blood clot formation/dissolution. In support, the presence of blood clots in the lung vasculature was observed during infection. RNA-Seq analysis of lung tissues indicate that SARS-CoV-2 infection results in the progressive modulation of several hundred genes, including several inflammatory mediators and genes related to the interferons. Analysis of the lung lipidome indicated modest, yet significant modulation of a minority of lipids. In summary, our study suggests that SARS-CoV-2 infection in humans and mice share common features, such as elevated levels of chemokines in lungs, leukocyte infiltration and increased levels of circulating D-dimers. However, the K18-ACE2 mouse model highlight major differences in terms of LMI being produced in response to SARS-CoV-2 infection. The potential reasons and impact of these differences on the pathology and therapeutic strategies to be employed to treat severe COVID-19 are discussed.
Collapse
|
24
|
Forteza F, Bourdeau-Julien I, Nguyen GQ, Guevara Agudelo FA, Rochefort G, Parent L, Rakotoarivelo V, Feutry P, Martin C, Perron J, Lamarche B, Flamand N, Veilleux A, Billaut F, Di Marzo V, Raymond F. Influence of diet on acute endocannabinoidome mediator levels post exercise in active women, a crossover randomized study. Sci Rep 2022; 12:8568. [PMID: 35595747 PMCID: PMC9122896 DOI: 10.1038/s41598-022-10757-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
The extended endocannabinoid system, also termed endocannabinoidome, participates in multiple metabolic functions in health and disease. Physical activity can both have an acute and chronic impact on endocannabinoid mediators, as does diet. In this crossover randomized controlled study, we investigated the influence of diet on the peripheral response to acute maximal aerobic exercise in a sample of active adult women (n = 7) with no underlying metabolic conditions. We compared the impact of 7-day standardized Mediterranean diet (MedDiet) and control diet inspired by Canadian macronutrient intake (CanDiet) on endocannabinoidome and short-chain fatty acid metabolites post maximal aerobic exercise. Overall, plasmatic endocannabinoids, their congeners and some polyunsaturated fatty acids increased significantly post maximal aerobic exercise upon cessation of exercise and recovered their initial values within 1 h after exercise. Most N-acylethanolamines and polyunsaturated fatty acids increased directly after exercise when the participants had consumed the MedDiet, but not when they had consumed the CanDiet. This impact was different for monoacylglycerol endocannabinoid congeners, which in most cases reacted similarly to acute exercise while on the MedDiet or the CanDiet. Fecal microbiota was only minimally affected by the diet in this cohort. This study demonstrates that endocannabinoidome mediators respond to acute maximal aerobic exercise in a way that is dependent on the diet consumed in the week prior to exercise.
Collapse
|
25
|
Simard M, Rakotoarivelo V, Di Marzo V, Flamand N. Expression and Functions of the CB 2 Receptor in Human Leukocytes. Front Pharmacol 2022; 13:826400. [PMID: 35273503 PMCID: PMC8902156 DOI: 10.3389/fphar.2022.826400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023] Open
Abstract
The cannabinoid CB2 receptor was cloned from the promyeloid cell line HL-60 and is notably expressed in most, if not all leukocyte types. This relatively restricted localization, combined to the absence of psychotropic effects following its activation, make it an attractive drug target for inflammatory and autoimmune diseases. Therefore, there has been an increasing interest in the past decades to identify precisely which immune cells express the CB2 receptor and what are the consequences of such activation. Herein, we provide new data on the expression of both CB1 and CB2 receptors by human blood leukocytes and discuss the impact of CB2 receptor activation in human leukocytes. While the expression of the CB2 mRNA can be detected in eosinophils, neutrophils, monocytes, B and T lymphocytes, this receptor is most abundant in human eosinophils and B lymphocytes. We also review the evidence obtained from primary human leukocytes and immortalized cell lines regarding the regulation of their functions by the CB2 receptor, which underscore the urgent need to deepen our understanding of the CB2 receptor as an immunoregulator in humans.
Collapse
|